Walker: Integrating the beta SDE
This example runs Walker to integrate the beta SDE (see DiffEq/Beta.h) using constant coefficients. For more detail on the beta SDE, see https:/
Control file
title "Example problem" walker #nstep 1 # Max number of time steps term 50.0 # Max time dt 0.005 # Time step size npar 100000 # Number of particles ttyi 1000 # TTY output interval rngs mkl_r250 end end beta depvar x ncomp 5 init zero coeff const # alpha = Sb/kappa, beta = (1-S)b/kappa # S = 1/(1+\beta/alpha), delta = S/alpha = kappa/b kappa 2.0 0.76923 0.5 0.15873 0.5 end b 0.4 1.0 1.0 1.0 8.0 end S 0.5 0.53846 0.5 0.39683 0.5 end rng mkl_r250 end statistics <X1> <X2> <X3> <X4> <X5> <x1x1> <x1x2> <x1x3> <x1x4> <x1x5> <x2x2> <x2x3> <x2x4> <x2x5> <x3x3> <x3x4> <x3x5> <x4x4> <x4x5> <x5x5> end pdfs interval 1000 filetype txt policy overwrite centering elem format scientific precision 4 p1( X1 : 2.0e-2 ) p2( X2 : 2.0e-2 ) p3( X3 : 2.0e-2 ) p4( X4 : 2.0e-2 ) p5( X5 : 2.0e-2 ) end end
Example run on 4 CPUs
./charmrun +p4 Main/walker -v -c ../../tmp/beta.q
Output
Running on 4 processors: Main/walker -v -c ../../tmp/beta.q charmrun> /usr/bin/setarch x86_64 -R mpirun -np 4 Main/walker -v -c ../../tmp/beta.q Charm++> Running on MPI version: 3.0 Charm++> level of thread support used: MPI_THREAD_SINGLE (desired: MPI_THREAD_SINGLE) Charm++> Running in non-SMP mode: numPes 4 Converse/Charm++ Commit ID: b8b2735 CharmLB> Load balancer assumes all CPUs are same. Charm++> Running on 1 unique compute nodes (4-way SMP). Charm++> cpu topology info is gathered in 0.000 seconds. ,::,` `. .;;;'';;;: ;;# ;;;@+ +;;; ;;;;;, ;;;;. ;;;;;, ;;;; ;;;; `;;;;;;: ;;; :;;@` :;;' .;;;@, ,;@, ,;;;@: .;;;' .;+;. ;;;@#:';;; ;;;;' ;;;# ;;;: ;;;' ;: ;;;' ;;;;; ;# ;;;@ ;;; ;+;;' .;;+ ;;;# ;;;' ;: ;;;' ;#;;;` ;# ;;@ `;;+ .;#;;;. ;;;# :;;' ;;;' ;: ;;;' ;# ;;; ;# ;;;@ ;;; ;# ;;;+ ;;;# .;;; ;;;' ;: ;;;' ;# ,;;; ;# ;;;# ;;;: ;@ ;;; ;;;# .;;' ;;;' ;: ;;;' ;# ;;;; ;# ;;;' ;;;+ ;', ;;;@ ;;;+ ,;;+ ;;;' ;: ;;;' ;# ;;;' ;# ;;;' ;;;' ;':::;;;; `;;; ;;;@ ;;;' ;: ;;;' ;# ;;;';# ;;;@ ;;;:,;+++++;;;' ;;;; ;;;@ ;;;# .;. ;;;' ;# ;;;;# `;;+ ;;# ;# ;;;' .;;; :;;@ ,;;+ ;+ ;;;' ;# ;;;# ;;; ;;;@ ;@ ;;;. ';;; ;;;@, ;;;;``.;;@ ;;;' ;+ .;;# ;;; :;;@ ;;; ;;;+ :;;;;;;;+@` ';;;;;'@ ;;;;;, ;;;; ;;+ +;;;;;;#@ ;;;;. .;;;;;; .;;#@' `#@@@: ;::::; ;:::: ;@ '@@@+ ;:::; ;:::::: :;;;;;;. __ __ .__ __ .;@+@';;;;;;' / \ / \_____ | | | | __ ___________ ` '#''@` \ \/\/ /\__ \ | | | |/ // __ \_ __ \ \ / / __ \| |_| <\ ___/| | \/ \__/\ / (____ /____/__|_ \\___ >__| \/ \/ \/ \/ < ENVIRONMENT > ------ o ------ * Build environment: -------------------- Hostname : sprout Executable : walker Version : 0.1 Release : LA-CC-XX-XXX Revision : 3f859ba1503ba92b58d046fff04e913e4c5e81cc CMake build type : DEBUG Asserts : on (turn off: CMAKE_BUILD_TYPE=RELEASE) Exception trace : on (turn off: CMAKE_BUILD_TYPE=RELEASE) MPI C++ wrapper : /opt/openmpi/1.8/clang/system/bin/mpicxx Underlying C++ compiler : /usr/bin/clang++-3.5 Build date : Sun Feb 8 06:44:07 MST 2015 * Run-time environment: ----------------------- Date, time : Sun Feb 8 13:02:32 2015 Work directory : /home/jbakosi/code/quinoa/build/clang Executable (rel. to work dir) : Main/walker Command line arguments : '-v -c ../../tmp/beta.q' Output : verbose (quiet: omit -v) Control file : ../../tmp/beta.q Parsed control file : success < FACTORY > ---- o ---- * Particle properties data layout policy (CMake: LAYOUT): --------------------------------------------------------- particle-major * Registered differential equations: ------------------------------------ Unique equation types : 8 With all policy combinations : 18 Legend: equation name : supported policies Policy codes: * i: initialization policy: R-raw, Z-zero * c: coefficients policy: C-const, J-jrrj Beta : i:RZ, c:CJ Diagonal Ornstein-Uhlenbeck : i:RZ, c:C Dirichlet : i:RZ, c:C Gamma : i:RZ, c:C Generalized Dirichlet : i:RZ, c:C Ornstein-Uhlenbeck : i:RZ, c:C Skew-Normal : i:RZ, c:C Wright-Fisher : i:RZ, c:C < PROBLEM > ---- o ---- * Title: Example problem ------------------------ * Differential equations integrated (1): ---------------------------------------- < Beta > kind : stochastic dependent variable : x initialization policy : Z coefficients policy : C start offset in particle array : 0 number of components : 5 random number generator : MKL R250 coeff b [5] : { 0.4 1 1 1 8 } coeff S [5] : { 0.5 0.53846 0.5 0.39683 0.5 } coeff kappa [5] : { 2 0.76923 0.5 0.15873 0.5 } * Output filenames: ------------------- Statistics : stat.txt PDF : pdf * Discretization parameters: ---------------------------- Number of time steps : 18446744073709551615 Terminate time : 50 Initial time step size : 0.005 * Output intervals: ------------------- TTY : 1000 Statistics : 1 PDF : 1000 * Statistical moments and distributions: ---------------------------------------- Estimated statistical moments : <X1> <X2> <X3> <X4> <X5> <x1x1> <x1x2> <x1x3> <x1x4> <x1x5> <x2x2> <x2x3> <x2x4> <x2x5> <x3x3> <x3x4> <x3x5> <x4x4> <x4x5> <x5x5> PDFs : p1(X1:0.02) p2(X2:0.02) p3(X3:0.02) p4(X4:0.02) p5(X5:0.02) PDF output file type : txt PDF output file policy : overwrite PDF output file centering : elem Text floating-point format : scientific Text precision in digits : 4 * Load distribution: -------------------- Virtualization [0.0...1.0] : 0 Load (number of particles) : 100000 Number of processing elements : 4 Number of work units : 4 (3*25000+25000) * Time integration: Differential equations testbed -------------------------------------------------- Legend: it - iteration count t - time dt - time step size ETE - estimated time elapsed (h:m:s) ETA - estimated time for accomplishment (h:m:s) out - output-saved flags (S: statistics, P: PDFs) it t dt ETE ETA out --------------------------------------------------------------- 1000 5.000000e+00 5.000000e-03 000:00:55 000:08:17 SP 2000 1.000000e+01 5.000000e-03 000:01:50 000:07:21 SP 3000 1.500000e+01 5.000000e-03 000:02:45 000:06:26 SP 4000 2.000000e+01 5.000000e-03 000:03:40 000:05:31 SP 5000 2.500000e+01 5.000000e-03 000:04:35 000:04:35 SP 6000 3.000000e+01 5.000000e-03 000:05:31 000:03:40 SP 7000 3.500000e+01 5.000000e-03 000:06:26 000:02:45 SP 8000 4.000000e+01 5.000000e-03 000:07:21 000:01:50 SP 9000 4.500000e+01 5.000000e-03 000:08:16 000:00:55 SP 10000 5.000000e+01 5.000000e-03 000:09:12 000:00:00 SP Normal finish, maximum time reached: 50.000000 * Timers (h:m:s): ----------------- Initial conditions : 0:0:0 Migration of global-scope data : 0:0:0 Total runtime : 0:9:12 [Partition 0][Node 0] End of program
Results
The left figure shows the time evolution of the means estimated from the numerical simulation together with those of the invariant distributions. The right figure shows the time evolution of the variances and those of the invariant. Both plots indicate convergence to the correct statistically stationary state.
Gnuplot commands to reproduce the above plots:
plot "stat.txt" u 2:3 w l t "<X1>", "stat.txt" u 2:4 w l t "<X2>", "stat.txt" u 2:5 w l t "<X3>", "stat.txt" u 2:6 w l t "<X4>", "stat.txt" u 2:7 w l t "<X5>", 0.5 lt 1, 0.53846 lt 2, 0.39683 lt 4 plot "stat.txt" u 2:8 w l t "<x1x1>", "stat.txt" u 2:13 w l t "<x2x2>", "stat.txt" u 2:17 w l t "<x3x3>", "stat.txt" u 2:20 w l t "<x4x4>", "stat.txt" u 2:22 w l t "<x5x5>", 0.20833 lt 1, 0.10805 lt 2, 0.083333 lt 3, 0.032788 lt 4, 0.014706 lt 5
The left figure shows the 5 estimated PDFs at the final step of the simulation together with the corresponding invariants. The right figure shows the time evolution of the estimated covariances indicating no correlations at all times corresponding to the statistically independent equations integrated.
Gnuplot commands to reproduce the above plots:
plot [0:1] [0:4] "pdf_p1.txt", "pdf_p2.txt", "pdf_p3.txt", "pdf_p4.txt", "pdf_p5.txt", x**(0.1-1.0)*(1.0-x)**(0.1-1.0)/19.715 lt 1 t "a=0.1, b=0.1", x**(0.7-1.0)*(1.0-x)**(0.6-1.0)/2.1539 lt 2 t "a=0.7, b=0.6", x**(1.0-1.0)*(1.0-x)**(1.0-1.0)/1.0 lt 3 t "a=1.0, b=1.0", x**(2.5-1.0)*(1.0-x)**(3.8-1.0)/0.03092 lt 4 t "a=2.5, b=3.8", x**(8.0-1.0)*(1.0-x)**(8.0-1.0)/1.9425e-05 lt 5 t "a=8.0, b=8.0" plot [] [-0.003:0.003] "stat.txt" u 2:9 w l t "<x1x2>", "stat.txt" u 2:10 w l t "<x1x3>", "stat.txt" u 2:11 w l t "<x1x4>", "stat.txt" u 2:12 w l t "<x1x5>", "stat.txt" u 2:14 w l t "<x2x3>", "stat.txt" u 2:15 w l t "<x2x4>", "stat.txt" u 2:16 w l t "<x2x5>", "stat.txt" u 2:18 w l t "<x3x4>", "stat.txt" u 2:19 w l t "<x3x5>", "stat.txt" u 2:21 w l t "<x4x5>"