1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709 | // *****************************************************************************
/*!
\file src/PDE/Limiter.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Limiters for discontiunous Galerkin methods
\details This file contains functions that provide limiter function
calculations for maintaining monotonicity near solution discontinuities
for the DG discretization.
*/
// *****************************************************************************
#include <array>
#include <vector>
#include "FaceData.hpp"
#include "Vector.hpp"
#include "Limiter.hpp"
#include "DerivedData.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Basis.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "PrefIndicator.hpp"
#include "Reconstruction.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
void
WENO_P1( const std::vector< int >& esuel,
inciter::ncomp_t offset,
tk::Fields& U )
// *****************************************************************************
// Weighted Essentially Non-Oscillatory (WENO) limiter for DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in] offset Index for equation systems
//! \param[in,out] U High-order solution vector which gets limited
//! \details This WENO function should be called for transport and compflow
//! \note This limiter function is experimental and untested. Use with caution.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto cweight = inciter::g_inputdeck.get< tag::discr, tag::cweight >();
auto nelem = esuel.size()/4;
std::array< std::vector< tk::real >, 3 >
limU {{ std::vector< tk::real >(nelem),
std::vector< tk::real >(nelem),
std::vector< tk::real >(nelem) }};
std::size_t ncomp = U.nprop()/rdof;
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
for (std::size_t e=0; e<nelem; ++e)
{
WENOLimiting(U, esuel, e, c, rdof, offset, cweight, limU);
}
auto mark = c*rdof;
for (std::size_t e=0; e<nelem; ++e)
{
U(e, mark+1, offset) = limU[0][e];
U(e, mark+2, offset) = limU[1][e];
U(e, mark+3, offset) = limU[2][e];
}
}
}
void
Superbee_P1( const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
inciter::ncomp_t offset,
const tk::UnsMesh::Coords& coord,
tk::Fields& U )
// *****************************************************************************
// Superbee limiter for DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] offset Index for equation systems
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \details This Superbee function should be called for transport and compflow
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
auto beta_lim = 2.0;
for (std::size_t e=0; e<esuel.size()/4; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
auto phi = SuperbeeLimiting(U, esuel, inpoel, coord, e, ndof, rdof,
dof_el, offset, ncomp, beta_lim);
// apply limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = phi[c] * U(e, mark+1, offset);
U(e, mark+2, offset) = phi[c] * U(e, mark+2, offset);
U(e, mark+3, offset) = phi[c] * U(e, mark+3, offset);
}
}
}
}
void
SuperbeeMultiMat_P1(
const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t system,
inciter::ncomp_t offset,
const tk::UnsMesh::Coords& coord,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat )
// *****************************************************************************
// Superbee limiter for multi-material DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] system Index for equation systems
//! \param[in] offset Offset this PDE system operates from
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \details This Superbee function should be called for multimat
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::param, tag::multimat,
tag::intsharp >()[system];
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
auto beta_lim = 2.0;
for (std::size_t e=0; e<esuel.size()/4; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
// limit conserved quantities
auto phic = SuperbeeLimiting(U, esuel, inpoel, coord, e, ndof, rdof,
dof_el, offset, ncomp, beta_lim);
// limit primitive quantities
auto phip = SuperbeeLimiting(P, esuel, inpoel, coord, e, ndof, rdof,
dof_el, offset, nprim, beta_lim);
if(ndof > 1)
BoundPreservingLimiting(nmat, offset, ndof, e, inpoel, coord, U, phic);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0), offset);
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd)
{
for (std::size_t k=0; k<nmat; ++k)
{
if (matInt[k])
phic[volfracIdx(nmat,k)] = 1.0;
}
}
else
{
consistentMultiMatLimiting_P1(nmat, offset, rdof, e, U, P, phic, phip);
}
// apply limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = phic[c] * U(e, mark+1, offset);
U(e, mark+2, offset) = phic[c] * U(e, mark+2, offset);
U(e, mark+3, offset) = phic[c] * U(e, mark+3, offset);
}
for (inciter::ncomp_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
P(e, mark+1, offset) = phip[c] * P(e, mark+1, offset);
P(e, mark+2, offset) = phip[c] * P(e, mark+2, offset);
P(e, mark+3, offset) = phip[c] * P(e, mark+3, offset);
}
}
}
}
void
VertexBasedTransport_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
std::size_t system,
std::size_t offset,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
tk::Fields& U )
// *****************************************************************************
// Kuzmin's vertex-based limiter for transport DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] system Index for equation systems
//! \param[in] offset Index for equation systems
//! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \details This vertex-based limiter function should be called for transport.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::param, tag::transport,
tag::intsharp >()[system];
std::size_t ncomp = U.nprop()/rdof;
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
std::vector< std::vector< tk::real > > unk;
std::vector< tk::real > phi(ncomp, 1.0);
// limit conserved quantities
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phi, {0, ncomp-1});
// limits under which compression is to be performed
std::vector< std::size_t > matInt(ncomp, 0);
std::vector< tk::real > alAvg(ncomp, 0.0);
for (std::size_t k=0; k<ncomp; ++k)
alAvg[k] = U(e,k*rdof,offset);
auto intInd = interfaceIndicator(ncomp, alAvg, matInt);
if ((intsharp > 0) && intInd)
{
for (std::size_t k=0; k<ncomp; ++k)
{
if (matInt[k]) phi[k] = 1.0;
}
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = phi[c] * U(e, mark+1, offset);
U(e, mark+2, offset) = phi[c] * U(e, mark+2, offset);
U(e, mark+3, offset) = phi[c] * U(e, mark+3, offset);
}
}
}
}
void
VertexBasedCompflow_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
std::size_t offset,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
tk::Fields& U )
// *****************************************************************************
// Kuzmin's vertex-based limiter for single-material DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] offset Index for equation systems
//! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \details This vertex-based limiter function should be called for compflow.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
std::vector< std::vector< tk::real > > unk;
std::vector< tk::real > phi(ncomp, 1.0);
// limit conserved quantities
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phi, {0, ncomp-1});
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = phi[c] * U(e, mark+1, offset);
U(e, mark+2, offset) = phi[c] * U(e, mark+2, offset);
U(e, mark+3, offset) = phi[c] * U(e, mark+3, offset);
}
}
}
}
void
VertexBasedCompflow_P2(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
std::size_t offset,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< std::vector<tk::real> >& uNodalExtrm,
tk::Fields& U )
// *****************************************************************************
// Kuzmin's vertex-based limiter for single-material DGP2
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] offset Index for equation systems
//! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
//! variables
//! \param[in,out] U High-order solution vector which gets limited
//! \details This vertex-based limiter function should be called for compflow.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
// Copy field data U to U_lim. U_lim will store the limited solution
// temporarily, so that the limited solution is NOT used to find the
// min/max bounds for the limiting function
auto U_lim = U;
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
bool shock_detec(false);
// Evaluate the shock detection indicator
auto Ind = evalDiscIndicator_CompFlow(e, ncomp, dof_el, ndofel[e], U);
if(Ind > 1e-6)
shock_detec = true;
if (dof_el > 1 && shock_detec)
{
// Transform the solution with Dubiner basis to Taylor basis so that the
// limiting function could be applied to physical derivatives in a
// hierarchical manner
auto unk =
tk::DubinerToTaylor(ncomp, offset, e, dof_el, U, inpoel, coord);
// The vector of limiting coefficients for P1 and P2 coefficients
std::vector< tk::real > phic_p1(ncomp, 1.0);
std::vector< tk::real > phic_p2(ncomp, 1.0);
// If DGP2 is applied, apply the limiter function to the first derivative
// to obtain the limiting coefficient for P2 coefficients
if(dof_el > 4)
phic_p2 = VertexBasedLimiting_P2(unk, U, esup, inpoel, coord, geoElem,
e, rdof, dof_el, offset, ncomp, gid, bid, uNodalExtrm);
// limit conserved quantities
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phic_p1, {0, ncomp-1});
if(dof_el > 4)
for (std::size_t c=0; c<ncomp; ++c)
phic_p1[c] = std::max(phic_p1[c], phic_p2[c]);
// apply limiter function to the solution with Taylor basis
for (std::size_t c=0; c<ncomp; ++c)
{
unk[c][1] = phic_p1[c] * unk[c][1];
unk[c][2] = phic_p1[c] * unk[c][2];
unk[c][3] = phic_p1[c] * unk[c][3];
}
if(dof_el > 4)
{
for (std::size_t c=0; c<ncomp; ++c)
{
unk[c][4] = phic_p2[c] * unk[c][4];
unk[c][5] = phic_p2[c] * unk[c][5];
unk[c][6] = phic_p2[c] * unk[c][6];
unk[c][7] = phic_p2[c] * unk[c][7];
unk[c][8] = phic_p2[c] * unk[c][8];
unk[c][9] = phic_p2[c] * unk[c][9];
}
}
// Convert the solution with Taylor basis to the solution with Dubiner
// basis
tk::TaylorToDubiner( ncomp, e, dof_el, inpoel, coord, geoElem, unk );
// Store the limited solution in U_lim
for(std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
for(std::size_t idof = 1; idof < rdof; idof++)
U_lim(e, mark+idof, offset) = unk[c][idof];
}
}
}
// Store the limited solution with Dubiner basis
for (std::size_t e=0; e<nelem; ++e)
{
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = U_lim(e, mark+1, offset);
U(e, mark+2, offset) = U_lim(e, mark+2, offset);
U(e, mark+3, offset) = U_lim(e, mark+3, offset);
if(ndof > 4)
{
U(e, mark+4, offset) = U_lim(e, mark+4, offset);
U(e, mark+5, offset) = U_lim(e, mark+5, offset);
U(e, mark+6, offset) = U_lim(e, mark+6, offset);
U(e, mark+7, offset) = U_lim(e, mark+7, offset);
U(e, mark+8, offset) = U_lim(e, mark+8, offset);
U(e, mark+9, offset) = U_lim(e, mark+9, offset);
}
}
}
}
void
VertexBasedMultiMat_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
std::size_t system,
std::size_t offset,
[[maybe_unused]] const inciter::FaceData& fd,
[[maybe_unused]] const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Kuzmin's vertex-based limiter for multi-material DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] system Index for equation systems
//! \param[in] offset Offset this PDE system operates from
//! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for multimat.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::discr, tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::discr, tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::param, tag::multimat,
tag::intsharp >()[system];
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
// Evaluate the interface condition and mark the shock cells
//MarkShockCells(nelem, nmat, system, offset, ndof, rdof, ndofel, inpoel, coord,
// fd, geoFace, geoElem, U, P, shockmarker);
// Threshold for shock detection indicator
auto threshold = pow(10, -5.7);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if(ndofel[e] > 1) {
// Evaluate the shock detection indicator to determine whether the limiter
// is applied or not
auto Ind = evalDiscIndicator_MultiMat(e, nmat, ncomp, dof_el, ndofel[e], U);
if(Ind > threshold)
shockmarker[e] = 1;
else
shockmarker[e] = 0;
} else { // If P0P1, the limiter is always applied
shockmarker[e] = 1;
}
if (dof_el > 1)
{
std::vector< std::vector< tk::real > > unk;
std::vector< tk::real > phic(ncomp, 1.0);
std::vector< tk::real > phip(nprim, 1.0);
if(shockmarker[e]) {
// When shockmarker is 1, there is discontinuity within the element.
// Hence, the vertex-based limiter will be applied.
// limit conserved quantities
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phic, {0, ncomp-1});
// limit primitive quantities
VertexBasedLimiting(unk, P, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, nprim, phip, {0, nprim-1});
} else {
// When shockmarker is 0, the volume fraction, density and energy
// of minor material will still be limited to ensure a stable solution.
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phic,
{volfracIdx(nmat,0), volfracIdx(nmat,nmat-1)});
for(std::size_t k=0; k<nmat; ++k) {
if(U(e, volfracDofIdx(nmat,k,rdof,0), offset) < 1e-4) {
// Vector to store the range of limited variables
std::array< std::size_t, 2 > VarRange;
// limit the density of minor materials
VarRange[0] = densityIdx(nmat, k);
VarRange[1] = VarRange[0];
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phic, VarRange);
// limit the energy of minor materials
VarRange[0] = energyIdx(nmat, k);
VarRange[1] = VarRange[0];
VertexBasedLimiting(unk, U, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, ncomp, phic, VarRange);
// limit the pressure of minor materials
VarRange[0] = pressureIdx(nmat, k);
VarRange[1] = VarRange[0];
VertexBasedLimiting(unk, P, esup, inpoel, coord, geoElem, e, rdof,
dof_el, offset, nprim, phip, VarRange);
}
}
}
if(ndof > 1 && intsharp == 0)
BoundPreservingLimiting(nmat, offset, ndof, e, inpoel, coord, U, phic);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0), offset);
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd)
{
for (std::size_t k=0; k<nmat; ++k)
{
if (matInt[k])
phic[volfracIdx(nmat,k)] = 1.0;
}
}
else
{
consistentMultiMatLimiting_P1(nmat, offset, rdof, e, U, P, phic, phip);
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1, offset) = phic[c] * U(e, mark+1, offset);
U(e, mark+2, offset) = phic[c] * U(e, mark+2, offset);
U(e, mark+3, offset) = phic[c] * U(e, mark+3, offset);
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
P(e, mark+1, offset) = phip[c] * P(e, mark+1, offset);
P(e, mark+2, offset) = phip[c] * P(e, mark+2, offset);
P(e, mark+3, offset) = phip[c] * P(e, mark+3, offset);
}
}
}
}
void
WENOLimiting( const tk::Fields& U,
const std::vector< int >& esuel,
std::size_t e,
inciter::ncomp_t c,
std::size_t rdof,
inciter::ncomp_t offset,
tk::real cweight,
std::array< std::vector< tk::real >, 3 >& limU )
// *****************************************************************************
// WENO limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esuel Elements surrounding elements
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] c Index of component which is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] offset Index for equation systems
//! \param[in] cweight Weight of the central stencil
//! \param[in,out] limU Limited gradients of component c
// *****************************************************************************
{
std::array< std::array< tk::real, 3 >, 5 > gradu;
std::array< tk::real, 5 > wtStencil, osc, wtDof;
auto mark = c*rdof;
// reset all stencil values to zero
for (auto& g : gradu) g.fill(0.0);
osc.fill(0);
wtDof.fill(0);
wtStencil.fill(0);
// The WENO limiter uses solution data from the neighborhood in the form
// of stencils to enforce non-oscillatory conditions. The immediate
// (Von Neumann) neighborhood of a tetrahedral cell consists of the 4
// cells that share faces with it. These are the 4 neighborhood-stencils
// for the tetrahedron. The primary stencil is the tet itself. Weights are
// assigned to these stencils, with the primary stencil usually assigned
// the highest weight. The lower the primary/central weight, the more
// dissipative the limiting effect. This central weight is usually problem
// dependent. It is set higher for relatively weaker discontinuities, and
// lower for stronger discontinuities.
// primary stencil
gradu[0][0] = U(e, mark+1, offset);
gradu[0][1] = U(e, mark+2, offset);
gradu[0][2] = U(e, mark+3, offset);
wtStencil[0] = cweight;
// stencils from the neighborhood
for (std::size_t is=1; is<5; ++is)
{
auto nel = esuel[ 4*e+(is-1) ];
// ignore physical domain ghosts
if (nel == -1)
{
gradu[is].fill(0.0);
wtStencil[is] = 0.0;
continue;
}
std::size_t n = static_cast< std::size_t >( nel );
gradu[is][0] = U(n, mark+1, offset);
gradu[is][1] = U(n, mark+2, offset);
gradu[is][2] = U(n, mark+3, offset);
wtStencil[is] = 1.0;
}
// From these stencils, an oscillation indicator is calculated, which
// determines the effective weights for the high-order solution DOFs.
// These effective weights determine the contribution of each of the
// stencils to the high-order solution DOFs of the current cell which are
// being limited. If this indicator detects a large oscillation in the
// solution of the current cell, it reduces the effective weight for the
// central stencil contribution to its high-order DOFs. This results in
// a more dissipative and well-behaved solution in the troubled cell.
// oscillation indicators
for (std::size_t is=0; is<5; ++is)
osc[is] = std::sqrt( tk::dot(gradu[is], gradu[is]) );
tk::real wtotal = 0;
// effective weights for dofs
for (std::size_t is=0; is<5; ++is)
{
// A small number (1.0e-8) is needed here to avoid dividing by a zero in
// the case of a constant solution, where osc would be zero. The number
// is not set to machine zero because it is squared, and a number
// between 1.0e-8 to 1.0e-6 is needed.
wtDof[is] = wtStencil[is] * pow( (1.0e-8 + osc[is]), -2 );
wtotal += wtDof[is];
}
for (std::size_t is=0; is<5; ++is)
{
wtDof[is] = wtDof[is]/wtotal;
}
limU[0][e] = 0.0;
limU[1][e] = 0.0;
limU[2][e] = 0.0;
// limiter function
for (std::size_t is=0; is<5; ++is)
{
limU[0][e] += wtDof[is]*gradu[is][0];
limU[1][e] += wtDof[is]*gradu[is][1];
limU[2][e] += wtDof[is]*gradu[is][2];
}
}
std::vector< tk::real >
SuperbeeLimiting( const tk::Fields& U,
const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
std::size_t e,
std::size_t ndof,
std::size_t rdof,
std::size_t dof_el,
inciter::ncomp_t offset,
inciter:: ncomp_t ncomp,
tk::real beta_lim )
// *****************************************************************************
// Superbee limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] offset Index for equation systems
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] beta_lim Parameter which is equal to 2 for Superbee and 1 for
//! minmod limiter
//! \return phi Limiter function for solution in element e
// *****************************************************************************
{
// Superbee is a TVD limiter, which uses min-max bounds that the
// high-order solution should satisfy, to ensure TVD properties. For a
// high-order method like DG, this involves the following steps:
// 1. Find min-max bounds in the immediate neighborhood of cell.
// 2. Calculate the Superbee function for all the points where solution
// needs to be reconstructed to (all quadrature points). From these,
// use the minimum value of the limiter function.
std::vector< tk::real > uMin(ncomp, 0.0), uMax(ncomp, 0.0);
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
uMin[c] = U(e, mark, offset);
uMax[c] = U(e, mark, offset);
}
// ----- Step-1: find min/max in the neighborhood
for (std::size_t is=0; is<4; ++is)
{
auto nel = esuel[ 4*e+is ];
// ignore physical domain ghosts
if (nel == -1) continue;
auto n = static_cast< std::size_t >( nel );
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
uMin[c] = std::min(uMin[c], U(n, mark, offset));
uMax[c] = std::max(uMax[c], U(n, mark, offset));
}
}
// ----- Step-2: loop over all quadrature points to get limiter function
// to loop over all the quadrature points of all faces of element e,
// coordinates of the quadrature points are needed.
// Number of quadrature points for face integration
auto ng = tk::NGfa(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
tk::GaussQuadratureTri( ng, coordgp, wgp );
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
// initialize limiter function
std::vector< tk::real > phi(ncomp, 1.0);
for (std::size_t lf=0; lf<4; ++lf)
{
// Extract the face coordinates
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordfa, coordgp );
//Compute the basis functions
auto B_l = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
auto state = tk::eval_state( ncomp, offset, rdof, dof_el, e, U, B_l, {0, ncomp-1} );
Assert( state.size() == ncomp, "Size mismatch" );
// compute the limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto phi_gp = 1.0;
auto mark = c*rdof;
auto uNeg = state[c] - U(e, mark, offset);
if (uNeg > 1.0e-14)
{
uNeg = std::max(uNeg, 1.0e-08);
phi_gp = std::min( 1.0, (uMax[c]-U(e, mark, offset))/(2.0*uNeg) );
}
else if (uNeg < -1.0e-14)
{
uNeg = std::min(uNeg, -1.0e-08);
phi_gp = std::min( 1.0, (uMin[c]-U(e, mark, offset))/(2.0*uNeg) );
}
else
{
phi_gp = 1.0;
}
phi_gp = std::max( 0.0,
std::max( std::min(beta_lim*phi_gp, 1.0),
std::min(phi_gp, beta_lim) ) );
phi[c] = std::min( phi[c], phi_gp );
}
}
}
return phi;
}
void
VertexBasedLimiting( const std::vector< std::vector< tk::real > >& unk,
const tk::Fields& U,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& geoElem,
std::size_t e,
std::size_t rdof,
std::size_t dof_el,
std::size_t offset,
std::size_t ncomp,
std::vector< tk::real >& phi,
const std::array< std::size_t, 2 >& VarRange )
// *****************************************************************************
// Kuzmin's vertex-based limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] offset Index for equation systems
//! \param[in] ncomp Number of scalar components in this PDE system
//! \return phi Limiter function for solution in element e
// *****************************************************************************
{
// Kuzmin's vertex-based TVD limiter uses min-max bounds that the
// high-order solution should satisfy, to ensure TVD properties. For a
// high-order method like DG, this involves the following steps:
// 1. Find min-max bounds in the nodal-neighborhood of cell.
// 2. Calculate the limiter function (Superbee) for all the vertices of cell.
// From these, use the minimum value of the limiter function.
// Prepare for calculating Basis functions
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > uMin(VarRange[1]-VarRange[0]+1, 0.0),
uMax(VarRange[1]-VarRange[0]+1, 0.0);
// loop over all nodes of the element e
for (std::size_t lp=0; lp<4; ++lp)
{
// reset min/max
for (std::size_t c=VarRange[0]; c<=VarRange[1]; ++c)
{
auto mark = c*rdof;
auto cmark = c-VarRange[0];
uMin[cmark] = U(e, mark, offset);
uMax[cmark] = U(e, mark, offset);
}
auto p = inpoel[4*e+lp];
const auto& pesup = tk::cref_find(esup, p);
// ----- Step-1: find min/max in the neighborhood of node p
// loop over all the internal elements surrounding this node p
for (auto er : pesup)
{
for (std::size_t c=VarRange[0]; c<=VarRange[1]; ++c)
{
auto mark = c*rdof;
auto cmark = c-VarRange[0];
uMin[cmark] = std::min(uMin[cmark], U(er, mark, offset));
uMax[cmark] = std::max(uMax[cmark], U(er, mark, offset));
}
}
// ----- Step-2: compute the limiter function at this node
// find high-order solution
std::vector< tk::real > state( ncomp, 0.0 );
if(rdof == 4)
{
// If DG(P1), evaluate high order solution based on dubiner basis
std::array< tk::real, 3 > gp{cx[p], cy[p], cz[p]};
auto B_p = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
state = tk::eval_state( ncomp, offset, rdof, dof_el, e, U, B_p, VarRange );
}
else { // If DG(P2), evaluate high order solution based on Taylor basis
// The nodal and central coordinates
std::array< tk::real, 3 > node{cx[p], cy[p], cz[p]};
std::array< tk::real, 3 > x_center
{ geoElem(e,1,0), geoElem(e,2,0), geoElem(e,3,0) };
auto B_p = tk::eval_TaylorBasis( rdof, node, x_center, coordel );
for (ncomp_t c=0; c<ncomp; ++c)
for(std::size_t idof = 0; idof < 4; idof++)
state[c] += unk[c][idof] * B_p[idof];
}
Assert( state.size() == ncomp, "Size mismatch" );
// compute the limiter function
for (std::size_t c=VarRange[0]; c<=VarRange[1]; ++c)
{
auto phi_gp = 1.0;
auto mark = c*rdof;
auto uNeg = state[c] - U(e, mark, offset);
auto uref = std::max(std::fabs(U(e,mark,offset)), 1e-14);
auto cmark = c - VarRange[0];
if (uNeg > 1.0e-06*uref)
{
phi_gp = std::min( 1.0, (uMax[cmark]-U(e, mark, offset))/uNeg );
}
else if (uNeg < -1.0e-06*uref)
{
phi_gp = std::min( 1.0, (uMin[cmark]-U(e, mark, offset))/uNeg );
}
else
{
phi_gp = 1.0;
}
// ----- Step-3: take the minimum of the nodal-limiter functions
phi[c] = std::min( phi[c], phi_gp );
}
}
}
std::vector< tk::real >
VertexBasedLimiting_P2( const std::vector< std::vector< tk::real > >& unk,
const tk::Fields& U,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& geoElem,
std::size_t e,
std::size_t rdof,
[[maybe_unused]] std::size_t dof_el,
std::size_t offset,
std::size_t ncomp,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< std::vector<tk::real> >& NodalExtrm )
// *****************************************************************************
// Kuzmin's vertex-based limiter function calculation for P2 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] offset Index for equation systems
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] NodalExtrm Chare-boundary nodal extrema
//! \return phi Limiter function for solution in element e
//! \details This function limits the P2 dofs of P2 solution in a hierachical
//! way to P1 dof limiting. Here we treat the first order derivatives the same
//! way as cell average while second order derivatives represent the gradients
//! to be limited in the P1 limiting procedure.
// *****************************************************************************
{
const auto nelem = inpoel.size() / 4;
// Prepare for calculating Basis functions
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
std::vector< tk::real > phi(ncomp, 1.0);
std::vector< std::vector< tk::real > > uMin, uMax;
uMin.resize( ncomp, std::vector<tk::real>(3, 0.0) );
uMax.resize( ncomp, std::vector<tk::real>(3, 0.0) );
// The coordinates of centroid in the reference domain
std::array< std::vector< tk::real >, 3 > center;
center[0].resize(1, 0.25);
center[1].resize(1, 0.25);
center[2].resize(1, 0.25);
// loop over all nodes of the element e
for (std::size_t lp=0; lp<4; ++lp)
{
// Find the max/min first-order derivatives for internal element
for (std::size_t c=0; c<ncomp; ++c)
{
for (std::size_t idir=1; idir < 4; ++idir)
{
uMin[c][idir-1] = unk[c][idir];
uMax[c][idir-1] = unk[c][idir];
}
}
auto p = inpoel[4*e+lp];
const auto& pesup = tk::cref_find(esup, p);
// Step-1: find min/max first order derivative at the centroid in the
// neighborhood of node p
for (auto er : pesup)
{
if(er < nelem) // If this is internal element
{
// Coordinates of the neighboring element
std::array< std::array< tk::real, 3>, 4 > coorder {{
{{ cx[ inpoel[4*er ] ], cy[ inpoel[4*er ] ], cz[ inpoel[4*er ] ] }},
{{ cx[ inpoel[4*er+1] ], cy[ inpoel[4*er+1] ], cz[ inpoel[4*er+1] ] }},
{{ cx[ inpoel[4*er+2] ], cy[ inpoel[4*er+2] ], cz[ inpoel[4*er+2] ] }},
{{ cx[ inpoel[4*er+3] ], cy[ inpoel[4*er+3] ], cz[ inpoel[4*er+3] ] }} }};
auto jacInv_er =
tk::inverseJacobian( coorder[0], coorder[1], coorder[2], coorder[3] );
// Compute the derivatives of basis function in the physical domain
auto dBdx_er = tk::eval_dBdx_p1( rdof, jacInv_er );
if(rdof > 4)
tk::eval_dBdx_p2(0, center, jacInv_er, dBdx_er);
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
for (std::size_t idir=0; idir < 3; ++idir)
{
// The first order derivative at the centroid of element er
tk::real slope_er(0.0);
for(std::size_t idof = 1; idof < rdof; idof++)
slope_er += U(er, mark+idof, offset) * dBdx_er[idir][idof];
uMin[c][idir] = std::min(uMin[c][idir], slope_er);
uMax[c][idir] = std::max(uMax[c][idir], slope_er);
}
}
}
}
// If node p is the chare-boundary node, find min/max by comparing with
// the chare-boundary nodal extrema from vector NodalExtrm
auto gip = bid.find( gid[p] );
if(gip != end(bid))
{
auto ndof_NodalExtrm = NodalExtrm[0].size() / (ncomp * 2);
for (std::size_t c=0; c<ncomp; ++c)
{
for (std::size_t idir = 0; idir < 3; idir++)
{
auto max_mark = 2*c*ndof_NodalExtrm + 2*idir;
auto min_mark = max_mark + 1;
auto& ex = NodalExtrm[gip->second];
uMax[c][idir] = std::max(ex[max_mark], uMax[c][idir]);
uMin[c][idir] = std::min(ex[min_mark], uMin[c][idir]);
}
}
}
//Step-2: compute the limiter function at this node
std::array< tk::real, 3 > node{cx[p], cy[p], cz[p]};
std::array< tk::real, 3 >
centroid_physical{geoElem(e,1,0), geoElem(e,2,0), geoElem(e,3,0)};
// find high-order solution
std::vector< std::vector< tk::real > > state;
state.resize( ncomp, std::vector<tk::real>(3, 0.0) );
for (ncomp_t c=0; c<ncomp; ++c)
{
auto dx = node[0] - centroid_physical[0];
auto dy = node[1] - centroid_physical[1];
auto dz = node[2] - centroid_physical[2];
state[c][0] = unk[c][1] + unk[c][4] * dx + unk[c][7] * dy + unk[c][8] * dz;
state[c][1] = unk[c][2] + unk[c][5] * dy + unk[c][7] * dx + unk[c][9] * dz;
state[c][2] = unk[c][3] + unk[c][6] * dz + unk[c][8] * dx + unk[c][9] * dy;
}
// compute the limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
tk::real phi_dir(1.0);<--- The scope of the variable 'phi_dir' can be reduced. [+]The scope of the variable 'phi_dir' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
for (std::size_t idir=1; idir < 3; ++idir)
{
phi_dir = 1.0;<--- phi_dir is assigned
auto uNeg = state[c][idir-1] - unk[c][idir];
auto uref = std::max(std::fabs(unk[c][idir]), 1e-14);
if (uNeg > 1.0e-6*uref)
{
phi_dir =<--- phi_dir is overwritten
std::min( 1.0, ( uMax[c][idir-1] - unk[c][idir])/uNeg );
}
else if (uNeg < -1.0e-6*uref)
{
phi_dir =
std::min( 1.0, ( uMin[c][idir-1] - unk[c][idir])/uNeg );
}
else
{
phi_dir = 1.0;
}
phi[c] = std::min( phi[c], phi_dir );
}
}
}
return phi;
}
void consistentMultiMatLimiting_P1(
std::size_t nmat,
ncomp_t offset,
std::size_t rdof,
std::size_t e,
tk::Fields& U,
[[maybe_unused]] tk::Fields& P,
std::vector< tk::real >& phic,
[[maybe_unused]] std::vector< tk::real >& phip )
// *****************************************************************************
// Consistent limiter modifications for P1 dofs
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] offset Index for equation system
//! \param[in] rdof Total number of reconstructed dofs
//! \param[in] e Element being checked for consistency
//! \param[in,out] U Second-order solution vector which gets modified near
//! material interfaces for consistency
//! \param[in,out] P Second-order vector of primitive quantities which gets
//! modified near material interfaces for consistency
//! \param[in,out] phic Vector of limiter functions for the conserved quantities
//! \param[in,out] phip Vector of limiter functions for the primitive quantities
// *****************************************************************************
{
Assert(phic.size() == U.nprop()/rdof, "Number of unknowns in vector of "
"conserved quantities incorrect");
Assert(phip.size() == P.nprop()/rdof, "Number of unknowns in vector of "
"primitive quantities incorrect");
// find the limiter-function for volume-fractions
auto phi_al(1.0), almax(0.0), dalmax(0.0);
//std::size_t nmax(0);
for (std::size_t k=0; k<nmat; ++k)
{
phi_al = std::min( phi_al, phic[volfracIdx(nmat, k)] );
if (almax < U(e,volfracDofIdx(nmat, k, rdof, 0),offset))
{
//nmax = k;
almax = U(e,volfracDofIdx(nmat, k, rdof, 0),offset);
}
auto dmax = std::max(
std::max(
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 1),offset)),
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 2),offset)) ),
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 3),offset)) );
dalmax = std::max( dalmax, dmax );
}
auto al_band = 1e-4;
//phi_al = phic[nmax];
// determine if cell is a material-interface cell based on ad-hoc tolerances.
// if interface-cell, then modify high-order dofs of conserved unknowns
// consistently and use same limiter for all equations.
// Slopes of solution variables \alpha_k \rho_k and \alpha_k \rho_k E_k need
// to be modified in interface cells, such that slopes in the \rho_k and
// \rho_k E_k part are ignored and only slopes in \alpha_k are considered.
// Ideally, we would like to not do this, but this is a necessity to avoid
// limiter-limiter interactions in multiphase CFD (see "K.-M. Shyue, F. Xiao,
// An Eulerian interface sharpening algorithm for compressible two-phase flow:
// the algebraic THINC approach, Journal of Computational Physics 268, 2014,
// 326–354. doi:10.1016/j.jcp.2014.03.010." and "A. Chiapolino, R. Saurel,
// B. Nkonga, Sharpening diffuse interfaces with compressible fluids on
// unstructured meshes, Journal of Computational Physics 340 (2017) 389–417.
// doi:10.1016/j.jcp.2017.03.042."). This approximation should be applied in
// as narrow a band of interface-cells as possible. The following if-test
// defines this band of interface-cells. This tests checks the value of the
// maximum volume-fraction in the cell (almax) and the maximum change in
// volume-fraction in the cell (dalmax, calculated from second-order DOFs),
// to determine the band of interface-cells where the aforementioned fix needs
// to be applied. This if-test says that, the fix is applied when the change
// in volume-fraction across a cell is greater than 0.1, *and* the
// volume-fraction is between 0.1 and 0.9.
if ( dalmax > al_band &&
(almax > al_band && almax < (1.0-al_band)) )
{
// 1. consistent high-order dofs
for (std::size_t k=0; k<nmat; ++k)
{
auto alk = std::max( 1.0e-14, U(e,volfracDofIdx(nmat, k, rdof, 0),offset) );
auto rhok = U(e,densityDofIdx(nmat, k, rdof, 0),offset)/alk;
for (std::size_t idir=1; idir<=3; ++idir)
{
U(e,densityDofIdx(nmat, k, rdof, idir),offset) = rhok *
U(e,volfracDofIdx(nmat, k, rdof, idir),offset);
}
}
// 2. same limiter for all volume-fractions and densities
for (std::size_t k=0; k<nmat; ++k)
{
phic[volfracIdx(nmat, k)] = phi_al;
phic[densityIdx(nmat, k)] = phi_al;
}
}
else
{
// same limiter for all volume-fractions
for (std::size_t k=0; k<nmat; ++k)
phic[volfracIdx(nmat, k)] = phi_al;
}
}
void BoundPreservingLimiting( std::size_t nmat,
ncomp_t offset,
std::size_t ndof,
std::size_t e,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
std::vector< tk::real >& phic )
// *****************************************************************************
// Bound preserving limiter for P1 dofs when MulMat scheme is selected
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] offset Index for equation system
//! \param[in] ndof Total number of reconstructed dofs
//! \param[in] e Element being checked for consistency
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U Second-order solution vector which gets modified near
//! material interfaces for consistency
//! \param[in,out] phic Vector of limiter functions for the conserved quantities
//! \details This bound-preserving limiter is specifically meant to enforce
//! bounds [0,1], but it does not suppress oscillations like the other 'TVD'
//! limiters. TVD limiters on the other hand, do not preserve such bounds. A
//! combination of oscillation-suppressing and bound-preserving limiters can
//! obtain a non-oscillatory and bounded solution.
// *****************************************************************************
{
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > phi_bound(nmat, 1.0);
// loop over all faces of the element e
for (std::size_t lf=0; lf<4; ++lf)
{
// Extract the face coordinates
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
auto ng = tk::NGfa(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
tk::GaussQuadratureTri( ng, coordgp, wgp );
// Compute the upper and lower bound for volume fraction
tk::real min = 1e-14;
tk::real max = 1.0 - min;
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordfa, coordgp );
//Compute the basis functions
auto B = tk::eval_basis( ndof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
auto state = eval_state( U.nprop()/ndof, offset, ndof, ndof, e, U, B,
{0, U.nprop()/ndof-1} );
for(std::size_t imat = 0; imat < nmat; imat++)
{
tk::real phi(1.0);
auto al = state[volfracIdx(nmat, imat)];
if(al > 1.0)
{
phi = std::fabs(
(max - U(e,volfracDofIdx(nmat, imat, ndof, 0),offset))
/ (al - U(e,volfracDofIdx(nmat, imat, ndof, 0),offset)) );
}
else if(al < 1e-14)
{
phi = std::fabs(
(min - U(e,volfracDofIdx(nmat, imat, ndof, 0),offset))
/ (al - U(e,volfracDofIdx(nmat, imat, ndof, 0),offset)) );
}
phi_bound[imat] = std::min( phi_bound[imat], phi );
}
}
}
for(std::size_t imat = 0; imat < nmat; imat++)
phic[imat] = phi_bound[imat] * phic[imat];
}
bool
interfaceIndicator( std::size_t nmat,
const std::vector< tk::real >& al,
std::vector< std::size_t >& matInt )
// *****************************************************************************
// Interface indicator function, which checks element for material interface
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] al Cell-averaged volume fractions
//! \param[in] matInt Array indicating which material has an interface
//! \return Boolean which indicates if the element contains a material interface
// *****************************************************************************
{
bool intInd = false;
// limits under which compression is to be performed
auto al_eps = 1e-08;
auto loLim = 2.0 * al_eps;
auto hiLim = 1.0 - loLim;
auto almax = 0.0;
for (std::size_t k=0; k<nmat; ++k)
{
almax = std::max(almax, al[k]);
matInt[k] = 0;
if ((al[k] > loLim) && (al[k] < hiLim)) matInt[k] = 1;
}
if ((almax > loLim) && (almax < hiLim)) intInd = true;
return intInd;
}
void MarkShockCells ( const std::size_t nelem,
const std::size_t nmat,
const std::size_t system,
const std::size_t offset,
const std::size_t ndof,
const std::size_t rdof,
const std::vector< std::size_t >& ndofel,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::Fields& U,
const tk::Fields& P,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Mark the cells that contain discontinuity according to the interface
// condition
//! \param[in] nelem Number of elements
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] system Equation system index
//! \param[in] offset Offset this PDE system operates from
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in, out] shockmarker Vector of the shock indicator
//! \details This function computes the discontinuity indicator based on
//! interface conditon. It is based on the following paper:
//! Hong L., Gianni A., Robert N. (2021) A moving discontinuous Galerkin
//! finite element method with interface condition enforcement for
//! compressible flows. Journal of Computational Physics,
//! doi: https://doi.org/10.1016/j.jcp.2021.110618
// *****************************************************************************
{
std::vector< tk::real > IC(U.nunk(), 0.0);
const auto& esuf = fd.Esuf();
const auto& inpofa = fd.Inpofa();
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.
// Loop over faces
for (auto f=fd.Nbfac(); f<esuf.size()/2; ++f) {
Assert( esuf[2*f] > -1 && esuf[2*f+1] > -1, "Interior element detected "
"as -1" );
std::size_t el = static_cast< std::size_t >(esuf[2*f]);
std::size_t er = static_cast< std::size_t >(esuf[2*f+1]);
// When the number of gauss points for the left and right element are
// different, choose the larger ng
auto ng_l = tk::NGfa(ndofel[el]);
auto ng_r = tk::NGfa(ndofel[er]);
auto ng = std::max( ng_l, ng_r );
std::array< std::vector< tk::real >, 2 > coordgp
{ std::vector<tk::real>(ng), std::vector<tk::real>(ng) };
std::vector< tk::real > wgp( ng );
tk::GaussQuadratureTri( ng, coordgp, wgp );
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel_l {{
{{ cx[ inpoel[4*el ] ], cy[ inpoel[4*el ] ], cz[ inpoel[4*el ] ] }},
{{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
{{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
{{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};
std::array< std::array< tk::real, 3>, 4 > coordel_r {{
{{ cx[ inpoel[4*er ] ], cy[ inpoel[4*er ] ], cz[ inpoel[4*er ] ] }},
{{ cx[ inpoel[4*er+1] ], cy[ inpoel[4*er+1] ], cz[ inpoel[4*er+1] ] }},
{{ cx[ inpoel[4*er+2] ], cy[ inpoel[4*er+2] ], cz[ inpoel[4*er+2] ] }},
{{ cx[ inpoel[4*er+3] ], cy[ inpoel[4*er+3] ], cz[ inpoel[4*er+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT_l =
tk::Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );
auto detT_r =
tk::Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], coordel_r[3] );
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa[3*f ] ], cy[ inpofa[3*f ] ], cz[ inpofa[3*f ] ] }},
{{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
{{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }} }};
std::array< tk::real, 3 >
fn{{ geoFace(f,1,0), geoFace(f,2,0), geoFace(f,3,0) }};
for (std::size_t igp=0; igp<ng; ++igp) {
auto gp = tk::eval_gp( igp, coordfa, coordgp );
std::size_t dof_el, dof_er;
if (rdof > ndof)
{
dof_el = rdof;
dof_er = rdof;
}
else
{
dof_el = ndofel[el];
dof_er = ndofel[er];
}
std::array< tk::real, 3> ref_gp_l{
tk::Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
tk::Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
tk::Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };
std::array< tk::real, 3> ref_gp_r{
tk::Jacobian( coordel_r[0], gp, coordel_r[2], coordel_r[3] ) / detT_r,
tk::Jacobian( coordel_r[0], coordel_r[1], gp, coordel_r[3] ) / detT_r,
tk::Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], gp ) / detT_r };
auto B_l = tk::eval_basis( dof_el, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );
auto B_r = tk::eval_basis( dof_er, ref_gp_r[0], ref_gp_r[1], ref_gp_r[2] );
auto wt = wgp[igp] * geoFace(f,0,0);<--- Variable 'wt' is assigned a value that is never used.
std::array< std::vector< tk::real >, 2 > state;
// Evaluate the high order solution at the qudrature point
state[0] = tk::evalPolynomialSol(system, offset, 0, ncomp, nprim, rdof,
nmat, el, dof_el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P);
state[1] = tk::evalPolynomialSol(system, offset, 0, ncomp, nprim, rdof,
nmat, er, dof_er, inpoel, coord, geoElem, ref_gp_r, B_r, U, P);
Assert( state[0].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
Assert( state[1].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
// Evaluate the bulk density
tk::real rhol(0.0), rhor(0.0);
for(std::size_t k = 0; k < nmat; k++) {
rhol += state[0][densityIdx(nmat,k)];
rhor += state[1][densityIdx(nmat,k)];
}
// Evaluate the flux for the density
tk::real fl(0.0), fr(0.0);
for(std::size_t i = 0; i < 3; i++) {
fl += rhol * state[0][ncomp+velocityIdx(nmat,i)] * fn[i];
fr += rhor * state[1][ncomp+velocityIdx(nmat,i)] * fn[i];
}
tk::real rhs = wt * fabs(fl - fr);
IC[el] += rhs;
IC[er] += rhs;
}
}
// Loop over element to mark shock cell
for (std::size_t e=0; e<nelem; ++e) {
if(fabs(IC[e]) > 1e-6)
shockmarker[e] = 1;
else
shockmarker[e] = 0;
}
}
} // inciter::
|