template<class Physics, class Problem>
Transport class
Transport equation used polymorphically with tk::CGPDE.
Contents
The template argument(s) specify policies and are used to configure the behavior of the class. The policies are:
- Physics - physics configuration, see PDE/Transport/Physics/CG.h
Problem - problem configuration, see PDE/Transport/Problem.h
Constructors, destructors, conversion operators
Public functions
-
void IcBoxNodes(const tk::
UnsMesh:: Coords&, std::vector<std::unordered_set<std::size_t>>&) const - Determine nodes that lie inside the user-defined IC box.
- void initialize(const std::array<std::vector<real>, 3>& coord, tk::Fields& unk, real t, real, const std::vector<std::unordered_set<std::size_t>>&) const
-
void velocity(const tk::Fields&,
tk::
UnsMesh:: Coords&) const -
void soundspeed(const tk::Fields&,
std::vector<tk::
real>&) const - auto analyticSolution(real xi, real yi, real zi, real t) const -> std::vector<real>
-
auto solution(tk::
real xi, tk:: real yi, tk:: real zi, tk:: real t) const -> std::vector<tk:: real> - void chBndGrad(const std::array<std::vector<real>, 3>& coord, const std::vector<std::size_t>& inpoel, const std::vector<std::size_t>& bndel, const std::vector<std::size_t>& gid, const std::unordered_map<std::size_t, std::size_t>& bid, const tk::Fields& U, tk::Fields& G) const
-
void rhs(real,
const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
const std::vector<std::size_t>& triinpoel,
const std::vector<std::size_t>&,
const std::unordered_map<std::size_t, std::size_t>& bid,
const std::unordered_map<std::size_t, std::size_t>& lid,
const std::vector<real>& dfn,
const std::pair<std::vector<std::size_t>, std::vector<std::size_t>>& psup,
const std::pair<std::vector<std::size_t>, std::vector<std::size_t>>& esup,
const std::vector<int>& symbctri,
const std::unordered_set<std::size_t>&,
const std::vector<real>& vol,
const std::vector<std::size_t>&,
const std::vector<std::size_t>& edgeid,
const std::vector<std::unordered_set<std::size_t>>&,
const tk::Fields& G,
const tk::Fields& U,
] const tk::Fields& W,
const std::vector<tk::
real>&, real, tk::Fields& R) const - void rhs(real t, real deltat, const std::array<std::vector<real>, 3>& coord, const std::vector<std::size_t>& inpoel, const tk::Fields& U, tk::Fields& Ue, tk::Fields& R) const
-
auto dt(const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
tk::
real t, tk:: real, const tk::Fields& U, const std::vector<tk:: real>&, const std::vector<tk:: real>&) const -> real -
void dt(uint64_t,
const std::vector<tk::
real>&, const tk::Fields&, std::vector<tk:: real>&) const - Compute a time step size for each mesh node (for steady time stepping)
-
auto dirbc(real t,
real deltat,
const std::vector<tk::
real>& tp, const std::vector<tk:: real>& dtp, const std::pair<const int, std::vector<std::size_t>>& ss, const std::array<std::vector<real>, 3>& coord, bool increment) const -> std::map<std::size_t, std::vector<std::pair<bool, real>>> - Query Dirichlet boundary condition value on a given side set for all components in this PDE system.
- void symbc(tk::Fields&, const std::array<std::vector<real>, 3>&, const std::unordered_map<int, std::unordered_map<std::size_t, std::array<real, 4>>>&, const std::unordered_set<std::size_t>&) const
- Set symmetry boundary conditions at nodes.
- void farfieldbc(tk::Fields&, const std::array<std::vector<real>, 3>&, const std::unordered_map<int, std::unordered_map<std::size_t, std::array<real, 4>>>&, const std::unordered_set<std::size_t>&) const
- Set farfield boundary conditions at nodes.
- void sponge(tk::Fields&, const std::array<std::vector<real>, 3>&, const std::unordered_set<std::size_t>&) const
- Apply sponge conditions at boundary nodes (no-op for transport)
-
void timedepbc(tk::
real, tk::Fields&, const std::vector<std::unordered_set<std::size_t>>&, const std::vector<tk:: Table<5>>&) const - Apply user defined time dependent BCs (no-op for transport)
- auto analyticFieldNames() const -> std::vector<std::string>
- auto surfNames() const -> std::vector<std::string>
- auto surfOutput(const std::map<int, std::vector<std::size_t>>&, const tk::Fields&) const -> std::vector<std::vector<real>>
- Return surface field output going to file.
- auto histNames() const -> std::vector<std::string>
- auto histOutput(const std::vector<HistData>&, const std::vector<std::size_t>&, const tk::Fields&) const -> std::vector<std::vector<real>>
- Return time history field output evaluated at time history points.
- auto names() const -> std::vector<std::string>
Function documentation
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: initialize(const std::array<std::vector<real>, 3>& coord,
tk::Fields& unk,
real t,
real,
const std::vector<std::unordered_set<std::size_t>>&) const
Parameters | |
---|---|
coord in | Mesh node coordinates |
unk in/out | Array of unknowns |
t in | Physical time |
Initalize the transport equations using problem policy
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: velocity(const tk::Fields&,
tk:: UnsMesh:: Coords&) const
Query a velocity
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: soundspeed(const tk::Fields&,
std::vector<tk:: real>&) const
Query the sound speed
template<class Physics, class Problem>
std::vector<real> inciter:: cg:: Transport<Physics, Problem>:: analyticSolution(real xi,
real yi,
real zi,
real t) const
Parameters | |
---|---|
xi in | X-coordinate |
yi in | Y-coordinate |
zi in | Z-coordinate |
t in | Physical time |
Returns | Vector of analytic solution at given location and time |
Return analytic solution (if defined by Problem) at xi, yi, zi, t
template<class Physics, class Problem>
std::vector<tk:: real> inciter:: cg:: Transport<Physics, Problem>:: solution(tk:: real xi,
tk:: real yi,
tk:: real zi,
tk:: real t) const
Parameters | |
---|---|
xi in | X-coordinate at which to evaluate the analytic solution |
yi in | Y-coordinate at which to evaluate the analytic solution |
zi in | Z-coordinate at which to evaluate the analytic solution |
t in | Physical time at which to evaluate the analytic solution |
Returns | Vector of analytic solution at given location and time |
Return analytic solution for conserved variables
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: chBndGrad(const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
const std::vector<std::size_t>& bndel,
const std::vector<std::size_t>& gid,
const std::unordered_map<std::size_t, std::size_t>& bid,
const tk::Fields& U,
tk::Fields& G) const
Parameters | |
---|---|
coord in | Mesh node coordinates |
inpoel in | Mesh element connectivity |
bndel in | List of elements contributing to chare-boundary nodes |
gid in | Local->global node id map |
bid in | Local chare-boundary node ids (value) associated to global node ids (key) |
U in | Solution vector at recent time step |
G in/out | Nodal gradients of primitive variables |
Compute nodal gradients of primitive variables for ALECG
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: rhs(real,
const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
const std::vector<std::size_t>& triinpoel,
const std::vector<std::size_t>&,
const std::unordered_map<std::size_t, std::size_t>& bid,
const std::unordered_map<std::size_t, std::size_t>& lid,
const std::vector<real>& dfn,
const std::pair<std::vector<std::size_t>, std::vector<std::size_t>>& psup,
const std::pair<std::vector<std::size_t>, std::vector<std::size_t>>& esup,
const std::vector<int>& symbctri,
const std::unordered_set<std::size_t>&,
const std::vector<real>& vol,
const std::vector<std::size_t>&,
const std::vector<std::size_t>& edgeid,
const std::vector<std::unordered_set<std::size_t>>&,
const tk::Fields& G,
const tk::Fields& U,
] const tk::Fields& W,
const std::vector<tk:: real>&,
real,
tk::Fields& R) const
Parameters | |
---|---|
coord in | Mesh node coordinates |
inpoel in | Mesh element connectivity |
triinpoel in | Boundary triangle face connecitivity |
bid in | Local chare-boundary node ids (value) associated to global node ids (key) |
lid in | Global->local node ids |
dfn in | Dual-face normals |
psup in | Points surrounding points |
esup in | Elements surrounding points |
symbctri in | Vector with 1 at symmetry BC nodes |
vol in | Nodal volumes |
edgeid in | Local node id pair -> edge id map |
G in | Nodal gradients in chare-boundary nodes |
U in | Solution vector at recent time step |
W in | Mesh velocity |
R in/out | Right-hand side vector computed |
Compute right hand side for ALECG
template<class Physics, class Problem>
void inciter:: cg:: Transport<Physics, Problem>:: rhs(real t,
real deltat,
const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
const tk::Fields& U,
tk::Fields& Ue,
tk::Fields& R) const
Parameters | |
---|---|
t in | Physical time |
deltat in | Size of time step |
coord in | Mesh node coordinates |
inpoel in | Mesh element connectivity |
U in | Solution vector at recent time step |
Ue in/out | Element-centered solution vector at intermediate step (used here internally as a scratch array) |
R in/out | Right-hand side vector computed |
Compute right hand side for DiagCG (CG+FCT)
template<class Physics, class Problem>
real inciter:: cg:: Transport<Physics, Problem>:: dt(const std::array<std::vector<real>, 3>& coord,
const std::vector<std::size_t>& inpoel,
tk:: real t,
tk:: real,
const tk::Fields& U,
const std::vector<tk:: real>&,
const std::vector<tk:: real>&) const
Parameters | |
---|---|
coord in | Mesh node coordinates |
inpoel in | Mesh element connectivity |
t in | Physical time |
U in | Solution vector at recent time step |
Returns | Minimum time step size |
Compute the minimum time step size (for unsteady time stepping)
template<class Physics, class Problem>
std::map<std::size_t, std::vector<std::pair<bool, real>>> inciter:: cg:: Transport<Physics, Problem>:: dirbc(real t,
real deltat,
const std::vector<tk:: real>& tp,
const std::vector<tk:: real>& dtp,
const std::pair<const int, std::vector<std::size_t>>& ss,
const std::array<std::vector<real>, 3>& coord,
bool increment) const
Query Dirichlet boundary condition value on a given side set for all components in this PDE system.
Parameters | |
---|---|
t in | Physical time |
deltat in | Time step size |
tp in | Physical time for each mesh node |
dtp in | Time step size for each mesh node |
ss in | Pair of side set ID and list of node IDs on the side set |
coord in | Mesh node coordinates |
increment in | If true, evaluate the solution increment between t and t+dt for Dirichlet BCs. If false, evlauate the solution instead. |
Returns | Vector of pairs of bool and boundary condition value associated to mesh node IDs at which Dirichlet boundary conditions are set. Note that if increment is true, instead of the actual boundary condition value, we return the increment between t+deltat and t, since, depending on client code and solver, that may be what the solution requires. |
template<class Physics, class Problem>
std::vector<std::string> inciter:: cg:: Transport<Physics, Problem>:: analyticFieldNames() const
Returns | Vector of strings labelling analytic fields output in file |
---|
Return analytic field names to be output to file
template<class Physics, class Problem>
std::vector<std::string> inciter:: cg:: Transport<Physics, Problem>:: surfNames() const
Returns | Vector of strings labelling surface fields output in file |
---|
Return surface field names to be output to file This functions should be written in conjunction with surfOutput(), which provides the vector of surface fields to be output
template<class Physics, class Problem>
std::vector<std::string> inciter:: cg:: Transport<Physics, Problem>:: histNames() const
Returns | Vector of strings labelling time history fields output in file |
---|
Return time history field names to be output to file
template<class Physics, class Problem>
std::vector<std::string> inciter:: cg:: Transport<Physics, Problem>:: names() const
Returns | Vector of strings labelling integral variables output |
---|
Return names of integral variables to be output to diagnostics file