Walker: Integrating the Dirichlet SDE
This example runs Walker to integrate the Dirichlet SDE (see DiffEq/Dirichlet.h) using constant coefficients. For more details on the Dirichlet SDE, see https:/
Control file
This example runs the setup that was used in the paper Bakosi, Ristorcelli, A Stochastic Diffusion Process for the Dirichlet Distribution, Int. J. Stoch. Anal., 2013.
# vim: filetype=sh: # This is a comment # Keywords are case-sensitive title "Dirichlet for the IJSA paper" walker term 140.0 # Max time dt 0.05 # Time step size npar 10000 # Number of particles ttyi 1000 # TTY output interval rngs mkl_mrg32k3a seed 0 end end dirichlet # Select Dirichlet SDE depvar y init zero coeff const ncomp 2 # = K = N-1 b 0.1 1.5 end S 0.625 0.4 end kappa 0.0125 0.3 end rng mkl_mrg32k3a end statistics <Y1> <Y2> <y1y1> <y2y2> <y1y2> end end
Example run on a single CPU
Main/walker -v -c ../../tmp/dir.q
Output
Charm++> Running on MPI version: 3.0 Charm++> level of thread support used: MPI_THREAD_SINGLE (desired: MPI_THREAD_SINGLE) Charm++> Running in non-SMP mode: numPes 1 Converse/Charm++ Commit ID: b8b2735 CharmLB> Load balancer assumes all CPUs are same. Charm++> Running on 1 unique compute nodes (4-way SMP). Charm++> cpu topology info is gathered in 0.000 seconds. ,::,` `. .;;;'';;;: ;;# ;;;@+ +;;; ;;;;;, ;;;;. ;;;;;, ;;;; ;;;; `;;;;;;: ;;; :;;@` :;;' .;;;@, ,;@, ,;;;@: .;;;' .;+;. ;;;@#:';;; ;;;;' ;;;# ;;;: ;;;' ;: ;;;' ;;;;; ;# ;;;@ ;;; ;+;;' .;;+ ;;;# ;;;' ;: ;;;' ;#;;;` ;# ;;@ `;;+ .;#;;;. ;;;# :;;' ;;;' ;: ;;;' ;# ;;; ;# ;;;@ ;;; ;# ;;;+ ;;;# .;;; ;;;' ;: ;;;' ;# ,;;; ;# ;;;# ;;;: ;@ ;;; ;;;# .;;' ;;;' ;: ;;;' ;# ;;;; ;# ;;;' ;;;+ ;', ;;;@ ;;;+ ,;;+ ;;;' ;: ;;;' ;# ;;;' ;# ;;;' ;;;' ;':::;;;; `;;; ;;;@ ;;;' ;: ;;;' ;# ;;;';# ;;;@ ;;;:,;+++++;;;' ;;;; ;;;@ ;;;# .;. ;;;' ;# ;;;;# `;;+ ;;# ;# ;;;' .;;; :;;@ ,;;+ ;+ ;;;' ;# ;;;# ;;; ;;;@ ;@ ;;;. ';;; ;;;@, ;;;;``.;;@ ;;;' ;+ .;;# ;;; :;;@ ;;; ;;;+ :;;;;;;;+@` ';;;;;'@ ;;;;;, ;;;; ;;+ +;;;;;;#@ ;;;;. .;;;;;; .;;#@' `#@@@: ;::::; ;:::: ;@ '@@@+ ;:::; ;:::::: :;;;;;;. __ __ .__ __ .;@+@';;;;;;' / \ / \_____ | | | | __ ___________ ` '#''@` \ \/\/ /\__ \ | | | |/ // __ \_ __ \ \ / / __ \| |_| <\ ___/| | \/ \__/\ / (____ /____/__|_ \\___ >__| \/ \/ \/ \/ < ENVIRONMENT > ------ o ------ * Build environment: -------------------- Hostname : sprout Executable : walker Version : 0.1 Release : LA-CC-XX-XXX Revision : e26d8f8514a11ade687ba460f42dfae5af53d4d6 CMake build type : DEBUG Asserts : on (turn off: CMAKE_BUILD_TYPE=RELEASE) Exception trace : on (turn off: CMAKE_BUILD_TYPE=RELEASE) MPI C++ wrapper : /opt/openmpi/1.8/clang/system/bin/mpicxx Underlying C++ compiler : /usr/bin/clang++-3.5 Build date : Fri Feb 6 06:39:01 MST 2015 * Run-time environment: ----------------------- Date, time : Sat Feb 7 19:17:50 2015 Work directory : /home/jbakosi/code/quinoa/build/clang Executable (rel. to work dir) : Main/walker Command line arguments : '-v -c ../../tmp/dir.q' Output : verbose (quiet: omit -v) Control file : ../../tmp/dir.q Parsed control file : success < FACTORY > ---- o ---- * Particle properties data layout policy (CMake: LAYOUT): --------------------------------------------------------- particle-major * Registered differential equations: ------------------------------------ Unique equation types : 8 With all policy combinations : 18 Legend: equation name : supported policies Policy codes: * i: initialization policy: R-raw, Z-zero * c: coefficients policy: C-const, J-jrrj Beta : i:RZ, c:CJ Diagonal Ornstein-Uhlenbeck : i:RZ, c:C Dirichlet : i:RZ, c:C Gamma : i:RZ, c:C Generalized Dirichlet : i:RZ, c:C Ornstein-Uhlenbeck : i:RZ, c:C Skew-Normal : i:RZ, c:C Wright-Fisher : i:RZ, c:C < PROBLEM > ---- o ---- * Title: Dirichlet for the IJSA paper ------------------------------------- * Differential equations integrated (1): ---------------------------------------- < Dirichlet > kind : stochastic dependent variable : y initialization policy : Z coefficients policy : C start offset in particle array : 0 number of components : 2 random number generator : MKL MRG32K3A coeff b [2] : { 0.1 1.5 } coeff S [2] : { 0.625 0.4 } coeff kappa [2] : { 0.0125 0.3 } * Output filenames: ------------------- Statistics : stat.txt * Discretization parameters: ---------------------------- Number of time steps : 18446744073709551615 Terminate time : 140 Initial time step size : 0.05 * Output intervals: ------------------- TTY : 1000 Statistics : 1 * Statistical moments and distributions: ---------------------------------------- Estimated statistical moments : <Y1> <Y2> <y1y1> <y1y2> <y2y2> * Load distribution: -------------------- Virtualization [0.0...1.0] : 0 Load (number of particles) : 10000 Number of processing elements : 1 Number of work units : 1 (0*10000+10000) * Time integration: Differential equations testbed -------------------------------------------------- Legend: it - iteration count t - time dt - time step size ETE - estimated time elapsed (h:m:s) ETA - estimated time for accomplishment (h:m:s) out - output-saved flags (S: statistics, P: PDFs) it t dt ETE ETA out --------------------------------------------------------------- 1000 5.000000e+01 5.000000e-02 000:00:05 000:00:10 S 2000 1.000000e+02 5.000000e-02 000:00:11 000:00:04 S Normal finish, maximum time reached: 140.000000 * Timers (h:m:s): ----------------- Initial conditions : 0:0:0 Migration of global-scope data : 0:0:0 Total runtime : 0:0:15 [Partition 0][Node 0] End of program
Results
Left – time evolution of the means and the means of the invariant distribution, right – time evolution of the components of the covariance matrix and those of the invariant.
Gnuplot commands to reproduce the above plots:
plot "stat.txt" u 2:3 w l t "<Y1>", "stat.txt" u 2:4 w l t "<Y2>", 0.5 lt 1, 0.2 lt 2 plot "stat.txt" u 2:5 w l t "<y1y1>", "stat.txt" u 2:6 w l t "<y1y2>", "stat.txt" u 2:7 w l t "<y2y2>", 1.0/44.0 lt 1, -1.0/110 lt 2, 4.0/275.0 lt 3