template<class Physics, class Problem>
MultiMat class
MultiMat used polymorphically with tk::DGPDE.
Contents
The template arguments specify policies and are used to configure the behavior of the class. The policies are:
- Physics - physics configuration, see PDE/MultiMat/Physics.h
Problem - problem configuration, see PDE/MultiMat/Problem.h
Constructors, destructors, conversion operators
Public functions
- auto nprim() const -> std::size_t
- auto nmat() const -> std::size_t
- void numEquationDofs(std::vector<std::size_t>& numEqDof) const
- void IcBoxElems(const tk::Fields& geoElem, std::size_t nielem, std::vector<std::unordered_set<std::size_t>>& inbox) const
-
void initialize(const tk::Fields& L,
const std::vector<std::size_t>& inpoel,
const tk::
UnsMesh:: Coords& coord, const std::vector<std::unordered_set<std::size_t>>& inbox, tk::Fields& unk, tk:: real t, const std::size_t nielem) const - void lhs(const tk::Fields& geoElem, tk::Fields& l) const
- void updateInterfaceCells(tk::Fields& unk, std::size_t nielem, std::vector<std::size_t>&) const
- void updatePrimitives(const tk::Fields& unk, const tk::Fields& L, const tk::Fields& geoElem, tk::Fields& prim, std::size_t nielem) const
- void cleanTraceMaterial(const tk::Fields& geoElem, tk::Fields& unk, tk::Fields& prim, std::size_t nielem) const
-
void reconstruct(tk::
real, const tk::Fields&, const tk::Fields& geoElem, const inciter:: FaceData& fd, const std::map<std::size_t, std::vector<std::size_t>>& esup, const std::vector<std::size_t>& inpoel, const tk:: UnsMesh:: Coords& coord, tk::Fields& U, tk::Fields& P) const -
void limit(] tk::
real t, const tk::Fields& geoFace, const tk::Fields& geoElem, const inciter:: FaceData& fd, const std::map<std::size_t, std::vector<std::size_t>>& esup, const std::vector<std::size_t>& inpoel, const tk:: UnsMesh:: Coords& coord, const std::vector<std::size_t>& ndofel, const std::vector<std::size_t>&, const std::unordered_map<std::size_t, std::size_t>&, const std::vector<std::vector<tk:: real>>&, const std::vector<std::vector<tk:: real>>&, tk::Fields& U, tk::Fields& P, std::vector<std::size_t>& shockmarker) const -
void rhs(tk::
real t, const tk::Fields& geoFace, const tk::Fields& geoElem, const inciter:: FaceData& fd, const std::vector<std::size_t>& inpoel, const std::vector<std::unordered_set<std::size_t>>&, const tk:: UnsMesh:: Coords& coord, const tk::Fields& U, const tk::Fields& P, const std::vector<std::size_t>& ndofel, tk::Fields& R) const -
void eval_ndof(std::size_t nunk,
] const tk::
UnsMesh:: Coords& coord, ] const std::vector<std::size_t>& inpoel, const inciter:: FaceData& fd, const tk::Fields& unk, inciter:: ctr:: PrefIndicatorType indicator, std::size_t ndof, std::size_t ndofmax, tk:: real tolref, std::vector<std::size_t>& ndofel) const -
auto dt(const std::array<std::vector<tk::
real>, 3>&, const std::vector<std::size_t>&, const inciter:: FaceData& fd, const tk::Fields& geoFace, const tk::Fields& geoElem, const std::vector<std::size_t>&, const tk::Fields& U, const tk::Fields& P, const std::size_t nielem) const -> tk:: real -
auto velocity(const tk::Fields& U,
const std::array<std::vector<tk::
real>, 3>&, const std::array<std::size_t, 4>& N) const -> std::array<std::array<tk:: real, 4>, 3> - auto analyticFieldNames() const -> std::vector<std::string>
- auto nodalFieldNames() const -> std::vector<std::string>
- auto histNames() const -> std::vector<std::string>
-
auto surfOutput(const std::map<int, std::vector<std::size_t>>&,
tk::Fields&) const -> std::vector<std::vector<tk::
real>> - Return surface field output going to file.
-
auto histOutput(const std::vector<HistData>& h,
const std::vector<std::size_t>& inpoel,
const tk::
UnsMesh:: Coords& coord, const tk::Fields& U, const tk::Fields& P) const -> std::vector<std::vector<tk:: real>> - auto names() const -> std::vector<std::string>
-
auto analyticSolution(tk::
real xi, tk:: real yi, tk:: real zi, tk:: real t) const -> std::vector<tk:: real> -
auto solution(tk::
real xi, tk:: real yi, tk:: real zi, tk:: real t) const -> std::vector<tk:: real>
Function documentation
template<class Physics, class Problem>
std::size_t inciter:: dg:: MultiMat<Physics, Problem>:: nprim() const
Returns | The number of primitive quantities required to be stored for this PDE system |
---|
Find the number of primitive quantities required for this PDE system
template<class Physics, class Problem>
std::size_t inciter:: dg:: MultiMat<Physics, Problem>:: nmat() const
Returns | The number of materials set up for this PDE system |
---|
Find the number of materials set up for this PDE system
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: numEquationDofs(std::vector<std::size_t>& numEqDof) const
Parameters | |
---|---|
numEqDof in/out | Array storing number of Dofs for each PDE equation |
Assign number of DOFs per equation in the PDE system
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: IcBoxElems(const tk::Fields& geoElem,
std::size_t nielem,
std::vector<std::unordered_set<std::size_t>>& inbox) const
Parameters | |
---|---|
geoElem in | Element geometry array |
nielem in | Number of internal elements |
inbox in/out | List of nodes at which box user ICs are set for each IC box |
Determine elements that lie inside the user-defined IC box
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: initialize(const tk::Fields& L,
const std::vector<std::size_t>& inpoel,
const tk:: UnsMesh:: Coords& coord,
const std::vector<std::unordered_set<std::size_t>>& inbox,
tk::Fields& unk,
tk:: real t,
const std::size_t nielem) const
Parameters | |
---|---|
L in | Block diagonal mass matrix |
inpoel in | Element-node connectivity |
coord in | Array of nodal coordinates |
inbox in | List of elements at which box user ICs are set for each IC box |
unk in/out | Array of unknowns |
t in | Physical time |
nielem in | Number of internal elements |
Initalize the compressible flow equations, prepare for time integration
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: lhs(const tk::Fields& geoElem,
tk::Fields& l) const
Parameters | |
---|---|
geoElem in | Element geometry array |
l in/out | Block diagonal mass matrix |
Compute the left hand side block-diagonal mass matrix
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: updateInterfaceCells(tk::Fields& unk,
std::size_t nielem,
std::vector<std::size_t>&) const
Parameters | |
---|---|
unk in | Array of unknowns |
nielem in | Number of internal elements |
Update the interface cells to first order dofs This function resets the high-order terms in interface cells.
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: updatePrimitives(const tk::Fields& unk,
const tk::Fields& L,
const tk::Fields& geoElem,
tk::Fields& prim,
std::size_t nielem) const
Parameters | |
---|---|
unk in | Array of unknowns |
L in | The left hand side block-diagonal mass matrix |
geoElem in | Element geometry array |
prim in/out | Array of primitives |
nielem in | Number of internal elements |
Update the primitives for this PDE system This function computes and stores the dofs for primitive quantities, which are required for obtaining reconstructed states used in the Riemann solver. See /PDE/Riemann/AUSM.hpp, where the normal velocity for advection is calculated from independently reconstructed velocities.
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: cleanTraceMaterial(const tk::Fields& geoElem,
tk::Fields& unk,
tk::Fields& prim,
std::size_t nielem) const
Parameters | |
---|---|
geoElem in | Element geometry array |
unk in/out | Array of unknowns |
prim in/out | Array of primitives |
nielem in | Number of internal elements |
Clean up the state of trace materials for this PDE system This function cleans up the state of materials present in trace quantities in each cell. Specifically, the state of materials with very low volume-fractions in a cell is replaced by the state of the material which is present in the largest quantity in that cell. This becomes necessary when shocks pass through cells which contain a very small amount of material. The state of that tiny material might become unphysical and cause solution to diverge; thus requiring such a "reset".
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: reconstruct(tk:: real,
const tk::Fields&,
const tk::Fields& geoElem,
const inciter:: FaceData& fd,
const std::map<std::size_t, std::vector<std::size_t>>& esup,
const std::vector<std::size_t>& inpoel,
const tk:: UnsMesh:: Coords& coord,
tk::Fields& U,
tk::Fields& P) const
Parameters | |
---|---|
geoElem in | Element geometry array |
fd in | Face connectivity and boundary conditions object |
esup in | Elements-surrounding-nodes connectivity |
inpoel in | Element-node connectivity |
coord in | Array of nodal coordinates |
U in/out | Solution vector at recent time step |
P in/out | Vector of primitives at recent time step |
Reconstruct second-order solution from first-order
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: limit(] tk:: real t,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter:: FaceData& fd,
const std::map<std::size_t, std::vector<std::size_t>>& esup,
const std::vector<std::size_t>& inpoel,
const tk:: UnsMesh:: Coords& coord,
const std::vector<std::size_t>& ndofel,
const std::vector<std::size_t>&,
const std::unordered_map<std::size_t, std::size_t>&,
const std::vector<std::vector<tk:: real>>&,
const std::vector<std::vector<tk:: real>>&,
tk::Fields& U,
tk::Fields& P,
std::vector<std::size_t>& shockmarker) const
Parameters | |
---|---|
t in | Physical time |
geoFace in | Face geometry array |
geoElem in | Element geometry array |
fd in | Face connectivity and boundary conditions object |
esup in | Elements-surrounding-nodes connectivity |
inpoel in | Element-node connectivity |
coord in | Array of nodal coordinates |
ndofel in | Vector of local number of degrees of freedome |
U in/out | Solution vector at recent time step |
P in/out | Vector of primitives at recent time step |
shockmarker |
Limit second-order solution, and primitive quantities separately
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: rhs(tk:: real t,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter:: FaceData& fd,
const std::vector<std::size_t>& inpoel,
const std::vector<std::unordered_set<std::size_t>>&,
const tk:: UnsMesh:: Coords& coord,
const tk::Fields& U,
const tk::Fields& P,
const std::vector<std::size_t>& ndofel,
tk::Fields& R) const
Parameters | |
---|---|
t in | Physical time |
geoFace in | Face geometry array |
geoElem in | Element geometry array |
fd in | Face connectivity and boundary conditions object |
inpoel in | Element-node connectivity |
coord in | Array of nodal coordinates |
U in | Solution vector at recent time step |
P in | Primitive vector at recent time step |
ndofel in | Vector of local number of degrees of freedome |
R in/out | Right-hand side vector computed |
Compute right hand side
template<class Physics, class Problem>
void inciter:: dg:: MultiMat<Physics, Problem>:: eval_ndof(std::size_t nunk,
] const tk:: UnsMesh:: Coords& coord,
] const std::vector<std::size_t>& inpoel,
const inciter:: FaceData& fd,
const tk::Fields& unk,
inciter:: ctr:: PrefIndicatorType indicator,
std::size_t ndof,
std::size_t ndofmax,
tk:: real tolref,
std::vector<std::size_t>& ndofel) const
Parameters | |
---|---|
nunk in | Number of unknowns |
coord in | Array of nodal coordinates |
inpoel in | Element-node connectivity |
fd in | Face connectivity and boundary conditions object |
unk in | Array of unknowns |
indicator in | p-refinement indicator type |
ndof in | Number of degrees of freedom in the solution |
ndofmax in | Max number of degrees of freedom for p-refinement |
tolref in | Tolerance for p-refinement |
ndofel in/out | Vector of local number of degrees of freedome |
Evaluate the adaptive indicator and mark the ndof for each element
template<class Physics, class Problem>
tk:: real inciter:: dg:: MultiMat<Physics, Problem>:: dt(const std::array<std::vector<tk:: real>, 3>&,
const std::vector<std::size_t>&,
const inciter:: FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const std::vector<std::size_t>&,
const tk::Fields& U,
const tk::Fields& P,
const std::size_t nielem) const
Parameters | |
---|---|
fd in | Face connectivity and boundary conditions object |
geoFace in | Face geometry array |
geoElem in | Element geometry array |
U in | Solution vector at recent time step |
P in | Vector of primitive quantities at recent time step |
nielem in | Number of internal elements |
Returns | Minimum time step size |
Compute the minimum time step size The allowable dt is calculated by looking at the maximum wave-speed in elements surrounding each face, times the area of that face. Once the maximum of this quantity over the mesh is determined, the volume of each cell is divided by this quantity. A minimum of this ratio is found over the entire mesh, which gives the allowable dt.
template<class Physics, class Problem>
std::array<std::array<tk:: real, 4>, 3> inciter:: dg:: MultiMat<Physics, Problem>:: velocity(const tk::Fields& U,
const std::array<std::vector<tk:: real>, 3>&,
const std::array<std::size_t, 4>& N) const
Parameters | |
---|---|
U in | Solution vector at recent time step |
N in | Element node indices |
Returns | Array of the four values of the velocity field |
Extract the velocity field at cell nodes. Currently unused.
template<class Physics, class Problem>
std::vector<std::string> inciter:: dg:: MultiMat<Physics, Problem>:: analyticFieldNames() const
Returns | Vector of strings labelling analytic fields output in file |
---|
Return analytic field names to be output to file
template<class Physics, class Problem>
std::vector<std::string> inciter:: dg:: MultiMat<Physics, Problem>:: nodalFieldNames() const
Returns | Vector of strings labelling fields output in file |
---|
Return field names to be output to file
template<class Physics, class Problem>
std::vector<std::string> inciter:: dg:: MultiMat<Physics, Problem>:: histNames() const
Returns | Vector of strings labelling time history fields output in file |
---|
Return time history field names to be output to file
template<class Physics, class Problem>
std::vector<std::vector<tk:: real>> inciter:: dg:: MultiMat<Physics, Problem>:: histOutput(const std::vector<HistData>& h,
const std::vector<std::size_t>& inpoel,
const tk:: UnsMesh:: Coords& coord,
const tk::Fields& U,
const tk::Fields& P) const
Parameters | |
---|---|
h in | History point data |
inpoel in | Element-node connectivity |
coord in | Array of nodal coordinates |
U in | Array of unknowns |
P in | Array of primitive quantities |
Returns | Vector of time history output of bulk flow quantities (density, velocity, total energy, and pressure) evaluated at time history points |
Return time history field output evaluated at time history points
template<class Physics, class Problem>
std::vector<std::string> inciter:: dg:: MultiMat<Physics, Problem>:: names() const
Returns | Vector of strings labelling integral variables output |
---|
Return names of integral variables to be output to diagnostics file
template<class Physics, class Problem>
std::vector<tk:: real> inciter:: dg:: MultiMat<Physics, Problem>:: analyticSolution(tk:: real xi,
tk:: real yi,
tk:: real zi,
tk:: real t) const
Parameters | |
---|---|
xi in | X-coordinate at which to evaluate the analytic solution |
yi in | Y-coordinate at which to evaluate the analytic solution |
zi in | Z-coordinate at which to evaluate the analytic solution |
t in | Physical time at which to evaluate the analytic solution |
Returns | Vector of analytic solution at given location and time |
Return analytic solution (if defined by Problem) at xi, yi, zi, t
template<class Physics, class Problem>
std::vector<tk:: real> inciter:: dg:: MultiMat<Physics, Problem>:: solution(tk:: real xi,
tk:: real yi,
tk:: real zi,
tk:: real t) const
Parameters | |
---|---|
xi in | X-coordinate at which to evaluate the analytic solution |
yi in | Y-coordinate at which to evaluate the analytic solution |
zi in | Z-coordinate at which to evaluate the analytic solution |
t in | Physical time at which to evaluate the analytic solution |
Returns | Vector of analytic solution at given location and time |
Return analytic solution for conserved variables