1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327 | // *****************************************************************************
/*!
\file src/PDE/Integrate/Surface.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Functions for computing internal surface integrals of a system
of PDEs in DG methods
\details This file contains functionality for computing internal surface
integrals of a system of PDEs used in discontinuous Galerkin methods for
various orders of numerical representation.
*/
// *****************************************************************************
#include <array>
#include "Surface.hpp"
#include "Vector.hpp"
#include "Quadrature.hpp"
#include "Reconstruction.hpp"
namespace tk {
void
surfInt( ncomp_t system,
std::size_t nmat,
ncomp_t offset,
real t,
const std::size_t ndof,
const std::size_t rdof,
const std::vector< std::size_t >& inpoel,
const UnsMesh::Coords& coord,
const inciter::FaceData& fd,
const Fields& geoFace,
const Fields& geoElem,
const RiemannFluxFn& flux,
const VelFn& vel,
const Fields& U,
const Fields& P,
const std::vector< std::size_t >& ndofel,
Fields& R,
std::vector< std::vector< tk::real > >& vriem,
std::vector< std::vector< tk::real > >& riemannLoc,
std::vector< std::vector< tk::real > >& riemannDeriv,
int intsharp )
// *****************************************************************************
// Compute internal surface flux integrals
//! \param[in] system Equation system index
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] offset Offset this PDE system operates from
//! \param[in] t Physical time
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] flux Riemann flux function to use
//! \param[in] vel Function to use to query prescribed velocity (if any)
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in,out] R Right-hand side vector computed
//! \param[in,out] vriem Vector of the riemann velocity
//! \param[in,out] riemannLoc Vector of coordinates where Riemann velocity data
//! is available
//! \param[in,out] riemannDeriv Derivatives of partial-pressures and velocities
//! computed from the Riemann solver for use in the non-conservative terms.
//! These derivatives are used only for multi-material hydro and unused for
//! single-material compflow and linear transport.
//! \param[in] intsharp Interface compression tag, an optional argument, with
//! default 0, so that it is unused for single-material and transport.
// *****************************************************************************
{
const auto& esuf = fd.Esuf();
const auto& inpofa = fd.Inpofa();
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.
Assert( (nmat==1 ? riemannDeriv.empty() : true), "Non-empty Riemann "
"derivative vector for single material compflow" );
// compute internal surface flux integrals
for (auto f=fd.Nbfac(); f<esuf.size()/2; ++f)
{
Assert( esuf[2*f] > -1 && esuf[2*f+1] > -1, "Interior element detected "
"as -1" );
std::size_t el = static_cast< std::size_t >(esuf[2*f]);
std::size_t er = static_cast< std::size_t >(esuf[2*f+1]);
auto ng_l = tk::NGfa(ndofel[el]);
auto ng_r = tk::NGfa(ndofel[er]);
// When the number of gauss points for the left and right element are
// different, choose the larger ng
auto ng = std::max( ng_l, ng_r );
// arrays for quadrature points
std::array< std::vector< real >, 2 > coordgp;
std::vector< real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
GaussQuadratureTri( ng, coordgp, wgp );
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel_l {{
{{ cx[ inpoel[4*el ] ], cy[ inpoel[4*el ] ], cz[ inpoel[4*el ] ] }},
{{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
{{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
{{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};
std::array< std::array< tk::real, 3>, 4 > coordel_r {{
{{ cx[ inpoel[4*er ] ], cy[ inpoel[4*er ] ], cz[ inpoel[4*er ] ] }},
{{ cx[ inpoel[4*er+1] ], cy[ inpoel[4*er+1] ], cz[ inpoel[4*er+1] ] }},
{{ cx[ inpoel[4*er+2] ], cy[ inpoel[4*er+2] ], cz[ inpoel[4*er+2] ] }},
{{ cx[ inpoel[4*er+3] ], cy[ inpoel[4*er+3] ], cz[ inpoel[4*er+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT_l =
Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );
auto detT_r =
Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], coordel_r[3] );
// Extract the face coordinates
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa[3*f ] ], cy[ inpofa[3*f ] ], cz[ inpofa[3*f ] ] }},
{{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
{{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }} }};
std::array< real, 3 >
fn{{ geoFace(f,1,0), geoFace(f,2,0), geoFace(f,3,0) }};
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = eval_gp( igp, coordfa, coordgp );
// In order to determine the high-order solution from the left and right
// elements at the surface quadrature points, the basis functions from
// the left and right elements are needed. For this, a transformation to
// the reference coordinates is necessary, since the basis functions are
// defined on the reference tetrahedron only.
// The transformation relations are shown below:
// xi = Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT
// eta = Jacobian( coordel[0], coordel[2], gp, coordel[3] ) / detT
// zeta = Jacobian( coordel[0], coordel[2], coordel[3], gp ) / detT
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el, dof_er;
if (rdof > ndof)
{
dof_el = rdof;
dof_er = rdof;
}
else
{
dof_el = ndofel[el];
dof_er = ndofel[er];
}
std::array< tk::real, 3> ref_gp_l{
Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };
std::array< tk::real, 3> ref_gp_r{
Jacobian( coordel_r[0], gp, coordel_r[2], coordel_r[3] ) / detT_r,
Jacobian( coordel_r[0], coordel_r[1], gp, coordel_r[3] ) / detT_r,
Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], gp ) / detT_r };
//Compute the basis functions
auto B_l = eval_basis( dof_el, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );
auto B_r = eval_basis( dof_er, ref_gp_r[0], ref_gp_r[1], ref_gp_r[2] );
auto wt = wgp[igp] * geoFace(f,0,0);<--- Variable 'wt' is assigned a value that is never used.
std::array< std::vector< real >, 2 > state;
state[0] = evalPolynomialSol(system, offset, intsharp, ncomp, nprim, rdof,
nmat, el, dof_el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P);
state[1] = evalPolynomialSol(system, offset, intsharp, ncomp, nprim, rdof,
nmat, er, dof_er, inpoel, coord, geoElem, ref_gp_r, B_r, U, P);
Assert( state[0].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
Assert( state[1].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
// evaluate prescribed velocity (if any)
auto v = vel( system, ncomp, gp[0], gp[1], gp[2], t );
// compute flux
auto fl = flux( fn, state, v );
// Add the surface integration term to the rhs
update_rhs_fa( ncomp, nmat, offset, ndof, ndofel[el], ndofel[er], wt, fn,
el, er, fl, B_l, B_r, R, riemannDeriv );
// Store the riemann velocity and coordinates data of quadrature point
// used for velocity reconstruction if MulMat scheme is selected
if (nmat > 1 && ndof > 1)
tk::evaluRiemann( ncomp, esuf[2*f], esuf[2*f+1], nmat, fl, fn, gp,
state, vriem, riemannLoc );
}
}
}
void
update_rhs_fa( ncomp_t ncomp,
std::size_t nmat,
ncomp_t offset,
const std::size_t ndof,
const std::size_t ndof_l,
const std::size_t ndof_r,
const tk::real wt,
const std::array< tk::real, 3 >& fn,
const std::size_t el,
const std::size_t er,
const std::vector< tk::real >& fl,
const std::vector< tk::real >& B_l,
const std::vector< tk::real >& B_r,
Fields& R,<--- Parameter 'R' can be declared with const
std::vector< std::vector< tk::real > >& riemannDeriv )
// *****************************************************************************
// Update the rhs by adding the surface integration term
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] offset Offset this PDE system operates from
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] ndof_l Number of degrees of freedom for left element
//! \param[in] ndof_r Number of degrees of freedom for right element
//! \param[in] wt Weight of gauss quadrature point
//! \param[in] fn Face/Surface normal
//! \param[in] el Left element index
//! \param[in] er Right element index
//! \param[in] fl Surface flux
//! \param[in] B_l Basis function for the left element
//! \param[in] B_r Basis function for the right element
//! \param[in,out] R Right-hand side vector computed
//! \param[in,out] riemannDeriv Derivatives of partial-pressures and velocities
//! computed from the Riemann solver for use in the non-conservative terms.
//! These derivatives are used only for multi-material hydro and unused for
//! single-material compflow and linear transport.
// *****************************************************************************
{
// following lines commented until rdofel is made available.
//Assert( B_l.size() == ndof_l, "Size mismatch" );
//Assert( B_r.size() == ndof_r, "Size mismatch" );
for (ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*ndof;
R(el, mark, offset) -= wt * fl[c];
R(er, mark, offset) += wt * fl[c];
if(ndof_l > 1) //DG(P1)
{
R(el, mark+1, offset) -= wt * fl[c] * B_l[1];
R(el, mark+2, offset) -= wt * fl[c] * B_l[2];
R(el, mark+3, offset) -= wt * fl[c] * B_l[3];
}
if(ndof_r > 1) //DG(P1)
{
R(er, mark+1, offset) += wt * fl[c] * B_r[1];
R(er, mark+2, offset) += wt * fl[c] * B_r[2];
R(er, mark+3, offset) += wt * fl[c] * B_r[3];
}
if(ndof_l > 4) //DG(P2)
{
R(el, mark+4, offset) -= wt * fl[c] * B_l[4];
R(el, mark+5, offset) -= wt * fl[c] * B_l[5];
R(el, mark+6, offset) -= wt * fl[c] * B_l[6];
R(el, mark+7, offset) -= wt * fl[c] * B_l[7];
R(el, mark+8, offset) -= wt * fl[c] * B_l[8];
R(el, mark+9, offset) -= wt * fl[c] * B_l[9];
}
if(ndof_r > 4) //DG(P2)
{
R(er, mark+4, offset) += wt * fl[c] * B_r[4];
R(er, mark+5, offset) += wt * fl[c] * B_r[5];
R(er, mark+6, offset) += wt * fl[c] * B_r[6];
R(er, mark+7, offset) += wt * fl[c] * B_r[7];
R(er, mark+8, offset) += wt * fl[c] * B_r[8];
R(er, mark+9, offset) += wt * fl[c] * B_r[9];
}
}
// Prep for non-conservative terms in multimat
if (fl.size() > ncomp)
{
// Gradients of partial pressures
for (std::size_t k=0; k<nmat; ++k)
{
for (std::size_t idir=0; idir<3; ++idir)
{
riemannDeriv[3*k+idir][el] += wt * fl[ncomp+k] * fn[idir];
riemannDeriv[3*k+idir][er] -= wt * fl[ncomp+k] * fn[idir];
}
}
// Divergence of velocity
riemannDeriv[3*nmat][el] += wt * fl[ncomp+nmat];
riemannDeriv[3*nmat][er] -= wt * fl[ncomp+nmat];
}
}
} // tk::
|