1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154 | // *****************************************************************************
/*!
\file src/PDE/CompFlow/DGCompFlow.hpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Compressible single-material flow using discontinuous Galerkin
finite elements
\details This file implements calls to the physics operators governing
compressible single-material flow using discontinuous Galerkin
discretizations.
*/
// *****************************************************************************
#ifndef DGCompFlow_h
#define DGCompFlow_h
#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <map>
#include <brigand/algorithms/for_each.hpp>
#include "Macro.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "ContainerUtil.hpp"
#include "UnsMesh.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Integrate/Basis.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Initialize.hpp"
#include "Integrate/Mass.hpp"
#include "Integrate/Surface.hpp"
#include "Integrate/Boundary.hpp"
#include "Integrate/Volume.hpp"
#include "Integrate/Source.hpp"
#include "RiemannFactory.hpp"
#include "EoS/EoS.hpp"
#include "Reconstruction.hpp"
#include "Limiter.hpp"
#include "PrefIndicator.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
namespace dg {
//! \brief CompFlow used polymorphically with tk::DGPDE
//! \details The template arguments specify policies and are used to configure
//! the behavior of the class. The policies are:
//! - Physics - physics configuration, see PDE/CompFlow/Physics.h
//! - Problem - problem configuration, see PDE/CompFlow/Problem.h
//! \note The default physics is Euler, set in inciter::deck::check_compflow()
template< class Physics, class Problem >
class CompFlow {
private:
using eq = tag::compflow;
public:
//! Constructor
//! \param[in] c Equation system index (among multiple systems configured)
explicit CompFlow( ncomp_t c ) :
m_physics(),
m_problem(),
m_system( c ),
m_ncomp( g_inputdeck.get< tag::component, eq >().at(c) ),
m_offset( g_inputdeck.get< tag::component >().offset< eq >(c) ),
m_riemann(tk::cref_find(compflowRiemannSolvers(),
g_inputdeck.get< tag::param, tag::compflow, tag::flux >().at(m_system)))
{
// associate boundary condition configurations with state functions, the
// order in which the state functions listed matters, see ctr::bc::Keys
brigand::for_each< ctr::bc::Keys >( ConfigBC< eq >( m_system, m_bc,
{ dirichlet
, symmetry
, invalidBC // Inlet BC not implemented
, invalidBC // Outlet BC not implemented
, farfield
, extrapolate } ) );
}
//! Find the number of primitive quantities required for this PDE system
//! \return The number of primitive quantities required to be stored for
//! this PDE system
std::size_t nprim() const
{
// compflow does not need/store any primitive quantities currently
return 0;
}
//! Find the number of materials set up for this PDE system
//! \return The number of materials set up for this PDE system
std::size_t nmat() const
{
// compflow does not need nmat
return 0;
}
//! Assign number of DOFs per equation in the PDE system
//! \param[in,out] numEqDof Array storing number of Dofs for each PDE
//! equation
void numEquationDofs(std::vector< std::size_t >& numEqDof) const
{
// all equation-dofs initialized to ndof
for (std::size_t i=0; i<m_ncomp; ++i) {
numEqDof.push_back(g_inputdeck.get< tag::discr, tag::ndof >());
}
}
//! Determine elements that lie inside the user-defined IC box
//! \param[in] geoElem Element geometry array
//! \param[in] nielem Number of internal elements
//! \param[in,out] inbox List of nodes at which box user ICs are set for
//! each IC box
void IcBoxElems( const tk::Fields& geoElem,
std::size_t nielem,
std::vector< std::unordered_set< std::size_t > >& inbox ) const
{
tk::BoxElems< eq >(m_system, geoElem, nielem, inbox);
}
//! Initalize the compressible flow equations, prepare for time integration
//! \param[in] L Block diagonal mass matrix
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] inbox List of elements at which box user ICs are set for
//! each IC box
//! \param[in,out] unk Array of unknowns
//! \param[in] t Physical time
//! \param[in] nielem Number of internal elements
void
initialize( const tk::Fields& L,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::unordered_set< std::size_t > >& inbox,
tk::Fields& unk,
tk::real t,
const std::size_t nielem ) const
{
tk::initialize( m_system, m_ncomp, m_offset, L, inpoel, coord,
Problem::initialize, unk, t, nielem );
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
const auto& bgpreic = ic.get< tag::pressure >();
auto c_v = cv< eq >(m_system);
// Set initial conditions inside user-defined IC box
std::vector< tk::real > s(m_ncomp, 0.0);
for (std::size_t e=0; e<nielem; ++e) {
if (icbox.size() > m_system) {
std::size_t bcnt = 0;
for (const auto& b : icbox[m_system]) { // for all boxes
if (inbox.size() > bcnt && inbox[bcnt].find(e) != inbox[bcnt].end())
{
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
s[c] = unk(e,mark,m_offset);
// set high-order DOFs to zero
for (std::size_t i=1; i<rdof; ++i)
unk(e,mark+i,m_offset) = 0.0;
}
initializeBox( m_system, 1.0, t, b, bgpreic[m_system][0], c_v,
s );
// store box-initialization in solution vector
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
unk(e,mark,m_offset) = s[c];
}
}
++bcnt;
}
}
}
}
//! Compute the left hand side block-diagonal mass matrix
//! \param[in] geoElem Element geometry array
//! \param[in,out] l Block diagonal mass matrix
void lhs( const tk::Fields& geoElem, tk::Fields& l ) const {
const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();
tk::mass( m_ncomp, m_offset, ndof, geoElem, l );
}
//! Update the interface cells to first order dofs
//! \details This function resets the high-order terms in interface cells,
//! and is currently not used in compflow.
void updateInterfaceCells( tk::Fields&,
std::size_t,
std::vector< std::size_t >& ) const {}
//! Update the primitives for this PDE system
//! \details This function computes and stores the dofs for primitive
//! quantities, which is currently unused for compflow. But if a limiter
//! requires primitive variables for example, this would be the place to
//! add the computation of the primitive variables.
void updatePrimitives( const tk::Fields&,
const tk::Fields&,
const tk::Fields&,
tk::Fields&,
std::size_t ) const {}
//! Clean up the state of trace materials for this PDE system
//! \details This function cleans up the state of materials present in trace
//! quantities in each cell. This is unused for compflow.
void cleanTraceMaterial( const tk::Fields&,
tk::Fields&,
tk::Fields&,
std::size_t ) const {}
//! Reconstruct second-order solution from first-order using least-squares
//! \param[in] t Physical time
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U Solution vector at recent time step
//! \param[in,out] P Primitive vector at recent time step
void reconstruct( tk::real t,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >&,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
tk::Fields& U,
tk::Fields& P ) const
{
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
// do reconstruction only if P0P1
if (rdof == 4 && g_inputdeck.get< tag::discr, tag::ndof >() == 1) {
const auto nelem = fd.Esuel().size()/4;<--- Variable 'nelem' is assigned a value that is never used.
Assert( U.nprop() == rdof*5, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*5) );
Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
"Mismatch in inpofa size" );
// allocate and initialize matrix and vector for reconstruction
std::vector< std::array< std::array< tk::real, 3 >, 3 > >
lhs_ls( nelem, {{ {{0.0, 0.0, 0.0}},
{{0.0, 0.0, 0.0}},
{{0.0, 0.0, 0.0}} }} );
std::vector< std::vector< std::array< tk::real, 3 > > >
rhs_ls( nelem, std::vector< std::array< tk::real, 3 > >
( m_ncomp,
{{ 0.0, 0.0, 0.0 }} ) );
// reconstruct x,y,z-derivatives of unknowns
// 0. get lhs matrix, which is only geometry dependent
tk::lhsLeastSq_P0P1(fd, geoElem, geoFace, lhs_ls);
// 1. internal face contributions
tk::intLeastSq_P0P1( m_offset, rdof, fd, geoElem, U, rhs_ls,
{0, m_ncomp-1} );
// 2. boundary face contributions
for (const auto& b : m_bc)
tk::bndLeastSqConservedVar_P0P1( m_system, m_ncomp, m_offset, rdof,
b.first, fd, geoFace, geoElem, t, b.second, P, U, rhs_ls,
{0, m_ncomp-1} );
// 3. solve 3x3 least-squares system
tk::solveLeastSq_P0P1( m_offset, rdof, lhs_ls, rhs_ls, U,
{0, m_ncomp-1} );
// 4. transform reconstructed derivatives to Dubiner dofs
tk::transform_P0P1( m_offset, rdof, nelem, inpoel, coord, U,
{0, m_ncomp-1} );
}
}
//! Limit second-order solution
//! \param[in] t Physical time
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
//! variables
//! \param[in,out] U Solution vector at recent time step
void limit( [[maybe_unused]] tk::real t,
[[maybe_unused]] const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& ndofel,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< std::vector<tk::real> >& uNodalExtrm,
const std::vector< std::vector<tk::real> >&,
tk::Fields& U,
tk::Fields&,
std::vector< std::size_t >& ) const
{
const auto limiter = g_inputdeck.get< tag::discr, tag::limiter >();
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
if (limiter == ctr::LimiterType::WENOP1)
WENO_P1( fd.Esuel(), m_offset, U );
else if (limiter == ctr::LimiterType::SUPERBEEP1)
Superbee_P1( fd.Esuel(), inpoel, ndofel, m_offset, coord, U );
else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 4)
VertexBasedCompflow_P1( esup, inpoel, ndofel, fd.Esuel().size()/4,
m_offset, geoElem, coord, U);
else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 10)
VertexBasedCompflow_P2( esup, inpoel, ndofel, fd.Esuel().size()/4,
m_offset, geoElem, coord, gid, bid, uNodalExtrm, U);
}
//! Compute right hand side
//! \param[in] t Physical time
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] inpoel Element-node connectivity
//! \param[in] boxelems Mesh node ids within user-defined IC boxes
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Solution vector at recent time step
//! \param[in] P Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in,out] R Right-hand side vector computed
void rhs( tk::real t,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::vector< std::size_t >& inpoel,
const std::vector< std::unordered_set< std::size_t > >& boxelems,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& P,
const std::vector< std::size_t >& ndofel,
tk::Fields& R ) const
{
const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( U.nunk() == R.nunk(), "Number of unknowns in solution "
"vector and right-hand side at recent time step incorrect" );
Assert( U.nprop() == rdof*5, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*5) );
Assert( P.nprop() == 0, "Number of components in primitive "
"vector must equal "+ std::to_string(0) );
Assert( R.nprop() == ndof*5, "Number of components in right-hand "
"side vector must equal "+ std::to_string(ndof*5) );
Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
"Mismatch in inpofa size" );
// set rhs to zero
R.fill(0.0);
// empty vector for non-conservative terms. This vector is unused for
// single-material hydrodynamics since, there are no non-conservative
// terms in the system of PDEs.
std::vector< std::vector < tk::real > > riemannDeriv;
std::vector< std::vector< tk::real > > vriem;
std::vector< std::vector< tk::real > > riemannLoc;
// configure Riemann flux function
auto rieflxfn =
[this]( const std::array< tk::real, 3 >& fn,
const std::array< std::vector< tk::real >, 2 >& u,
const std::vector< std::array< tk::real, 3 > >& v )
{ return m_riemann.flux( fn, u, v ); };
// configure a no-op lambda for prescribed velocity
auto velfn = [this]( ncomp_t, ncomp_t, tk::real, tk::real, tk::real,
tk::real ){
return std::vector< std::array< tk::real, 3 > >( m_ncomp ); };
// compute internal surface flux integrals
tk::surfInt( m_system, 1, m_offset, t, ndof, rdof, inpoel, coord,
fd, geoFace, geoElem, rieflxfn, velfn, U, P, ndofel, R,
vriem, riemannLoc, riemannDeriv );
// compute ptional source term
tk::srcInt( m_system, m_offset, t, ndof, fd.Esuel().size()/4,
inpoel, coord, geoElem, Problem::src, ndofel, R );
if(ndof > 1)
// compute volume integrals
tk::volInt( m_system, 1, m_offset, t, ndof, rdof, fd.Esuel().size()/4,
inpoel, coord, geoElem, flux, velfn, U, P, ndofel, R );
// compute boundary surface flux integrals
for (const auto& b : m_bc)
tk::bndSurfInt( m_system, 1, m_offset, ndof, rdof, b.first, fd,
geoFace, geoElem, inpoel, coord, t, rieflxfn, velfn,
b.second, U, P, ndofel, R, vriem, riemannLoc,
riemannDeriv );
// compute external (energy) sources
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
if (icbox.size() > m_system && !boxelems.empty()) {
std::size_t bcnt = 0;
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
const auto& initiate = b.template get< tag::initiate >();
auto inittype = initiate.template get< tag::init >();
if (inittype == ctr::InitiateType::LINEAR) {
boxSrc( t, inpoel, boxelems[bcnt], coord, geoElem, ndofel, R );
}
++bcnt;
}
}
}
//! Evaluate the adaptive indicator and mark the ndof for each element
//! \param[in] nunk Number of unknowns
//! \param[in] coord Array of nodal coordinates
//! \param[in] inpoel Element-node connectivity
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] unk Array of unknowns
//! \param[in] indicator p-refinement indicator type
//! \param[in] ndof Number of degrees of freedom in the solution
//! \param[in] ndofmax Max number of degrees of freedom for p-refinement
//! \param[in] tolref Tolerance for p-refinement
//! \param[in,out] ndofel Vector of local number of degrees of freedome
void eval_ndof( std::size_t nunk,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& inpoel,
const inciter::FaceData& fd,
const tk::Fields& unk,
inciter::ctr::PrefIndicatorType indicator,
std::size_t ndof,
std::size_t ndofmax,
tk::real tolref,
std::vector< std::size_t >& ndofel ) const
{
const auto& esuel = fd.Esuel();
if(indicator == inciter::ctr::PrefIndicatorType::SPECTRAL_DECAY)
spectral_decay( 1, nunk, esuel, unk, ndof, ndofmax, tolref, ndofel );
else if(indicator == inciter::ctr::PrefIndicatorType::NON_CONFORMITY)
non_conformity( nunk, fd.Nbfac(), inpoel, coord, esuel, fd.Esuf(),
fd.Inpofa(), unk, ndof, ndofmax, ndofel );
else
Throw( "No such adaptive indicator type" );
}
//! Compute the minimum time step size
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] U Solution vector at recent time step
//! \return Minimum time step size
tk::real dt( const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const std::vector< std::size_t >& ndofel,
const tk::Fields& U,
const tk::Fields&,
const std::size_t /*nielem*/ ) const
{
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
const auto& esuf = fd.Esuf();
const auto& inpofa = fd.Inpofa();
tk::real rho, u, v, w, rhoE, p, a, vn, dSV_l, dSV_r;
std::vector< tk::real > delt( U.nunk(), 0.0 );
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// compute internal surface maximum characteristic speed
for (std::size_t f=0; f<esuf.size()/2; ++f)
{
std::size_t el = static_cast< std::size_t >(esuf[2*f]);
auto er = esuf[2*f+1];
// Number of quadrature points for face integration
std::size_t ng;
if(er > -1)
{
auto eR = static_cast< std::size_t >( er );
auto ng_l = tk::NGfa(ndofel[el]);
auto ng_r = tk::NGfa(ndofel[eR]);
// When the number of gauss points for the left and right element are
// different, choose the larger ng
ng = std::max( ng_l, ng_r );
}
else
{
ng = tk::NGfa(ndofel[el]);
}
// arrays for quadrature points
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
tk::GaussQuadratureTri( ng, coordgp, wgp );
// Extract the left element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel_l {{
{{ cx[inpoel[4*el ]], cy[inpoel[4*el ]], cz[inpoel[4*el ]] }},
{{ cx[inpoel[4*el+1]], cy[inpoel[4*el+1]], cz[inpoel[4*el+1]] }},
{{ cx[inpoel[4*el+2]], cy[inpoel[4*el+2]], cz[inpoel[4*el+2]] }},
{{ cx[inpoel[4*el+3]], cy[inpoel[4*el+3]], cz[inpoel[4*el+3]] }} }};
// Compute the determinant of Jacobian matrix
auto detT_l =
tk::Jacobian(coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3]);
// Extract the face coordinates
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa[3*f ] ], cy[ inpofa[3*f ] ], cz[ inpofa[3*f ] ] }},
{{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
{{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }}
}};
dSV_l = 0.0;<--- Variable 'dSV_l' is assigned a value that is never used.
dSV_r = 0.0;
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordfa, coordgp );
// Compute the basis function for the left element
auto B_l = tk::eval_basis( ndofel[el],
tk::Jacobian(coordel_l[0], gp, coordel_l[2], coordel_l[3])/detT_l,
tk::Jacobian(coordel_l[0], coordel_l[1], gp, coordel_l[3])/detT_l,
tk::Jacobian(coordel_l[0], coordel_l[1], coordel_l[2], gp)/detT_l );
auto wt = wgp[igp] * geoFace(f,0,0);
std::array< std::vector< tk::real >, 2 > ugp;
// left element
for (ncomp_t c=0; c<5; ++c)
{
auto mark = c*rdof;
ugp[0].push_back( U(el, mark, m_offset) );
if(ndofel[el] > 1) //DG(P1)
ugp[0][c] += U(el, mark+1, m_offset) * B_l[1]
+ U(el, mark+2, m_offset) * B_l[2]
+ U(el, mark+3, m_offset) * B_l[3];
if(ndofel[el] > 4) //DG(P2)
ugp[0][c] += U(el, mark+4, m_offset) * B_l[4]
+ U(el, mark+5, m_offset) * B_l[5]
+ U(el, mark+6, m_offset) * B_l[6]
+ U(el, mark+7, m_offset) * B_l[7]
+ U(el, mark+8, m_offset) * B_l[8]
+ U(el, mark+9, m_offset) * B_l[9];
}
rho = ugp[0][0];
u = ugp[0][1]/rho;
v = ugp[0][2]/rho;
w = ugp[0][3]/rho;
rhoE = ugp[0][4];
p = eos_pressure< tag::compflow >( m_system, rho, u, v, w, rhoE );
a = eos_soundspeed< tag::compflow >( m_system, rho, p );
vn = u*geoFace(f,1,0) + v*geoFace(f,2,0) + w*geoFace(f,3,0);
dSV_l = wt * (std::fabs(vn) + a);
// right element
if (er > -1) {
// nodal coordinates of the right element
std::size_t eR = static_cast< std::size_t >( er );
// Extract the left element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel_r {{
{{ cx[inpoel[4*eR ]], cy[inpoel[4*eR ]], cz[inpoel[4*eR ]] }},
{{ cx[inpoel[4*eR+1]], cy[inpoel[4*eR+1]], cz[inpoel[4*eR+1]] }},
{{ cx[inpoel[4*eR+2]], cy[inpoel[4*eR+2]], cz[inpoel[4*eR+2]] }},
{{ cx[inpoel[4*eR+3]], cy[inpoel[4*eR+3]], cz[inpoel[4*eR+3]] }}
}};
// Compute the determinant of Jacobian matrix
auto detT_r =
tk::Jacobian(coordel_r[0],coordel_r[1],coordel_r[2],coordel_r[3]);
// Compute the coordinates of quadrature point at physical domain
gp = tk::eval_gp( igp, coordfa, coordgp );
// Compute the basis function for the right element
auto B_r = tk::eval_basis( ndofel[eR],
tk::Jacobian(coordel_r[0],gp,coordel_r[2],coordel_r[3])/detT_r,
tk::Jacobian(coordel_r[0],coordel_r[1],gp,coordel_r[3])/detT_r,
tk::Jacobian(coordel_r[0],coordel_r[1],coordel_r[2],gp)/detT_r );
for (ncomp_t c=0; c<5; ++c)
{
auto mark = c*rdof;
ugp[1].push_back( U(eR, mark, m_offset) );
if(ndofel[eR] > 1) //DG(P1)
ugp[1][c] += U(eR, mark+1, m_offset) * B_r[1]
+ U(eR, mark+2, m_offset) * B_r[2]
+ U(eR, mark+3, m_offset) * B_r[3];
if(ndofel[eR] > 4) //DG(P2)
ugp[1][c] += U(eR, mark+4, m_offset) * B_r[4]
+ U(eR, mark+5, m_offset) * B_r[5]
+ U(eR, mark+6, m_offset) * B_r[6]
+ U(eR, mark+7, m_offset) * B_r[7]
+ U(eR, mark+8, m_offset) * B_r[8]
+ U(eR, mark+9, m_offset) * B_r[9];
}
rho = ugp[1][0];
u = ugp[1][1]/rho;
v = ugp[1][2]/rho;
w = ugp[1][3]/rho;
rhoE = ugp[1][4];
p = eos_pressure< tag::compflow >( m_system, rho, u, v, w, rhoE );
a = eos_soundspeed< tag::compflow >( m_system, rho, p );
vn = u*geoFace(f,1,0) + v*geoFace(f,2,0) + w*geoFace(f,3,0);
dSV_r = wt * (std::fabs(vn) + a);
delt[eR] += std::max( dSV_l, dSV_r );
}
delt[el] += std::max( dSV_l, dSV_r );
}
}
tk::real mindt = std::numeric_limits< tk::real >::max();
tk::real dgp = 0.0;<--- Variable 'dgp' is assigned a value that is never used.
// compute allowable dt
for (std::size_t e=0; e<fd.Esuel().size()/4; ++e)
{
dgp = 0.0;
if (ndofel[e] == 4)
{
dgp = 1.0;
}
else if (ndofel[e] == 10)
{
dgp = 2.0;
}
// Scale smallest dt with CFL coefficient and the CFL is scaled by (2*p+1)
// where p is the order of the DG polynomial by linear stability theory.
mindt = std::min( mindt, geoElem(e,0,0)/ (delt[e] * (2.0*dgp + 1.0)) );
}
return mindt;
}
//! Extract the velocity field at cell nodes. Currently unused.
//! \param[in] U Solution vector at recent time step
//! \param[in] N Element node indices
//! \return Array of the four values of the velocity field
std::array< std::array< tk::real, 4 >, 3 >
velocity( const tk::Fields& U,
const std::array< std::vector< tk::real >, 3 >&,
const std::array< std::size_t, 4 >& N ) const
{
std::array< std::array< tk::real, 4 >, 3 > v;
v[0] = U.extract( 1, m_offset, N );
v[1] = U.extract( 2, m_offset, N );
v[2] = U.extract( 3, m_offset, N );
auto r = U.extract( 0, m_offset, N );
std::transform( r.begin(), r.end(), v[0].begin(), v[0].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
std::transform( r.begin(), r.end(), v[1].begin(), v[1].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
std::transform( r.begin(), r.end(), v[2].begin(), v[2].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
return v;
}
//! Return analytic field names to be output to file
//! \return Vector of strings labelling analytic fields output in file
std::vector< std::string > analyticFieldNames() const
{ return m_problem.analyticFieldNames( m_ncomp ); }
//! Return time history field names to be output to file
//! \return Vector of strings labeling time history fields output in file
std::vector< std::string > histNames() const
{ return CompFlowHistNames(); }
//! Return surface field output going to file
std::vector< std::vector< tk::real > >
surfOutput( const std::map< int, std::vector< std::size_t > >&,
tk::Fields& ) const
{
std::vector< std::vector< tk::real > > s; // punt for now
return s;
}
//! Return time history field output evaluated at time history points
//! \param[in] h History point data
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Array of unknowns
std::vector< std::vector< tk::real > >
histOutput( const std::vector< HistData >& h,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& ) const
{
const auto rdof = g_inputdeck.get< tag::discr, tag::rdof >();
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
std::vector< std::vector< tk::real > > Up(h.size());
std::size_t j = 0;
for (const auto& p : h) {
auto e = p.get< tag::elem >();
auto chp = p.get< tag::coord >();
// Evaluate inverse Jacobian
std::array< std::array< tk::real, 3>, 4 > cp{{
{{ x[inpoel[4*e ]], y[inpoel[4*e ]], z[inpoel[4*e ]] }},
{{ x[inpoel[4*e+1]], y[inpoel[4*e+1]], z[inpoel[4*e+1]] }},
{{ x[inpoel[4*e+2]], y[inpoel[4*e+2]], z[inpoel[4*e+2]] }},
{{ x[inpoel[4*e+3]], y[inpoel[4*e+3]], z[inpoel[4*e+3]] }} }};
auto J = tk::inverseJacobian( cp[0], cp[1], cp[2], cp[3] );
// evaluate solution at history-point
std::array< tk::real, 3 > dc{{chp[0]-cp[0][0], chp[1]-cp[0][1],
chp[2]-cp[0][2]}};
auto B = tk::eval_basis(rdof, tk::dot(J[0],dc), tk::dot(J[1],dc),
tk::dot(J[2],dc));
auto uhp = eval_state(m_ncomp, 0, rdof, rdof, e, U, B, {0, m_ncomp-1});
// store solution in history output vector
Up[j].resize(6, 0.0);
Up[j][0] = uhp[0];
Up[j][1] = uhp[1]/uhp[0];
Up[j][2] = uhp[2]/uhp[0];
Up[j][3] = uhp[3]/uhp[0];
Up[j][4] = uhp[4]/uhp[0];
Up[j][5] = eos_pressure< tag::compflow > (m_system, uhp[0],
uhp[1]/uhp[0], uhp[2]/uhp[0], uhp[3]/uhp[0], uhp[4] );
++j;
}
return Up;
}
//! Return names of integral variables to be output to diagnostics file
//! \return Vector of strings labelling integral variables output
std::vector< std::string > names() const
{ return m_problem.names( m_ncomp ); }
//! Return analytic solution (if defined by Problem) at xi, yi, zi, t
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
analyticSolution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::analyticSolution( m_system, m_ncomp, xi, yi, zi, t ); }
//! Return analytic solution for conserved variables
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::initialize( m_system, m_ncomp, xi, yi, zi, t ); }
private:
//! Physics policy
const Physics m_physics;
//! Problem policy
const Problem m_problem;
//! Equation system index
const ncomp_t m_system;
//! Number of components in this PDE system
const ncomp_t m_ncomp;
//! Offset PDE system operates from
const ncomp_t m_offset;
//! Riemann solver
RiemannSolver m_riemann;
//! BC configuration
BCStateFn m_bc;
//! Evaluate physical flux function for this PDE system
//! \param[in] system Equation system index
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] ugp Numerical solution at the Gauss point at which to
//! evaluate the flux
//! \return Flux vectors for all components in this PDE system
//! \note The function signature must follow tk::FluxFn
static tk::FluxFn::result_type
flux( ncomp_t system,
[[maybe_unused]] ncomp_t ncomp,
const std::vector< tk::real >& ugp,
const std::vector< std::array< tk::real, 3 > >& )
{
Assert( ugp.size() == ncomp, "Size mismatch" );
auto u = ugp[1] / ugp[0];
auto v = ugp[2] / ugp[0];
auto w = ugp[3] / ugp[0];
auto p =
eos_pressure< tag::compflow >( system, ugp[0], u, v, w, ugp[4] );
std::vector< std::array< tk::real, 3 > > fl( ugp.size() );
fl[0][0] = ugp[1];
fl[1][0] = ugp[1] * u + p;
fl[2][0] = ugp[1] * v;
fl[3][0] = ugp[1] * w;
fl[4][0] = u * (ugp[4] + p);
fl[0][1] = ugp[2];
fl[1][1] = ugp[2] * u;
fl[2][1] = ugp[2] * v + p;
fl[3][1] = ugp[2] * w;
fl[4][1] = v * (ugp[4] + p);
fl[0][2] = ugp[3];
fl[1][2] = ugp[3] * u;
fl[2][2] = ugp[3] * v;
fl[3][2] = ugp[3] * w + p;
fl[4][2] = w * (ugp[4] + p);
return fl;
}
//! \brief Boundary state function providing the left and right state of a
//! face at Dirichlet boundaries
//! \param[in] system Equation system index
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] ul Left (domain-internal) state
//! \param[in] x X-coordinate at which to compute the states
//! \param[in] y Y-coordinate at which to compute the states
//! \param[in] z Z-coordinate at which to compute the states
//! \param[in] t Physical time
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn
static tk::StateFn::result_type
dirichlet( ncomp_t system, ncomp_t ncomp, const std::vector< tk::real >& ul,
tk::real x, tk::real y, tk::real z, tk::real t,
const std::array< tk::real, 3 >& )
{
return {{ ul, Problem::initialize( system, ncomp, x, y, z, t ) }};
}
//! \brief Boundary state function providing the left and right state of a
//! face at symmetry boundaries
//! \param[in] ul Left (domain-internal) state
//! \param[in] fn Unit face normal
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn
static tk::StateFn::result_type
symmetry( ncomp_t, ncomp_t, const std::vector< tk::real >& ul,
tk::real, tk::real, tk::real, tk::real,
const std::array< tk::real, 3 >& fn )
{
std::vector< tk::real > ur(5);
// Internal cell velocity components
auto v1l = ul[1]/ul[0];
auto v2l = ul[2]/ul[0];
auto v3l = ul[3]/ul[0];
// Normal component of velocity
auto vnl = v1l*fn[0] + v2l*fn[1] + v3l*fn[2];
// Ghost state velocity components
auto v1r = v1l - 2.0*vnl*fn[0];
auto v2r = v2l - 2.0*vnl*fn[1];
auto v3r = v3l - 2.0*vnl*fn[2];
// Boundary condition
ur[0] = ul[0];
ur[1] = ur[0] * v1r;
ur[2] = ur[0] * v2r;
ur[3] = ur[0] * v3r;
ur[4] = ul[4];
return {{ std::move(ul), std::move(ur) }};
}
//! \brief Boundary state function providing the left and right state of a
//! face at farfield boundaries
//! \param[in] system Equation system index
//! \param[in] ul Left (domain-internal) state
//! \param[in] fn Unit face normal
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn
static tk::StateFn::result_type
farfield( ncomp_t system, ncomp_t, const std::vector< tk::real >& ul,
tk::real, tk::real, tk::real, tk::real,
const std::array< tk::real, 3 >& fn )
{
using tag::param; using tag::bc;
// Primitive variables from farfield
auto frho = g_inputdeck.get< param, eq,
tag::farfield_density >()[ system ];
auto fp = g_inputdeck.get< param, eq,
tag::farfield_pressure >()[ system ];
auto fu = g_inputdeck.get< param, eq,
tag::farfield_velocity >()[ system ];
// Speed of sound from farfield
auto fa = eos_soundspeed< eq >( system, frho, fp );
// Normal component from farfield
auto fvn = fu[0]*fn[0] + fu[1]*fn[1] + fu[2]*fn[2];
// Mach number from farfield
auto fM = fvn / fa;
// Specific total energy from farfield
auto frhoE =
eos_totalenergy< eq >( system, frho, fu[0], fu[1], fu[2], fp );
// Pressure from internal cell
auto p = eos_pressure< eq >( system, ul[0], ul[1]/ul[0], ul[2]/ul[0],
ul[3]/ul[0], ul[4] );
auto ur = ul;
if(fM <= -1) // Supersonic inflow<--- Assuming that condition 'fM<=-1' is not redundant<--- Assuming that condition 'fM<=-1' is not redundant<--- Assuming that condition 'fM<=-1' is not redundant
{
// For supersonic inflow, all the characteristics are from outside.
// Therefore, we calculate the ghost cell state using the primitive
// variables from outside.
ur[0] = frho;
ur[1] = frho * fu[0];
ur[2] = frho * fu[1];
ur[3] = frho * fu[2];
ur[4] = frhoE;
} else if(fM > -1 && fM < 0) // Subsonic inflow<--- Condition 'fM>-1' is always true<--- Condition 'fM<0' is always false
{
// For subsonic inflow, there are 1 outgoing characteristcs and 4
// incoming characteristic. Therefore, we calculate the ghost cell state
// by taking pressure from the internal cell and other quantities from
// the outside.
ur[0] = frho;
ur[1] = frho * fu[0];
ur[2] = frho * fu[1];
ur[3] = frho * fu[2];
ur[4] =
eos_totalenergy< eq >( system, frho, fu[0], fu[1], fu[2], p );
} else if(fM >= 0 && fM < 1) // Subsonic outflow<--- Condition 'fM>=0' is always true
{
// For subsonic outflow, there are 1 incoming characteristcs and 4
// outgoing characteristic. Therefore, we calculate the ghost cell state
// by taking pressure from the outside and other quantities from the
// internal cell.
ur[4] = eos_totalenergy< eq >( system, ul[0], ul[1]/ul[0], ul[2]/ul[0],
ul[3]/ul[0], fp );
}
// Otherwise, for supersonic outflow, all the characteristics are from
// internal cell. Therefore, we calculate the ghost cell state using the
// conservative variables from outside.
return {{ ul, ur }};
}
//! \brief Boundary state function providing the left and right state of a
//! face at extrapolation boundaries
//! \param[in] ul Left (domain-internal) state
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn
static tk::StateFn::result_type
extrapolate( ncomp_t, ncomp_t, const std::vector< tk::real >& ul,
tk::real, tk::real, tk::real, tk::real,
const std::array< tk::real, 3 >& )
{
return {{ ul, ul }};
}
//! Compute sources corresponding to a propagating front in user-defined box
//! \param[in] t Physical time
//! \param[in] inpoel Element point connectivity
//! \param[in] boxelems Mesh node ids within user-defined box
//! \param[in] coord Mesh node coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] R Right-hand side vector
//! \details This function add the energy source corresponding to a planar
//! wave-front propagating along the z-direction with a user-specified
//! velocity, within a box initial condition, configured by the user.
//! Example (SI) units of the quantities involved:
//! * internal energy content (energy per unit volume): J/m^3
//! * specific energy (internal energy per unit mass): J/kg
void boxSrc( tk::real t,
const std::vector< std::size_t >& inpoel,
const std::unordered_set< std::size_t >& boxelems,
const tk::UnsMesh::Coords& coord,
const tk::Fields& geoElem,
const std::vector< std::size_t >& ndofel,
tk::Fields& R ) const
{
const auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
if (icbox.size() > m_system) {
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
auto boxenc = b.template get< tag::energy_content >();
Assert( boxenc > 0.0, "Box energy content must be nonzero" );
auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
// determine times at which sourcing is initialized and terminated
const auto& initiate = b.template get< tag::initiate >();
auto iv = initiate.template get< tag::velocity >();
auto wFront = 0.1;
auto tInit = 0.0;
auto tFinal = tInit + (box[5] - box[4] - 2.0*wFront) / std::fabs(iv);
auto aBox = (box[1]-box[0]) * (box[3]-box[2]);
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
if (t >= tInit && t <= tFinal) {
// The energy front is assumed to have a half-sine-wave shape. The
// half wave-length is the width of the front. At t=0, the center of
// this front (i.e. the peak of the partial-sine-wave) is at X_0 +
// W_0. W_0 is calculated based on the width of the front and the
// direction of propagation (which is assumed to be along the
// z-direction). If the front propagation velocity is positive, it
// is assumed that the initial position of the energy source is the
// minimum z-coordinate of the box; whereas if this velocity is
// negative, the initial position is the maximum z-coordinate of the
// box.
// initial center of front
tk::real zInit(box[4]);
if (iv < 0.0) zInit = box[5];
// current location of front
auto z0 = zInit + iv*t;
auto z1 = z0 + std::copysign(wFront, iv);
tk::real s0(z0), s1(z1);
// if velocity of propagation is negative, initial position is z1
if (iv < 0.0) {
s0 = z1;
s1 = z0;
}
// Sine-wave (positive part of the wave) source term amplitude
auto pi = 4.0 * std::atan(1.0);
auto amplE = boxenc * V_ex * pi
/ (aBox * wFront * 2.0 * (tFinal-tInit));
//// Square wave (constant) source term amplitude
//auto amplE = boxenc * V_ex
// / (aBox * wFront * (tFinal-tInit));
// add source
for (auto e : boxelems) {
auto zc = geoElem(e,3,0);
if (zc >= s0 && zc <= s1) {
auto ng = tk::NGvol(ndofel[e]);
// arrays for quadrature points
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel{{
{{ cx[inpoel[4*e ]], cy[inpoel[4*e ]], cz[inpoel[4*e ]] }},
{{ cx[inpoel[4*e+1]], cy[inpoel[4*e+1]], cz[inpoel[4*e+1]] }},
{{ cx[inpoel[4*e+2]], cy[inpoel[4*e+2]], cz[inpoel[4*e+2]] }},
{{ cx[inpoel[4*e+3]], cy[inpoel[4*e+3]], cz[inpoel[4*e+3]] }}}};
for (std::size_t igp=0; igp<ng; ++igp) {
// Compute the coordinates of quadrature point at physical
// domain
auto gp = tk::eval_gp( igp, coordel, coordgp );
// Compute the basis function
auto B = tk::eval_basis( ndofel[e], coordgp[0][igp],
coordgp[1][igp], coordgp[2][igp] );
// Compute the source term variable
std::array< tk::real, 5 > s{{0.0, 0.0, 0.0, 0.0, 0.0}};
s[4] = amplE * std::sin(pi*(gp[2]-s0)/wFront);
auto wt = wgp[igp] * geoElem(e, 0, 0);
tk::update_rhs( m_offset, ndof, ndofel[e], wt, e, B, s, R );
}
}
}
}
}
}
}
};
} // dg::
} // inciter::
#endif // DGCompFlow_h
|