1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
// *****************************************************************************
/*!
  \file      src/PDE/CompFlow/DGCompFlow.hpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Compressible single-material flow using discontinuous Galerkin
     finite elements
  \details   This file implements calls to the physics operators governing
    compressible single-material flow using discontinuous Galerkin
    discretizations.
*/
// *****************************************************************************
#ifndef DGCompFlow_h
#define DGCompFlow_h

#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <map>

#include <brigand/algorithms/for_each.hpp>

#include "Macro.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "ContainerUtil.hpp"
#include "UnsMesh.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Integrate/Basis.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Initialize.hpp"
#include "Integrate/Mass.hpp"
#include "Integrate/Surface.hpp"
#include "Integrate/Boundary.hpp"
#include "Integrate/Volume.hpp"
#include "Integrate/Source.hpp"
#include "RiemannFactory.hpp"
#include "EoS/EoS.hpp"
#include "Reconstruction.hpp"
#include "Limiter.hpp"
#include "PrefIndicator.hpp"

namespace inciter {

extern ctr::InputDeck g_inputdeck;

namespace dg {

//! \brief CompFlow used polymorphically with tk::DGPDE
//! \details The template arguments specify policies and are used to configure
//!   the behavior of the class. The policies are:
//!   - Physics - physics configuration, see PDE/CompFlow/Physics.h
//!   - Problem - problem configuration, see PDE/CompFlow/Problem.h
//! \note The default physics is Euler, set in inciter::deck::check_compflow()
template< class Physics, class Problem >
class CompFlow {

  private:
    using eq = tag::compflow;

  public:
    //! Constructor
    //! \param[in] c Equation system index (among multiple systems configured)
    explicit CompFlow( ncomp_t c ) :
      m_physics(),
      m_problem(),
      m_system( c ),
      m_ncomp( g_inputdeck.get< tag::component, eq >().at(c) ),
      m_offset( g_inputdeck.get< tag::component >().offset< eq >(c) ),
      m_riemann(tk::cref_find(compflowRiemannSolvers(),
        g_inputdeck.get< tag::param, tag::compflow, tag::flux >().at(m_system)))
    {
      // associate boundary condition configurations with state functions, the
      // order in which the state functions listed matters, see ctr::bc::Keys
      brigand::for_each< ctr::bc::Keys >( ConfigBC< eq >( m_system, m_bc,
        { dirichlet
        , symmetry
        , invalidBC         // Inlet BC not implemented
        , invalidBC         // Outlet BC not implemented
        , farfield
        , extrapolate } ) );
    }

    //! Find the number of primitive quantities required for this PDE system
    //! \return The number of primitive quantities required to be stored for
    //!   this PDE system
    std::size_t nprim() const
    {
      // compflow does not need/store any primitive quantities currently
      return 0;
    }

    //! Find the number of materials set up for this PDE system
    //! \return The number of materials set up for this PDE system
    std::size_t nmat() const
    {
      // compflow does not need nmat
      return 0;
    }

    //! Assign number of DOFs per equation in the PDE system
    //! \param[in,out] numEqDof Array storing number of Dofs for each PDE
    //!   equation
    void numEquationDofs(std::vector< std::size_t >& numEqDof) const
    {
      // all equation-dofs initialized to ndof
      for (std::size_t i=0; i<m_ncomp; ++i) {
        numEqDof.push_back(g_inputdeck.get< tag::discr, tag::ndof >());
      }
    }

    //! Determine elements that lie inside the user-defined IC box
    //! \param[in] geoElem Element geometry array
    //! \param[in] nielem Number of internal elements
    //! \param[in,out] inbox List of nodes at which box user ICs are set for
    //!    each IC box
    void IcBoxElems( const tk::Fields& geoElem,
      std::size_t nielem,
      std::vector< std::unordered_set< std::size_t > >& inbox ) const
    {
      tk::BoxElems< eq >(m_system, geoElem, nielem, inbox);
    }

    //! Initalize the compressible flow equations, prepare for time integration
    //! \param[in] L Block diagonal mass matrix
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] inbox List of elements at which box user ICs are set for
    //!    each IC box
    //! \param[in,out] unk Array of unknowns
    //! \param[in] t Physical time
    //! \param[in] nielem Number of internal elements
    void
    initialize( const tk::Fields& L,
                const std::vector< std::size_t >& inpoel,
                const tk::UnsMesh::Coords& coord,
                const std::vector< std::unordered_set< std::size_t > >& inbox,
                tk::Fields& unk,
                tk::real t,
                const std::size_t nielem ) const
    {
      tk::initialize( m_system, m_ncomp, m_offset, L, inpoel, coord,
                      Problem::initialize, unk, t, nielem );

      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
      const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
      const auto& icbox = ic.get< tag::box >();
      const auto& bgpreic = ic.get< tag::pressure >();
      auto c_v = cv< eq >(m_system);

      // Set initial conditions inside user-defined IC box
      std::vector< tk::real > s(m_ncomp, 0.0);
      for (std::size_t e=0; e<nielem; ++e) {
        if (icbox.size() > m_system) {
          std::size_t bcnt = 0;
          for (const auto& b : icbox[m_system]) {   // for all boxes
            if (inbox.size() > bcnt && inbox[bcnt].find(e) != inbox[bcnt].end())
            {
              for (std::size_t c=0; c<m_ncomp; ++c) {
                auto mark = c*rdof;
                s[c] = unk(e,mark,m_offset);
                // set high-order DOFs to zero
                for (std::size_t i=1; i<rdof; ++i)
                  unk(e,mark+i,m_offset) = 0.0;
              }
              initializeBox( m_system, 1.0, t, b, bgpreic[m_system][0], c_v,
                s );
              // store box-initialization in solution vector
              for (std::size_t c=0; c<m_ncomp; ++c) {
                auto mark = c*rdof;
                unk(e,mark,m_offset) = s[c];
              }
            }
            ++bcnt;
          }
        }
      }
    }

    //! Compute the left hand side block-diagonal mass matrix
    //! \param[in] geoElem Element geometry array
    //! \param[in,out] l Block diagonal mass matrix
    void lhs( const tk::Fields& geoElem, tk::Fields& l ) const {
      const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();
      tk::mass( m_ncomp, m_offset, ndof, geoElem, l );
    }

    //! Update the interface cells to first order dofs
    //! \details This function resets the high-order terms in interface cells,
    //!   and is currently not used in compflow.
    void updateInterfaceCells( tk::Fields&,
      std::size_t,
      std::vector< std::size_t >& ) const {}

    //! Update the primitives for this PDE system
    //! \details This function computes and stores the dofs for primitive
    //!   quantities, which is currently unused for compflow. But if a limiter
    //!   requires primitive variables for example, this would be the place to
    //!   add the computation of the primitive variables.
    void updatePrimitives( const tk::Fields&,
                           const tk::Fields&,
                           const tk::Fields&,
                           tk::Fields&,
                           std::size_t ) const {}

    //! Clean up the state of trace materials for this PDE system
    //! \details This function cleans up the state of materials present in trace
    //!   quantities in each cell. This is unused for compflow.
    void cleanTraceMaterial( const tk::Fields&,
                             tk::Fields&,
                             tk::Fields&,
                             std::size_t ) const {}

    //! Reconstruct second-order solution from first-order using least-squares
    //! \param[in] t Physical time
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in,out] U Solution vector at recent time step
    //! \param[in,out] P Primitive vector at recent time step
    void reconstruct( tk::real t,
                      const tk::Fields& geoFace,
                      const tk::Fields& geoElem,
                      const inciter::FaceData& fd,
                      const std::map< std::size_t, std::vector< std::size_t > >&,
                      const std::vector< std::size_t >& inpoel,
                      const tk::UnsMesh::Coords& coord,
                      tk::Fields& U,
                      tk::Fields& P ) const
    {
      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();

      // do reconstruction only if P0P1
      if (rdof == 4 && g_inputdeck.get< tag::discr, tag::ndof >() == 1) {
        const auto nelem = fd.Esuel().size()/4;<--- Variable 'nelem' is assigned a value that is never used.

        Assert( U.nprop() == rdof*5, "Number of components in solution "
                "vector must equal "+ std::to_string(rdof*5) );
        Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
                "Mismatch in inpofa size" );

        // allocate and initialize matrix and vector for reconstruction
        std::vector< std::array< std::array< tk::real, 3 >, 3 > >
          lhs_ls( nelem, {{ {{0.0, 0.0, 0.0}},
                            {{0.0, 0.0, 0.0}},
                            {{0.0, 0.0, 0.0}} }} );
        std::vector< std::vector< std::array< tk::real, 3 > > >
          rhs_ls( nelem, std::vector< std::array< tk::real, 3 > >
            ( m_ncomp,
              {{ 0.0, 0.0, 0.0 }} ) );

        // reconstruct x,y,z-derivatives of unknowns
        // 0. get lhs matrix, which is only geometry dependent
        tk::lhsLeastSq_P0P1(fd, geoElem, geoFace, lhs_ls);

        // 1. internal face contributions
        tk::intLeastSq_P0P1( m_offset, rdof, fd, geoElem, U, rhs_ls,
          {0, m_ncomp-1} );

        // 2. boundary face contributions
        for (const auto& b : m_bc)
          tk::bndLeastSqConservedVar_P0P1( m_system, m_ncomp, m_offset, rdof,
            b.first, fd, geoFace, geoElem, t, b.second, P, U, rhs_ls,
            {0, m_ncomp-1} );

        // 3. solve 3x3 least-squares system
        tk::solveLeastSq_P0P1( m_offset, rdof, lhs_ls, rhs_ls, U,
          {0, m_ncomp-1} );

        // 4. transform reconstructed derivatives to Dubiner dofs
        tk::transform_P0P1( m_offset, rdof, nelem, inpoel, coord, U,
          {0, m_ncomp-1} );
      }
    }

    //! Limit second-order solution
    //! \param[in] t Physical time
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] esup Elements surrounding points
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] ndofel Vector of local number of degrees of freedome
    //! \param[in] gid Local->global node id map
    //! \param[in] bid Local chare-boundary node ids (value) associated to
    //!   global node ids (key)
    //! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
    //!   variables
    //! \param[in,out] U Solution vector at recent time step
    void limit( [[maybe_unused]] tk::real t,
                [[maybe_unused]] const tk::Fields& geoFace,
                const tk::Fields& geoElem,
                const inciter::FaceData& fd,
                const std::map< std::size_t, std::vector< std::size_t > >& esup,
                const std::vector< std::size_t >& inpoel,
                const tk::UnsMesh::Coords& coord,
                const std::vector< std::size_t >& ndofel,
                const std::vector< std::size_t >& gid,
                const std::unordered_map< std::size_t, std::size_t >& bid,
                const std::vector< std::vector<tk::real> >& uNodalExtrm,
                const std::vector< std::vector<tk::real> >&,
                tk::Fields& U,
                tk::Fields&,
                std::vector< std::size_t >& ) const
    {
      const auto limiter = g_inputdeck.get< tag::discr, tag::limiter >();
      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();

      if (limiter == ctr::LimiterType::WENOP1)
        WENO_P1( fd.Esuel(), m_offset, U );
      else if (limiter == ctr::LimiterType::SUPERBEEP1)
        Superbee_P1( fd.Esuel(), inpoel, ndofel, m_offset, coord, U );
      else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 4)
        VertexBasedCompflow_P1( esup, inpoel, ndofel, fd.Esuel().size()/4,
          m_offset, geoElem, coord, U);
      else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 10)
        VertexBasedCompflow_P2( esup, inpoel, ndofel, fd.Esuel().size()/4,
          m_offset, geoElem, coord, gid, bid, uNodalExtrm, U);
    }

    //! Compute right hand side
    //! \param[in] t Physical time
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] boxelems Mesh node ids within user-defined IC boxes
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] U Solution vector at recent time step
    //! \param[in] P Primitive vector at recent time step
    //! \param[in] ndofel Vector of local number of degrees of freedom
    //! \param[in,out] R Right-hand side vector computed
    void rhs( tk::real t,
              const tk::Fields& geoFace,
              const tk::Fields& geoElem,
              const inciter::FaceData& fd,
              const std::vector< std::size_t >& inpoel,
              const std::vector< std::unordered_set< std::size_t > >& boxelems,
              const tk::UnsMesh::Coords& coord,
              const tk::Fields& U,
              const tk::Fields& P,
              const std::vector< std::size_t >& ndofel,
              tk::Fields& R ) const
    {
      const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();
      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();

      Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( U.nunk() == R.nunk(), "Number of unknowns in solution "
              "vector and right-hand side at recent time step incorrect" );
      Assert( U.nprop() == rdof*5, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*5) );
      Assert( P.nprop() == 0, "Number of components in primitive "
              "vector must equal "+ std::to_string(0) );
      Assert( R.nprop() == ndof*5, "Number of components in right-hand "
              "side vector must equal "+ std::to_string(ndof*5) );
      Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
              "Mismatch in inpofa size" );

      // set rhs to zero
      R.fill(0.0);

      // empty vector for non-conservative terms. This vector is unused for
      // single-material hydrodynamics since, there are no non-conservative
      // terms in the system of PDEs.
      std::vector< std::vector < tk::real > > riemannDeriv;

      std::vector< std::vector< tk::real > > vriem;
      std::vector< std::vector< tk::real > > riemannLoc;

      // configure Riemann flux function
      auto rieflxfn =
        [this]( const std::array< tk::real, 3 >& fn,
                const std::array< std::vector< tk::real >, 2 >& u,
                const std::vector< std::array< tk::real, 3 > >& v )
              { return m_riemann.flux( fn, u, v ); };
      // configure a no-op lambda for prescribed velocity
      auto velfn = [this]( ncomp_t, ncomp_t, tk::real, tk::real, tk::real,
        tk::real ){
        return std::vector< std::array< tk::real, 3 > >( m_ncomp ); };

      // compute internal surface flux integrals
      tk::surfInt( m_system, 1, m_offset, t, ndof, rdof, inpoel, coord,
                   fd, geoFace, geoElem, rieflxfn, velfn, U, P, ndofel, R,
                   vriem, riemannLoc, riemannDeriv );

      // compute ptional source term
      tk::srcInt( m_system, m_offset, t, ndof, fd.Esuel().size()/4,
                  inpoel, coord, geoElem, Problem::src, ndofel, R );

      if(ndof > 1)
        // compute volume integrals
        tk::volInt( m_system, 1, m_offset, t, ndof, rdof, fd.Esuel().size()/4,
                    inpoel, coord, geoElem, flux, velfn, U, P, ndofel, R );

      // compute boundary surface flux integrals
      for (const auto& b : m_bc)
        tk::bndSurfInt( m_system, 1, m_offset, ndof, rdof, b.first, fd,
                        geoFace, geoElem, inpoel, coord, t, rieflxfn, velfn,
                        b.second, U, P, ndofel, R, vriem, riemannLoc,
                        riemannDeriv );

     // compute external (energy) sources
      const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
      const auto& icbox = ic.get< tag::box >();

      if (icbox.size() > m_system && !boxelems.empty()) {
        std::size_t bcnt = 0;
        for (const auto& b : icbox[m_system]) {   // for all boxes for this eq
          std::vector< tk::real > box
           { b.template get< tag::xmin >(), b.template get< tag::xmax >(),
             b.template get< tag::ymin >(), b.template get< tag::ymax >(),
             b.template get< tag::zmin >(), b.template get< tag::zmax >() };

          const auto& initiate = b.template get< tag::initiate >();
          auto inittype = initiate.template get< tag::init >();
          if (inittype == ctr::InitiateType::LINEAR) {
            boxSrc( t, inpoel, boxelems[bcnt], coord, geoElem, ndofel, R );
          }
          ++bcnt;
        }
      }
    }

    //! Evaluate the adaptive indicator and mark the ndof for each element
    //! \param[in] nunk Number of unknowns
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] unk Array of unknowns
    //! \param[in] indicator p-refinement indicator type
    //! \param[in] ndof Number of degrees of freedom in the solution
    //! \param[in] ndofmax Max number of degrees of freedom for p-refinement
    //! \param[in] tolref Tolerance for p-refinement
    //! \param[in,out] ndofel Vector of local number of degrees of freedome
    void eval_ndof( std::size_t nunk,
                    const tk::UnsMesh::Coords& coord,
                    const std::vector< std::size_t >& inpoel,
                    const inciter::FaceData& fd,
                    const tk::Fields& unk,
                    inciter::ctr::PrefIndicatorType indicator,
                    std::size_t ndof,
                    std::size_t ndofmax,
                    tk::real tolref,
                    std::vector< std::size_t >& ndofel ) const
    {
      const auto& esuel = fd.Esuel();

      if(indicator == inciter::ctr::PrefIndicatorType::SPECTRAL_DECAY)
        spectral_decay( 1, nunk, esuel, unk, ndof, ndofmax, tolref, ndofel );
      else if(indicator == inciter::ctr::PrefIndicatorType::NON_CONFORMITY)
        non_conformity( nunk, fd.Nbfac(), inpoel, coord, esuel, fd.Esuf(),
          fd.Inpofa(), unk, ndof, ndofmax, ndofel );
      else
        Throw( "No such adaptive indicator type" );
    }

    //! Compute the minimum time step size
    //! \param[in] coord Mesh node coordinates
    //! \param[in] inpoel Mesh element connectivity
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] ndofel Vector of local number of degrees of freedom
    //! \param[in] U Solution vector at recent time step
    //! \return Minimum time step size
    tk::real dt( const std::array< std::vector< tk::real >, 3 >& coord,
                 const std::vector< std::size_t >& inpoel,
                 const inciter::FaceData& fd,
                 const tk::Fields& geoFace,
                 const tk::Fields& geoElem,
                 const std::vector< std::size_t >& ndofel,
                 const tk::Fields& U,
                 const tk::Fields&,
                 const std::size_t /*nielem*/ ) const
    {
      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();

      const auto& esuf = fd.Esuf();
      const auto& inpofa = fd.Inpofa();

      tk::real rho, u, v, w, rhoE, p, a, vn, dSV_l, dSV_r;
      std::vector< tk::real > delt( U.nunk(), 0.0 );

      const auto& cx = coord[0];
      const auto& cy = coord[1];
      const auto& cz = coord[2];

      // compute internal surface maximum characteristic speed
      for (std::size_t f=0; f<esuf.size()/2; ++f)
      {

        std::size_t el = static_cast< std::size_t >(esuf[2*f]);
        auto er = esuf[2*f+1];

        // Number of quadrature points for  face integration
        std::size_t ng;

        if(er > -1)
        {
          auto eR = static_cast< std::size_t >( er );

          auto ng_l = tk::NGfa(ndofel[el]);
          auto ng_r = tk::NGfa(ndofel[eR]);

          // When the number of gauss points for the left and right element are
          // different, choose the larger ng
          ng = std::max( ng_l, ng_r );
        }
        else
        {
          ng = tk::NGfa(ndofel[el]);
        }

        // arrays for quadrature points
        std::array< std::vector< tk::real >, 2 > coordgp;
        std::vector< tk::real > wgp;

        coordgp[0].resize( ng );
        coordgp[1].resize( ng );
        wgp.resize( ng );

        // get quadrature point weights and coordinates for triangle
        tk::GaussQuadratureTri( ng, coordgp, wgp );

        // Extract the left element coordinates
        std::array< std::array< tk::real, 3>, 4 > coordel_l {{
          {{ cx[inpoel[4*el  ]], cy[inpoel[4*el  ]], cz[inpoel[4*el  ]] }},
          {{ cx[inpoel[4*el+1]], cy[inpoel[4*el+1]], cz[inpoel[4*el+1]] }},
          {{ cx[inpoel[4*el+2]], cy[inpoel[4*el+2]], cz[inpoel[4*el+2]] }},
          {{ cx[inpoel[4*el+3]], cy[inpoel[4*el+3]], cz[inpoel[4*el+3]] }} }};

        // Compute the determinant of Jacobian matrix
        auto detT_l = 
           tk::Jacobian(coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3]);

        // Extract the face coordinates
        std::array< std::array< tk::real, 3>, 3 > coordfa {{
          {{ cx[ inpofa[3*f  ] ], cy[ inpofa[3*f  ] ], cz[ inpofa[3*f  ] ] }},
          {{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
          {{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }}
        }};

        dSV_l = 0.0;<--- Variable 'dSV_l' is assigned a value that is never used.
        dSV_r = 0.0;

        // Gaussian quadrature
        for (std::size_t igp=0; igp<ng; ++igp)
        {
          // Compute the coordinates of quadrature point at physical domain
          auto gp = tk::eval_gp( igp, coordfa, coordgp );

          // Compute the basis function for the left element
          auto B_l = tk::eval_basis( ndofel[el],
            tk::Jacobian(coordel_l[0], gp, coordel_l[2], coordel_l[3])/detT_l,
            tk::Jacobian(coordel_l[0], coordel_l[1], gp, coordel_l[3])/detT_l,
            tk::Jacobian(coordel_l[0], coordel_l[1], coordel_l[2], gp)/detT_l );

          auto wt = wgp[igp] * geoFace(f,0,0);

          std::array< std::vector< tk::real >, 2 > ugp;

          // left element
          for (ncomp_t c=0; c<5; ++c)
          {
            auto mark = c*rdof;
            ugp[0].push_back( U(el, mark, m_offset) );

            if(ndofel[el] > 1)          //DG(P1)
              ugp[0][c] +=  U(el, mark+1, m_offset) * B_l[1]
                          + U(el, mark+2, m_offset) * B_l[2]
                          + U(el, mark+3, m_offset) * B_l[3];

            if(ndofel[el] > 4)          //DG(P2)
              ugp[0][c] +=  U(el, mark+4, m_offset) * B_l[4]
                          + U(el, mark+5, m_offset) * B_l[5]
                          + U(el, mark+6, m_offset) * B_l[6]
                          + U(el, mark+7, m_offset) * B_l[7]
                          + U(el, mark+8, m_offset) * B_l[8]
                          + U(el, mark+9, m_offset) * B_l[9];
          }

          rho = ugp[0][0];
          u = ugp[0][1]/rho;
          v = ugp[0][2]/rho;
          w = ugp[0][3]/rho;
          rhoE = ugp[0][4];
          p = eos_pressure< tag::compflow >( m_system, rho, u, v, w, rhoE );

          a = eos_soundspeed< tag::compflow >( m_system, rho, p );

          vn = u*geoFace(f,1,0) + v*geoFace(f,2,0) + w*geoFace(f,3,0);

          dSV_l = wt * (std::fabs(vn) + a);

          // right element
          if (er > -1) {

            // nodal coordinates of the right element
            std::size_t eR = static_cast< std::size_t >( er );

            // Extract the left element coordinates
            std::array< std::array< tk::real, 3>, 4 > coordel_r {{
              {{ cx[inpoel[4*eR  ]], cy[inpoel[4*eR  ]], cz[inpoel[4*eR  ]] }},
              {{ cx[inpoel[4*eR+1]], cy[inpoel[4*eR+1]], cz[inpoel[4*eR+1]] }},
              {{ cx[inpoel[4*eR+2]], cy[inpoel[4*eR+2]], cz[inpoel[4*eR+2]] }},
              {{ cx[inpoel[4*eR+3]], cy[inpoel[4*eR+3]], cz[inpoel[4*eR+3]] }}
            }};

            // Compute the determinant of Jacobian matrix
            auto detT_r =
              tk::Jacobian(coordel_r[0],coordel_r[1],coordel_r[2],coordel_r[3]);

            // Compute the coordinates of quadrature point at physical domain
            gp = tk::eval_gp( igp, coordfa, coordgp );

            // Compute the basis function for the right element
            auto B_r = tk::eval_basis( ndofel[eR],
              tk::Jacobian(coordel_r[0],gp,coordel_r[2],coordel_r[3])/detT_r,
              tk::Jacobian(coordel_r[0],coordel_r[1],gp,coordel_r[3])/detT_r,
              tk::Jacobian(coordel_r[0],coordel_r[1],coordel_r[2],gp)/detT_r );
 
            for (ncomp_t c=0; c<5; ++c)
            {
              auto mark = c*rdof;
              ugp[1].push_back( U(eR, mark, m_offset) );

              if(ndofel[eR] > 1)          //DG(P1)
                ugp[1][c] +=  U(eR, mark+1, m_offset) * B_r[1]
                            + U(eR, mark+2, m_offset) * B_r[2]
                            + U(eR, mark+3, m_offset) * B_r[3];

              if(ndofel[eR] > 4)         //DG(P2)
                ugp[1][c] +=  U(eR, mark+4, m_offset) * B_r[4]
                            + U(eR, mark+5, m_offset) * B_r[5]
                            + U(eR, mark+6, m_offset) * B_r[6]
                            + U(eR, mark+7, m_offset) * B_r[7]
                            + U(eR, mark+8, m_offset) * B_r[8]
                            + U(eR, mark+9, m_offset) * B_r[9];
            }

            rho = ugp[1][0];
            u = ugp[1][1]/rho;
            v = ugp[1][2]/rho;
            w = ugp[1][3]/rho;
            rhoE = ugp[1][4];
            p = eos_pressure< tag::compflow >( m_system, rho, u, v, w, rhoE );
            a = eos_soundspeed< tag::compflow >( m_system, rho, p );

            vn = u*geoFace(f,1,0) + v*geoFace(f,2,0) + w*geoFace(f,3,0);

            dSV_r = wt * (std::fabs(vn) + a);
            delt[eR] += std::max( dSV_l, dSV_r );
          }

          delt[el] += std::max( dSV_l, dSV_r );
        }
      }

      tk::real mindt = std::numeric_limits< tk::real >::max();
      tk::real dgp = 0.0;<--- Variable 'dgp' is assigned a value that is never used.

      // compute allowable dt
      for (std::size_t e=0; e<fd.Esuel().size()/4; ++e)
      {
        dgp = 0.0;
        if (ndofel[e] == 4)
        {
          dgp = 1.0;
        }
        else if (ndofel[e] == 10)
        {
          dgp = 2.0;
        }

        // Scale smallest dt with CFL coefficient and the CFL is scaled by (2*p+1)
        // where p is the order of the DG polynomial by linear stability theory.
        mindt = std::min( mindt, geoElem(e,0,0)/ (delt[e] * (2.0*dgp + 1.0)) );
      }

      return mindt;
    }

    //! Extract the velocity field at cell nodes. Currently unused.
    //! \param[in] U Solution vector at recent time step
    //! \param[in] N Element node indices
    //! \return Array of the four values of the velocity field
    std::array< std::array< tk::real, 4 >, 3 >
    velocity( const tk::Fields& U,
              const std::array< std::vector< tk::real >, 3 >&,
              const std::array< std::size_t, 4 >& N ) const
    {
      std::array< std::array< tk::real, 4 >, 3 > v;
      v[0] = U.extract( 1, m_offset, N );
      v[1] = U.extract( 2, m_offset, N );
      v[2] = U.extract( 3, m_offset, N );
      auto r = U.extract( 0, m_offset, N );
      std::transform( r.begin(), r.end(), v[0].begin(), v[0].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      std::transform( r.begin(), r.end(), v[1].begin(), v[1].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      std::transform( r.begin(), r.end(), v[2].begin(), v[2].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      return v;
    }

    //! Return analytic field names to be output to file
    //! \return Vector of strings labelling analytic fields output in file
    std::vector< std::string > analyticFieldNames() const
    { return m_problem.analyticFieldNames( m_ncomp ); }

    //! Return time history field names to be output to file
    //! \return Vector of strings labeling time history fields output in file
    std::vector< std::string > histNames() const
    { return CompFlowHistNames(); }

    //! Return surface field output going to file
    std::vector< std::vector< tk::real > >
    surfOutput( const std::map< int, std::vector< std::size_t > >&,
                tk::Fields& ) const
    {
      std::vector< std::vector< tk::real > > s; // punt for now
      return s;
    }

    //! Return time history field output evaluated at time history points
    //! \param[in] h History point data
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] U Array of unknowns
    std::vector< std::vector< tk::real > >
    histOutput( const std::vector< HistData >& h,
                const std::vector< std::size_t >& inpoel,
                const tk::UnsMesh::Coords& coord,
                const tk::Fields& U,
                const tk::Fields& ) const
    {
      const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();

      const auto& x = coord[0];
      const auto& y = coord[1];
      const auto& z = coord[2];

      std::vector< std::vector< tk::real > > Up(h.size());

      std::size_t j = 0;
      for (const auto& p : h) {
        auto e = p.get< tag::elem >();
        auto chp = p.get< tag::coord >();

        // Evaluate inverse Jacobian
        std::array< std::array< tk::real, 3>, 4 > cp{{
          {{ x[inpoel[4*e  ]], y[inpoel[4*e  ]], z[inpoel[4*e  ]] }},
          {{ x[inpoel[4*e+1]], y[inpoel[4*e+1]], z[inpoel[4*e+1]] }},
          {{ x[inpoel[4*e+2]], y[inpoel[4*e+2]], z[inpoel[4*e+2]] }},
          {{ x[inpoel[4*e+3]], y[inpoel[4*e+3]], z[inpoel[4*e+3]] }} }};
        auto J = tk::inverseJacobian( cp[0], cp[1], cp[2], cp[3] );

        // evaluate solution at history-point
        std::array< tk::real, 3 > dc{{chp[0]-cp[0][0], chp[1]-cp[0][1],
          chp[2]-cp[0][2]}};
        auto B = tk::eval_basis(rdof, tk::dot(J[0],dc), tk::dot(J[1],dc),
          tk::dot(J[2],dc));
        auto uhp = eval_state(m_ncomp, 0, rdof, rdof, e, U, B, {0, m_ncomp-1});

        // store solution in history output vector
        Up[j].resize(6, 0.0);
        Up[j][0] = uhp[0];
        Up[j][1] = uhp[1]/uhp[0];
        Up[j][2] = uhp[2]/uhp[0];
        Up[j][3] = uhp[3]/uhp[0];
        Up[j][4] = uhp[4]/uhp[0];
        Up[j][5] = eos_pressure< tag::compflow > (m_system, uhp[0],
          uhp[1]/uhp[0], uhp[2]/uhp[0], uhp[3]/uhp[0], uhp[4] );
        ++j;
      }

      return Up;
    }

    //! Return names of integral variables to be output to diagnostics file
    //! \return Vector of strings labelling integral variables output
    std::vector< std::string > names() const
    { return m_problem.names( m_ncomp ); }

    //! Return analytic solution (if defined by Problem) at xi, yi, zi, t
    //! \param[in] xi X-coordinate at which to evaluate the analytic solution
    //! \param[in] yi Y-coordinate at which to evaluate the analytic solution
    //! \param[in] zi Z-coordinate at which to evaluate the analytic solution
    //! \param[in] t Physical time at which to evaluate the analytic solution
    //! \return Vector of analytic solution at given location and time
    std::vector< tk::real >
    analyticSolution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
    { return Problem::analyticSolution( m_system, m_ncomp, xi, yi, zi, t ); }

    //! Return analytic solution for conserved variables
    //! \param[in] xi X-coordinate at which to evaluate the analytic solution
    //! \param[in] yi Y-coordinate at which to evaluate the analytic solution
    //! \param[in] zi Z-coordinate at which to evaluate the analytic solution
    //! \param[in] t Physical time at which to evaluate the analytic solution
    //! \return Vector of analytic solution at given location and time
    std::vector< tk::real >
    solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
    { return Problem::initialize( m_system, m_ncomp, xi, yi, zi, t ); }

  private:
    //! Physics policy
    const Physics m_physics;
    //! Problem policy
    const Problem m_problem;
    //! Equation system index
    const ncomp_t m_system;
    //! Number of components in this PDE system
    const ncomp_t m_ncomp;
    //! Offset PDE system operates from
    const ncomp_t m_offset;
    //! Riemann solver
    RiemannSolver m_riemann;
    //! BC configuration
    BCStateFn m_bc;

    //! Evaluate physical flux function for this PDE system
    //! \param[in] system Equation system index
    //! \param[in] ncomp Number of scalar components in this PDE system
    //! \param[in] ugp Numerical solution at the Gauss point at which to
    //!   evaluate the flux
    //! \return Flux vectors for all components in this PDE system
    //! \note The function signature must follow tk::FluxFn
    static tk::FluxFn::result_type
    flux( ncomp_t system,
          [[maybe_unused]] ncomp_t ncomp,
          const std::vector< tk::real >& ugp,
          const std::vector< std::array< tk::real, 3 > >& )
    {
      Assert( ugp.size() == ncomp, "Size mismatch" );

      auto u = ugp[1] / ugp[0];
      auto v = ugp[2] / ugp[0];
      auto w = ugp[3] / ugp[0];
      auto p =
        eos_pressure< tag::compflow >( system, ugp[0], u, v, w, ugp[4] );

      std::vector< std::array< tk::real, 3 > > fl( ugp.size() );

      fl[0][0] = ugp[1];
      fl[1][0] = ugp[1] * u + p;
      fl[2][0] = ugp[1] * v;
      fl[3][0] = ugp[1] * w;
      fl[4][0] = u * (ugp[4] + p);

      fl[0][1] = ugp[2];
      fl[1][1] = ugp[2] * u;
      fl[2][1] = ugp[2] * v + p;
      fl[3][1] = ugp[2] * w;
      fl[4][1] = v * (ugp[4] + p);

      fl[0][2] = ugp[3];
      fl[1][2] = ugp[3] * u;
      fl[2][2] = ugp[3] * v;
      fl[3][2] = ugp[3] * w + p;
      fl[4][2] = w * (ugp[4] + p);

      return fl;
    }

    //! \brief Boundary state function providing the left and right state of a
    //!   face at Dirichlet boundaries
    //! \param[in] system Equation system index
    //! \param[in] ncomp Number of scalar components in this PDE system
    //! \param[in] ul Left (domain-internal) state
    //! \param[in] x X-coordinate at which to compute the states
    //! \param[in] y Y-coordinate at which to compute the states
    //! \param[in] z Z-coordinate at which to compute the states
    //! \param[in] t Physical time
    //! \return Left and right states for all scalar components in this PDE
    //!   system
    //! \note The function signature must follow tk::StateFn
    static tk::StateFn::result_type
    dirichlet( ncomp_t system, ncomp_t ncomp, const std::vector< tk::real >& ul,
               tk::real x, tk::real y, tk::real z, tk::real t,
               const std::array< tk::real, 3 >& )
    {
      return {{ ul, Problem::initialize( system, ncomp, x, y, z, t ) }};
    }

    //! \brief Boundary state function providing the left and right state of a
    //!   face at symmetry boundaries
    //! \param[in] ul Left (domain-internal) state
    //! \param[in] fn Unit face normal
    //! \return Left and right states for all scalar components in this PDE
    //!   system
    //! \note The function signature must follow tk::StateFn
    static tk::StateFn::result_type
    symmetry( ncomp_t, ncomp_t, const std::vector< tk::real >& ul,
              tk::real, tk::real, tk::real, tk::real,
              const std::array< tk::real, 3 >& fn )
    {
      std::vector< tk::real > ur(5);
      // Internal cell velocity components
      auto v1l = ul[1]/ul[0];
      auto v2l = ul[2]/ul[0];
      auto v3l = ul[3]/ul[0];
      // Normal component of velocity
      auto vnl = v1l*fn[0] + v2l*fn[1] + v3l*fn[2];
      // Ghost state velocity components
      auto v1r = v1l - 2.0*vnl*fn[0];
      auto v2r = v2l - 2.0*vnl*fn[1];
      auto v3r = v3l - 2.0*vnl*fn[2];
      // Boundary condition
      ur[0] = ul[0];
      ur[1] = ur[0] * v1r;
      ur[2] = ur[0] * v2r;
      ur[3] = ur[0] * v3r;
      ur[4] = ul[4];
      return {{ std::move(ul), std::move(ur) }};
    }

    //! \brief Boundary state function providing the left and right state of a
    //!   face at farfield boundaries
    //! \param[in] system Equation system index
    //! \param[in] ul Left (domain-internal) state
    //! \param[in] fn Unit face normal
    //! \return Left and right states for all scalar components in this PDE
    //!   system
    //! \note The function signature must follow tk::StateFn
    static tk::StateFn::result_type
    farfield( ncomp_t system, ncomp_t, const std::vector< tk::real >& ul,
              tk::real, tk::real, tk::real, tk::real,
              const std::array< tk::real, 3 >& fn )
    {
      using tag::param; using tag::bc;

      // Primitive variables from farfield
      auto frho = g_inputdeck.get< param, eq,
                                   tag::farfield_density >()[ system ];
      auto fp   = g_inputdeck.get< param, eq,
                                   tag::farfield_pressure >()[ system ];
      auto fu   = g_inputdeck.get< param, eq,
                                   tag::farfield_velocity >()[ system ];

      // Speed of sound from farfield
      auto fa = eos_soundspeed< eq >( system, frho, fp );

      // Normal component from farfield
      auto fvn = fu[0]*fn[0] + fu[1]*fn[1] + fu[2]*fn[2];

      // Mach number from farfield
      auto fM = fvn / fa;

      // Specific total energy from farfield
      auto frhoE =
        eos_totalenergy< eq >( system, frho, fu[0], fu[1], fu[2], fp );

      // Pressure from internal cell
      auto p = eos_pressure< eq >( system, ul[0], ul[1]/ul[0], ul[2]/ul[0],
                                   ul[3]/ul[0], ul[4] );

      auto ur = ul;

      if(fM <= -1)                         // Supersonic inflow<--- Assuming that condition 'fM<=-1' is not redundant<--- Assuming that condition 'fM<=-1' is not redundant<--- Assuming that condition 'fM<=-1' is not redundant
      {
        // For supersonic inflow, all the characteristics are from outside.
        // Therefore, we calculate the ghost cell state using the primitive
        // variables from outside.
        ur[0] = frho;
        ur[1] = frho * fu[0];
        ur[2] = frho * fu[1];
        ur[3] = frho * fu[2];
        ur[4] = frhoE;
      } else if(fM > -1 && fM < 0)       // Subsonic inflow<--- Condition 'fM>-1' is always true<--- Condition 'fM<0' is always false
      {
        // For subsonic inflow, there are 1 outgoing characteristcs and 4
        // incoming characteristic. Therefore, we calculate the ghost cell state
        // by taking pressure from the internal cell and other quantities from
        // the outside.
        ur[0] = frho;
        ur[1] = frho * fu[0];
        ur[2] = frho * fu[1];
        ur[3] = frho * fu[2];
        ur[4] =
          eos_totalenergy< eq >( system, frho, fu[0], fu[1], fu[2], p );
      } else if(fM >= 0 && fM < 1)       // Subsonic outflow<--- Condition 'fM>=0' is always true
      {
        // For subsonic outflow, there are 1 incoming characteristcs and 4
        // outgoing characteristic. Therefore, we calculate the ghost cell state
        // by taking pressure from the outside and other quantities from the
        // internal cell.
        ur[4] = eos_totalenergy< eq >( system, ul[0], ul[1]/ul[0], ul[2]/ul[0],
                                       ul[3]/ul[0], fp );
      }
      // Otherwise, for supersonic outflow, all the characteristics are from
      // internal cell. Therefore, we calculate the ghost cell state using the
      // conservative variables from outside.

      return {{ ul, ur }};
    }

    //! \brief Boundary state function providing the left and right state of a
    //!   face at extrapolation boundaries
    //! \param[in] ul Left (domain-internal) state
    //! \return Left and right states for all scalar components in this PDE
    //!   system
    //! \note The function signature must follow tk::StateFn
    static tk::StateFn::result_type
    extrapolate( ncomp_t, ncomp_t, const std::vector< tk::real >& ul,
                 tk::real, tk::real, tk::real, tk::real,
                 const std::array< tk::real, 3 >& )
    {
      return {{ ul, ul }};
    }

    //! Compute sources corresponding to a propagating front in user-defined box
    //! \param[in] t Physical time
    //! \param[in] inpoel Element point connectivity
    //! \param[in] boxelems Mesh node ids within user-defined box
    //! \param[in] coord Mesh node coordinates
    //! \param[in] geoElem Element geometry array
    //! \param[in] ndofel Vector of local number of degrees of freedome
    //! \param[in] R Right-hand side vector
    //! \details This function add the energy source corresponding to a planar
    //!   wave-front propagating along the z-direction with a user-specified
    //!   velocity, within a box initial condition, configured by the user.
    //!   Example (SI) units of the quantities involved:
    //!    * internal energy content (energy per unit volume): J/m^3
    //!    * specific energy (internal energy per unit mass): J/kg
    void boxSrc( tk::real t,
                 const std::vector< std::size_t >& inpoel,
                 const std::unordered_set< std::size_t >& boxelems,
                 const tk::UnsMesh::Coords& coord,
                 const tk::Fields& geoElem,
                 const std::vector< std::size_t >& ndofel,
                 tk::Fields& R ) const
    {
      const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
      const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
      const auto& icbox = ic.get< tag::box >();

      if (icbox.size() > m_system) {
        for (const auto& b : icbox[m_system]) {   // for all boxes for this eq
          std::vector< tk::real > box
           { b.template get< tag::xmin >(), b.template get< tag::xmax >(),
             b.template get< tag::ymin >(), b.template get< tag::ymax >(),
             b.template get< tag::zmin >(), b.template get< tag::zmax >() };

          auto boxenc = b.template get< tag::energy_content >();
          Assert( boxenc > 0.0, "Box energy content must be nonzero" );

          auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);

          // determine times at which sourcing is initialized and terminated
          const auto& initiate = b.template get< tag::initiate >();
          auto iv = initiate.template get< tag::velocity >();
          auto wFront = 0.1;
          auto tInit = 0.0;
          auto tFinal = tInit + (box[5] - box[4] - 2.0*wFront) / std::fabs(iv);
          auto aBox = (box[1]-box[0]) * (box[3]-box[2]);

          const auto& cx = coord[0];
          const auto& cy = coord[1];
          const auto& cz = coord[2];

          if (t >= tInit && t <= tFinal) {
            // The energy front is assumed to have a half-sine-wave shape. The
            // half wave-length is the width of the front. At t=0, the center of
            // this front (i.e. the peak of the partial-sine-wave) is at X_0 +
            // W_0.  W_0 is calculated based on the width of the front and the
            // direction of propagation (which is assumed to be along the
            // z-direction).  If the front propagation velocity is positive, it
            // is assumed that the initial position of the energy source is the
            // minimum z-coordinate of the box; whereas if this velocity is
            // negative, the initial position is the maximum z-coordinate of the
            // box.

            // initial center of front
            tk::real zInit(box[4]);
            if (iv < 0.0) zInit = box[5];
            // current location of front
            auto z0 = zInit + iv*t;
            auto z1 = z0 + std::copysign(wFront, iv);
            tk::real s0(z0), s1(z1);
            // if velocity of propagation is negative, initial position is z1
            if (iv < 0.0) {
              s0 = z1;
              s1 = z0;
            }
            // Sine-wave (positive part of the wave) source term amplitude
            auto pi = 4.0 * std::atan(1.0);
            auto amplE = boxenc * V_ex * pi
              / (aBox * wFront * 2.0 * (tFinal-tInit));
            //// Square wave (constant) source term amplitude
            //auto amplE = boxenc * V_ex
            //  / (aBox * wFront * (tFinal-tInit));

            // add source
            for (auto e : boxelems) {
              auto zc = geoElem(e,3,0);

              if (zc >= s0 && zc <= s1) {
                auto ng = tk::NGvol(ndofel[e]);

                // arrays for quadrature points
                std::array< std::vector< tk::real >, 3 > coordgp;
                std::vector< tk::real > wgp;

                coordgp[0].resize( ng );
                coordgp[1].resize( ng );
                coordgp[2].resize( ng );
                wgp.resize( ng );

                tk::GaussQuadratureTet( ng, coordgp, wgp );

                // Extract the element coordinates
                std::array< std::array< tk::real, 3>, 4 > coordel{{
                {{ cx[inpoel[4*e  ]], cy[inpoel[4*e  ]], cz[inpoel[4*e  ]] }},
                {{ cx[inpoel[4*e+1]], cy[inpoel[4*e+1]], cz[inpoel[4*e+1]] }},
                {{ cx[inpoel[4*e+2]], cy[inpoel[4*e+2]], cz[inpoel[4*e+2]] }},
                {{ cx[inpoel[4*e+3]], cy[inpoel[4*e+3]], cz[inpoel[4*e+3]] }}}};

                for (std::size_t igp=0; igp<ng; ++igp) {
                  // Compute the coordinates of quadrature point at physical
                  // domain
                  auto gp = tk::eval_gp( igp, coordel, coordgp );

                  // Compute the basis function
                  auto B = tk::eval_basis( ndofel[e], coordgp[0][igp],
                                           coordgp[1][igp], coordgp[2][igp] );

                  // Compute the source term variable
                  std::array< tk::real, 5 > s{{0.0, 0.0, 0.0, 0.0, 0.0}};
                  s[4] = amplE * std::sin(pi*(gp[2]-s0)/wFront);

                  auto wt = wgp[igp] * geoElem(e, 0, 0);

                  tk::update_rhs( m_offset, ndof, ndofel[e], wt, e, B, s, R );
                }
              }
            }
          }
        }
      }
    }
};

} // dg::

} // inciter::

#endif // DGCompFlow_h