1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111 | // *****************************************************************************
/*!
\file src/PDE/MultiMat/Problem/UserDefined.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Problem configuration for the compressible flow equations
\details This file defines a Problem policy class for the compressible flow
equations, defined in PDE/MultiMat/MultiMat.h. See PDE/MultiMat/Problem.h
for general requirements on Problem policy classes for MultiMat.
*/
// *****************************************************************************
#include <limits>
#include "UserDefined.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "FieldOutput.hpp"
#include "EoS/EoS.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
} // ::inciter
using inciter::MultiMatProblemUserDefined;
tk::InitializeFn::result_type
MultiMatProblemUserDefined::initialize( ncomp_t system,
ncomp_t ncomp,
tk::real,
tk::real,
tk::real,
tk::real )
// *****************************************************************************
//! Set initial conditions
//! \param[in] system Equation system index, i.e., which multi-material
//! flow equation system we operate on among the systems of PDEs
//! \param[in] ncomp Number of scalar components in this PDE system
//! \return Values of all components
//! \note The function signature must follow tk::InitializeFn
// *****************************************************************************
{
tk::InitializeFn::result_type s( ncomp, 0.0 );
auto nmat =<--- Variable 'nmat' is assigned a value that is never used.
g_inputdeck.get< tag::param, eq, tag::nmat >()[system];
// Set background ICs
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& bgmatid = ic.get< tag::materialid >();
const auto& bgvelic = ic.get< tag::velocity >();
const auto& bgpreic = ic.get< tag::pressure >();
const auto& bgtempic = ic.get< tag::temperature >();
Assert( bgtempic.size() > system, "No background temperature IC" );
Assert( bgpreic.size() > 3*system, "No background pressure IC" );
auto alphamin = 1.0e-12;
// initialize background material states
for (std::size_t k=0; k<nmat; ++k) {
if (k == bgmatid.at(system).at(0)-1) {
s[volfracIdx(nmat,k)] = 1.0 - (static_cast< tk::real >(nmat-1))*alphamin;
}
else {
s[volfracIdx(nmat,k)] = alphamin;
}
}
tk::real u = bgvelic[system][0];
tk::real v = bgvelic[system][1];
tk::real w = bgvelic[system][2];
auto rb = 0.0;
for (std::size_t k=0; k<nmat; ++k) {
// density
auto rhok = eos_density< eq >(system, bgpreic[system][0],
bgtempic[system][0], k);
// partial density
s[densityIdx(nmat,k)] = s[volfracIdx(nmat,k)] * rhok;
// total specific energy
s[energyIdx(nmat,k)] = s[volfracIdx(nmat,k)] *
eos_totalenergy< eq >(system, rhok, u, v, w, bgpreic[system][0], k);
// bulk density
rb += s[densityIdx(nmat,k)];
}
// bulk momentum
s[momentumIdx(nmat,0)] = rb * u;
s[momentumIdx(nmat,1)] = rb * v;
s[momentumIdx(nmat,2)] = rb * w;
if (bgpreic[system].empty() || bgtempic[system].empty())
Throw("User must specify background pressure and temperature in IC.");
return s;
}
std::vector< std::string >
MultiMatProblemUserDefined::names( ncomp_t )
// *****************************************************************************
// Return names of integral variables to be output to diagnostics file
//! \return Vector of strings labelling integral variables output
// *****************************************************************************
{
return { "r", "ru", "rv", "rw", "re" };
}
|