1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
// *****************************************************************************
/*!
  \file      src/PDE/Integrate/Basis.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Functions for computing the Dubiner basis functions in DG methods
  \details   This file contains functionality for computing the basis functions
     and relating coordinates transformation functions used in discontinuous
     Galerkin methods for variaous orders of numerical representation. The basis
     functions chosen for the DG method are the Dubiner basis, which are
     Legendre polynomials modified for tetrahedra, which are defined only on
     the reference/master tetrahedron.
  \see [1] https://doi.org/10.1007/BF01060030
  \see [2] https://doi.org/10.1093/imamat/hxh111
*/
// *****************************************************************************

#include <array>

#include "Basis.hpp"

std::array< tk::real, 3 >
tk::eval_gp ( const std::size_t igp,
              const std::array< std::array< tk::real, 3>, 3 >& coordfa,
              const std::array< std::vector< tk::real >, 2 >& coordgp )
// *****************************************************************************
//  Compute the coordinates of quadrature points for face integral in physical
//  space
//! \param[in] igp Index of quadrature points
//! \param[in] coordfa Array of nodal coordinates for face element
//! \param[in] coordgp Array of coordinates for quadrature points in reference
//!   space
//! \return Array of coordinates for quadrature points in physical space
// *****************************************************************************
{
  // Barycentric coordinates for the triangular face
  auto shp1 = 1.0 - coordgp[0][igp] - coordgp[1][igp];
  auto shp2 = coordgp[0][igp];
  auto shp3 = coordgp[1][igp];

  // Transformation of the quadrature point from the 2D reference/master
  // element to physical space, to obtain its physical (x,y,z) coordinates.
  return {{ coordfa[0][0]*shp1 + coordfa[1][0]*shp2 + coordfa[2][0]*shp3,
            coordfa[0][1]*shp1 + coordfa[1][1]*shp2 + coordfa[2][1]*shp3,
            coordfa[0][2]*shp1 + coordfa[1][2]*shp2 + coordfa[2][2]*shp3 }};
}

std::array< tk::real, 3 >
tk::eval_gp ( const std::size_t igp,
              const std::array< std::array< tk::real, 3>, 4 >& coord,
              const std::array< std::vector< tk::real >, 3 >& coordgp )
// *****************************************************************************
//  Compute the coordinates of quadrature points for volume integral in
//  physical space
//! \param[in] igp Index of quadrature points
//! \param[in] coord Array of nodal coordinates for tetrahedron element
//! \param[in] coordgp Array of coordinates for quadrature points in reference space
//! \return Array of coordinates for quadrature points in physical space
// *****************************************************************************
{
  // Barycentric coordinates for the tetradedron element
  auto shp1 = 1.0 - coordgp[0][igp] - coordgp[1][igp] - coordgp[2][igp];
  auto shp2 = coordgp[0][igp];
  auto shp3 = coordgp[1][igp];
  auto shp4 = coordgp[2][igp];

  // Transformation of the quadrature point from the reference/master
  // element to physical space, to obtain its physical (x,y,z) coordinates.
  return {{
   coord[0][0]*shp1 + coord[1][0]*shp2 + coord[2][0]*shp3 + coord[3][0]*shp4,
   coord[0][1]*shp1 + coord[1][1]*shp2 + coord[2][1]*shp3 + coord[3][1]*shp4,
   coord[0][2]*shp1 + coord[1][2]*shp2 + coord[2][2]*shp3 + coord[3][2]*shp4 }};
}

std::array< std::vector<tk::real>, 3 >
tk::eval_dBdx_p1( const std::size_t ndof,
                  const std::array< std::array< tk::real, 3 >, 3 >& jacInv )
// *****************************************************************************
//  Compute the derivatives of basis functions for DG(P1)
//! \param[in] ndof Number of degrees of freedom
//! \param[in] jacInv Array of the inverse of Jacobian
//! \return Array of the derivatives of basis functions
// *****************************************************************************
{
  // The derivatives of the basis functions dB/dx are easily calculated
  // via a transformation to the reference space as,
  // dB/dx = dB/dxi . dxi/dx,
  // where, x = (x,y,z) are the physical coordinates, and
  //        xi = (xi, eta, zeta) are the reference coordinates.
  // The matrix dxi/dx is the inverse of the Jacobian of transformation
  // and the matrix vector product has to be calculated. This follows.

  std::array< std::vector<tk::real>, 3 > dBdx;
  dBdx[0].resize( ndof, 0 );
  dBdx[1].resize( ndof, 0 );
  dBdx[2].resize( ndof, 0 );

  auto db2dxi1 = 2.0;
  auto db2dxi2 = 1.0;
  auto db2dxi3 = 1.0;

  auto db3dxi1 = 0.0;
  auto db3dxi2 = 3.0;
  auto db3dxi3 = 1.0;

  auto db4dxi1 = 0.0;
  auto db4dxi2 = 0.0;
  auto db4dxi3 = 4.0;

  dBdx[0][1] =  db2dxi1 * jacInv[0][0]
              + db2dxi2 * jacInv[1][0]
              + db2dxi3 * jacInv[2][0];

  dBdx[1][1] =  db2dxi1 * jacInv[0][1]
              + db2dxi2 * jacInv[1][1]
              + db2dxi3 * jacInv[2][1];

  dBdx[2][1] =  db2dxi1 * jacInv[0][2]
              + db2dxi2 * jacInv[1][2]
              + db2dxi3 * jacInv[2][2];

  dBdx[0][2] =  db3dxi1 * jacInv[0][0]
              + db3dxi2 * jacInv[1][0]
              + db3dxi3 * jacInv[2][0];

  dBdx[1][2] =  db3dxi1 * jacInv[0][1]
              + db3dxi2 * jacInv[1][1]
              + db3dxi3 * jacInv[2][1];

  dBdx[2][2] =  db3dxi1 * jacInv[0][2]
              + db3dxi2 * jacInv[1][2]
              + db3dxi3 * jacInv[2][2];

  dBdx[0][3] =  db4dxi1 * jacInv[0][0]
              + db4dxi2 * jacInv[1][0]
              + db4dxi3 * jacInv[2][0];

  dBdx[1][3] =  db4dxi1 * jacInv[0][1]
              + db4dxi2 * jacInv[1][1]
              + db4dxi3 * jacInv[2][1];

  dBdx[2][3] =  db4dxi1 * jacInv[0][2]
              + db4dxi2 * jacInv[1][2]
              + db4dxi3 * jacInv[2][2];

  return dBdx;
}

void
tk::eval_dBdx_p2( const std::size_t igp,
                  const std::array< std::vector< tk::real >, 3 >& coordgp,
                  const std::array< std::array< tk::real, 3 >, 3 >& jacInv,
                  std::array< std::vector<tk::real>, 3 >& dBdx )
// *****************************************************************************
//  Compute the derivatives of Dubiner basis function for DG(P2)
//! \param[in] igp Index of quadrature points
//! \param[in] coordgp Gauss point coordinates for tetrahedron element
//! \param[in] jacInv Array of the inverse of Jacobian
//! \param[in,out] dBdx Array of the derivatives of basis function
// *****************************************************************************
{
  auto db5dxi1 = 12.0 * coordgp[0][igp] + 6.0 * coordgp[1][igp]
               +  6.0 * coordgp[2][igp] - 6.0;
  auto db5dxi2 =  6.0 * coordgp[0][igp] + 2.0 * coordgp[1][igp]
               +  2.0 * coordgp[2][igp] - 2.0;
  auto db5dxi3 =  6.0 * coordgp[0][igp] + 2.0 * coordgp[1][igp]
               +  2.0 * coordgp[2][igp] - 2.0;

  auto db6dxi1 = 10.0 * coordgp[1][igp] +  2.0 * coordgp[2][igp] - 2.0;
  auto db6dxi2 = 10.0 * coordgp[0][igp] + 10.0 * coordgp[1][igp]
               +  6.0 * coordgp[2][igp] - 6.0;
  auto db6dxi3 =  2.0 * coordgp[0][igp] +  6.0 * coordgp[1][igp]
               +  2.0 * coordgp[2][igp] - 2.0;

  auto db7dxi1 = 12.0 * coordgp[2][igp] - 2.0;
  auto db7dxi2 =  6.0 * coordgp[2][igp] - 1.0;
  auto db7dxi3 = 12.0 * coordgp[0][igp] + 6.0 * coordgp[1][igp]
               + 12.0 * coordgp[2][igp] - 7.0;

  auto db8dxi1 =  0;
  auto db8dxi2 = 20.0 * coordgp[1][igp] + 8.0 * coordgp[2][igp] - 8.0;
  auto db8dxi3 =  8.0 * coordgp[1][igp] + 2.0 * coordgp[2][igp] - 2.0;

  auto db9dxi1 =  0;
  auto db9dxi2 = 18.0 * coordgp[2][igp] -  3.0;
  auto db9dxi3 = 18.0 * coordgp[1][igp] + 12.0 * coordgp[2][igp] - 7.0;

  auto db10dxi1 =  0;
  auto db10dxi2 =  0;
  auto db10dxi3 = 30.0 * coordgp[2][igp] - 10.0;

  dBdx[0][4] =  db5dxi1 * jacInv[0][0]
              + db5dxi2 * jacInv[1][0]
              + db5dxi3 * jacInv[2][0];

  dBdx[1][4] =  db5dxi1 * jacInv[0][1]
              + db5dxi2 * jacInv[1][1]
              + db5dxi3 * jacInv[2][1];

  dBdx[2][4] =  db5dxi1 * jacInv[0][2]
              + db5dxi2 * jacInv[1][2]
              + db5dxi3 * jacInv[2][2];

  dBdx[0][5] =  db6dxi1 * jacInv[0][0]
              + db6dxi2 * jacInv[1][0]
              + db6dxi3 * jacInv[2][0];

  dBdx[1][5] =  db6dxi1 * jacInv[0][1]
              + db6dxi2 * jacInv[1][1]
              + db6dxi3 * jacInv[2][1];

  dBdx[2][5] =  db6dxi1 * jacInv[0][2]
              + db6dxi2 * jacInv[1][2]
              + db6dxi3 * jacInv[2][2];

  dBdx[0][6] =  db7dxi1 * jacInv[0][0]
              + db7dxi2 * jacInv[1][0]
              + db7dxi3 * jacInv[2][0];

  dBdx[1][6] =  db7dxi1 * jacInv[0][1]
              + db7dxi2 * jacInv[1][1]
              + db7dxi3 * jacInv[2][1];

  dBdx[2][6] =  db7dxi1 * jacInv[0][2]
              + db7dxi2 * jacInv[1][2]
              + db7dxi3 * jacInv[2][2];

  dBdx[0][7] =  db8dxi1 * jacInv[0][0]
              + db8dxi2 * jacInv[1][0]
              + db8dxi3 * jacInv[2][0];

  dBdx[1][7] =  db8dxi1 * jacInv[0][1]
              + db8dxi2 * jacInv[1][1]
              + db8dxi3 * jacInv[2][1];

  dBdx[2][7] =  db8dxi1 * jacInv[0][2]
              + db8dxi2 * jacInv[1][2]
              + db8dxi3 * jacInv[2][2];

  dBdx[0][8] =  db9dxi1 * jacInv[0][0]
              + db9dxi2 * jacInv[1][0]
              + db9dxi3 * jacInv[2][0];

  dBdx[1][8] =  db9dxi1 * jacInv[0][1]
              + db9dxi2 * jacInv[1][1]
              + db9dxi3 * jacInv[2][1];

  dBdx[2][8] =  db9dxi1 * jacInv[0][2]
              + db9dxi2 * jacInv[1][2]
              + db9dxi3 * jacInv[2][2];

  dBdx[0][9] =  db10dxi1 * jacInv[0][0]
              + db10dxi2 * jacInv[1][0]
              + db10dxi3 * jacInv[2][0];

  dBdx[1][9] =  db10dxi1 * jacInv[0][1]
              + db10dxi2 * jacInv[1][1]
              + db10dxi3 * jacInv[2][1];

  dBdx[2][9] =  db10dxi1 * jacInv[0][2]
              + db10dxi2 * jacInv[1][2]
              + db10dxi3 * jacInv[2][2];
}

std::vector< tk::real >
tk::eval_basis( const std::size_t ndof,
                const tk::real xi,
                const tk::real eta,
                const tk::real zeta )
// *****************************************************************************
//  Compute the Dubiner basis functions
//! \param[in] ndof Number of degrees of freedom
//! \param[in] xi,eta,zeta Coordinates for quadrature points in reference space
//! \return Vector of basis functions
// *****************************************************************************
{
  // Array of basis functions
  std::vector< tk::real > B( ndof, 1.0 );

  if ( ndof > 1 )           // DG(P1)
  {
    B[1] = 2.0 * xi + eta + zeta - 1.0;
    B[2] = 3.0 * eta + zeta - 1.0;
    B[3] = 4.0 * zeta - 1.0;

    if( ndof > 4 )         // DG(P2)
    {
      B[4] =  6.0 * xi * xi + eta * eta + zeta * zeta
            + 6.0 * xi * eta + 6.0 * xi * zeta + 2.0 * eta * zeta
            - 6.0 * xi - 2.0 * eta - 2.0 * zeta + 1.0;
      B[5] =  5.0 * eta * eta + zeta * zeta
            + 10.0 * xi * eta + 2.0 * xi * zeta + 6.0 * eta * zeta
            - 2.0 * xi - 6.0 * eta - 2.0 * zeta + 1.0;
      B[6] =  6.0 * zeta * zeta + 12.0 * xi * zeta + 6.0 * eta * zeta - 2.0 * xi
            - eta - 7.0 * zeta + 1.0;
      B[7] =  10.0 * eta * eta + zeta * zeta + 8.0 * eta * zeta
            - 8.0 * eta - 2.0 * zeta + 1.0;
      B[8] =  6.0 * zeta * zeta + 18.0 * eta * zeta - 3.0 * eta - 7.0 * zeta
            + 1.0;
      B[9] =  15.0 * zeta * zeta - 10.0 * zeta + 1.0;
    }
  }

  return B;
}

std::vector< tk::real >
tk::eval_state ( ncomp_t ncomp,
                 ncomp_t offset,
                 const std::size_t ndof,
                 const std::size_t ndof_el,
                 const std::size_t e,
                 const Fields& U,
                 const std::vector< tk::real >& B,
                 const std::array< std::size_t, 2 >& VarRange )
// *****************************************************************************
//  Compute the state variables for the tetrahedron element
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] offset Offset this PDE system operates from
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] ndof_el Number of degrees of freedom for the local element
//! \param[in] e Index for the tetrahedron element
//! \param[in] U Solution vector at recent time step
//! \param[in] B Vector of basis functions
//! \param[in] VarRange Range of the variables to be evaluated
//! \return Vector of state variable for tetrahedron element
// *****************************************************************************
{
  // This is commented for now because that when p0/p1 adaptive with limiter
  // applied, the size of basis will be 10. However, ndof_el will be 4 which
  // leads to a size mismatch in limiter function.
  //Assert( B.size() == ndof_el, "Size mismatch" );

  if (U.empty()) return {};

  // Array of state variable for tetrahedron element
  std::vector< tk::real > state( ncomp, 0.0 );

  for (ncomp_t c=VarRange[0]; c<=VarRange[1]; ++c)
  {
    auto mark = c*ndof;
    state[c] = U( e, mark, offset );

    if(ndof_el > 1)        //DG(P1)
    {
      state[c] += U( e, mark+1, offset ) * B[1]
                + U( e, mark+2, offset ) * B[2]
                + U( e, mark+3, offset ) * B[3];
    }

    if(ndof_el > 4)        //DG(P2)
    {
      state[c] += U( e, mark+4, offset ) * B[4]
                + U( e, mark+5, offset ) * B[5]
                + U( e, mark+6, offset ) * B[6]
                + U( e, mark+7, offset ) * B[7]
                + U( e, mark+8, offset ) * B[8]
                + U( e, mark+9, offset ) * B[9];
    }
  }

  return state;
}

std::vector< std::vector< tk::real > >
tk::DubinerToTaylor( ncomp_t ncomp,
                     ncomp_t offset,
                     const std::size_t e,
                     const std::size_t ndof,
                     const tk::Fields& U,
                     const std::vector< std::size_t >& inpoel,
                     const tk::UnsMesh::Coords& coord )
// *****************************************************************************
//  Transform the solution with Dubiner basis to the solution with Taylor basis
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] offset Index for equation systems
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] U High-order solution vector with Dubiner basis
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \return High-order solution vector with Taylor basis
// *****************************************************************************
{
  std::vector< std::vector< tk::real > >
    unk(ncomp, std::vector<tk::real>(ndof, 0.0));

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  std::array< std::vector< tk::real >, 3 > center;
  center[0].resize(1, 0.25);
  center[1].resize(1, 0.25);
  center[2].resize(1, 0.25);

  // Evaluate the cell center solution
  for(ncomp_t icomp = 0; icomp < ncomp; icomp++)
  {
    auto mark = icomp * ndof;
    unk[icomp][0] = U(e, mark, offset);
  }

  // Evaluate the first order derivative
  std::array< std::array< tk::real, 3>, 4 > coordel {{
    {{ cx[ inpoel[4*e  ] ], cy[ inpoel[4*e  ] ], cz[ inpoel[4*e  ] ] }},
    {{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
    {{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
    {{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }}
  }};

  auto jacInv =
              tk::inverseJacobian( coordel[0], coordel[1], coordel[2], coordel[3] );

  // Compute the derivatives of basis function for DG(P1)
  auto dBdx = tk::eval_dBdx_p1( ndof, jacInv );

  if(ndof > 4) {
    tk::eval_dBdx_p2(0, center, jacInv, dBdx);
  }

  for(ncomp_t icomp = 0; icomp < ncomp; icomp++)
  {
    auto mark = icomp * ndof; 
    for(std::size_t idir = 0; idir < 3; idir++)
    {
      unk[icomp][idir+1] = 0;
      for(std::size_t idof = 1; idof < ndof; idof++)
        unk[icomp][idir+1] += U(e, mark+idof, offset) * dBdx[idir][idof];
    }
  }

  // Evaluate the second order derivative if DGP2 is applied
  // The basic idea of the computation follows
  //    d2Udx2 = /sum u_i * (d2B_i/dx2)
  // where d2B_i/dx2 = d( dB_i/dxi * dxi/dx ) / dxi * dxi/dx
  if(ndof > 4)
  {
    // Matrix to store the second order derivatives of basis functions in
    // reference domain
    tk::real d2Bdxi2[6][6] =
    { { 12.0,  0.0,  0.0,  0.0,  0.0,  0.0 },
      {  2.0, 10.0,  0.0, 20.0,  0.0,  0.0 },
      {  2.0,  2.0, 12.0,  2.0, 12.0, 30.0 },
      {  6.0, 10.0,  0.0,  0.0,  0.0,  0.0 },
      {  6.0,  2.0, 12.0,  0.0,  0.0,  0.0 },
      {  2.0,  6.0,  6.0,  8.0, 18.0,  0.0 } };

    // Transform matrix to convert the second order derivatives of basis
    // function in reference domain to the one in physical domain
    tk::real d2xdxi2[6][6];

    d2xdxi2[0][0] = jacInv[0][0] * jacInv[0][0];
    d2xdxi2[0][1] = jacInv[1][0] * jacInv[1][0];
    d2xdxi2[0][2] = jacInv[2][0] * jacInv[2][0];
    d2xdxi2[0][3] = jacInv[0][0] * jacInv[1][0] * 2.0;
    d2xdxi2[0][4] = jacInv[0][0] * jacInv[2][0] * 2.0;
    d2xdxi2[0][5] = jacInv[1][0] * jacInv[2][0] * 2.0;

    d2xdxi2[1][0] = jacInv[0][1] * jacInv[0][1];
    d2xdxi2[1][1] = jacInv[1][1] * jacInv[1][1];
    d2xdxi2[1][2] = jacInv[2][1] * jacInv[2][1];
    d2xdxi2[1][3] = jacInv[0][1] * jacInv[1][1] * 2.0;
    d2xdxi2[1][4] = jacInv[0][1] * jacInv[2][1] * 2.0;
    d2xdxi2[1][5] = jacInv[1][1] * jacInv[2][1] * 2.0;

    d2xdxi2[2][0] = jacInv[0][2] * jacInv[0][2];
    d2xdxi2[2][1] = jacInv[1][2] * jacInv[1][2];
    d2xdxi2[2][2] = jacInv[2][2] * jacInv[2][2];
    d2xdxi2[2][3] = jacInv[0][2] * jacInv[1][2] * 2.0;
    d2xdxi2[2][4] = jacInv[0][2] * jacInv[2][2] * 2.0;
    d2xdxi2[2][5] = jacInv[1][2] * jacInv[2][2] * 2.0;

    d2xdxi2[3][0] = jacInv[0][0] * jacInv[0][1];
    d2xdxi2[3][1] = jacInv[1][0] * jacInv[1][1];
    d2xdxi2[3][2] = jacInv[2][0] * jacInv[2][1];
    d2xdxi2[3][3] = jacInv[0][0] * jacInv[1][1] + jacInv[1][0] * jacInv[0][1];
    d2xdxi2[3][4] = jacInv[0][0] * jacInv[2][1] + jacInv[2][0] * jacInv[0][1];
    d2xdxi2[3][5] = jacInv[1][0] * jacInv[2][1] + jacInv[2][0] * jacInv[1][1];

    d2xdxi2[4][0] = jacInv[0][0] * jacInv[0][2];
    d2xdxi2[4][1] = jacInv[1][0] * jacInv[1][2];
    d2xdxi2[4][2] = jacInv[2][0] * jacInv[2][2];
    d2xdxi2[4][3] = jacInv[0][0] * jacInv[1][2] + jacInv[1][0] * jacInv[0][2];
    d2xdxi2[4][4] = jacInv[0][0] * jacInv[2][2] + jacInv[2][0] * jacInv[0][2];
    d2xdxi2[4][5] = jacInv[1][0] * jacInv[2][2] + jacInv[2][0] * jacInv[1][2];

    d2xdxi2[5][0] = jacInv[0][1] * jacInv[0][2];
    d2xdxi2[5][1] = jacInv[1][1] * jacInv[1][2];
    d2xdxi2[5][2] = jacInv[2][1] * jacInv[2][2];
    d2xdxi2[5][3] = jacInv[0][1] * jacInv[1][2] + jacInv[1][1] * jacInv[0][2];
    d2xdxi2[5][4] = jacInv[0][1] * jacInv[2][2] + jacInv[2][1] * jacInv[0][2];
    d2xdxi2[5][5] = jacInv[1][1] * jacInv[2][2] + jacInv[2][1] * jacInv[1][2];

    // Matrix to store the second order derivatives of basis functions in
    // physical domain
    tk::real d2Bdx2[6][6];
    for(std::size_t ibasis = 0; ibasis < 6; ibasis++) {
      for(std::size_t idir = 0; idir < 6; idir++) {
        d2Bdx2[idir][ibasis] = 0;
        for(std::size_t k = 0; k < 6; k++)
          d2Bdx2[idir][ibasis] += d2xdxi2[idir][k] * d2Bdxi2[k][ibasis];
      }
    }

    for(ncomp_t icomp = 0; icomp < ncomp; icomp++)
    {
      auto mark = icomp * ndof;
      for(std::size_t idir = 0; idir < 6; idir++)
      {
        unk[icomp][idir+4] = 0;
        for(std::size_t ibasis = 0; ibasis < 6; ibasis++)
          unk[icomp][idir+4] += U(e, mark+4+ibasis, offset) * d2Bdx2[idir][ibasis];
      }
    }
  }
  return unk;
}

void
tk::TaylorToDubiner( ncomp_t ncomp,
                     std::size_t e,
                     std::size_t ndof,
                     const std::vector< std::size_t >& inpoel,
                     const tk::UnsMesh::Coords& coord,
                     const tk::Fields& geoElem,
                     std::vector< std::vector< tk::real > >& unk )
// *****************************************************************************
//  Convert the solution with Taylor basis to the solution with Dubiner basis by
//    projection method
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in, out] unk High-order solution vector with Taylor basis
// *****************************************************************************
{
  Assert( ncomp > 0, "Number of scalar components is incorrect" );

  // The diagonal of mass matrix
  std::vector< tk::real > L(ndof, 0.0);

  tk::real vol = 1.0 / 6.0;

  L[0] = vol;

  if(ndof > 1) {
    Assert( (ndof == 4)||(ndof == 10),
      "Mismatch in number of degrees of freedom" );
    L[1] = vol / 10.0;
    L[2] = vol * 3.0/10.0;
    L[3] = vol * 3.0/5.0;
  }

  if(ndof > 4) {
    Assert( ndof == 10, "Mismatch in number of degrees of freedom" );
    L[4] = vol / 35.0;
    L[5] = vol / 21.0;
    L[6] = vol / 14.0;
    L[7] = vol / 7.0;
    L[8] = vol * 3.0/14.0;
    L[9] = vol * 3.0/7.0;
  }

  // Coordinates of the centroid in physical domain
  std::array< tk::real, 3 > x_c{geoElem(e,1,0), geoElem(e,2,0), geoElem(e,3,0)};

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  std::array< std::array< tk::real, 3>, 4 > coordel {{
    {{ cx[ inpoel[4*e  ] ], cy[ inpoel[4*e  ] ], cz[ inpoel[4*e  ] ] }},
    {{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
    {{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
    {{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }}
  }};

  // Number of quadrature points for volume integration
  auto ng = tk::NGvol(ndof);

  // arrays for quadrature points
  std::array< std::vector< tk::real >, 3 > coordgp;
  std::vector< tk::real > wgp;

  coordgp[0].resize( ng );
  coordgp[1].resize( ng );
  coordgp[2].resize( ng );
  wgp.resize( ng );

  // get quadrature point weights and coordinates for triangle
  tk::GaussQuadratureTet( ng, coordgp, wgp );

  // right hand side vector
  std::vector< tk::real > R( ncomp*ndof, 0.0 );

  // Gaussian quadrature
  for (std::size_t igp=0; igp<ng; ++igp)
  {
    auto wt = wgp[igp] * vol;

    auto gp = tk::eval_gp( igp, coordel, coordgp );

    auto B_taylor = eval_TaylorBasis( ndof, gp, x_c, coordel);

    // Compute high order solution at gauss point
    std::vector< tk::real > state( ncomp, 0.0 );
    for (ncomp_t c=0; c<ncomp; ++c)
    {
      state[c] = unk[c][0];
      state[c] += unk[c][1] * B_taylor[1]
                + unk[c][2] * B_taylor[2]
                + unk[c][3] * B_taylor[3];

      if(ndof > 4)
        state[c] += unk[c][4] * B_taylor[4] + unk[c][5] * B_taylor[5]
                  + unk[c][6] * B_taylor[6] + unk[c][7] * B_taylor[7]
                  + unk[c][8] * B_taylor[8] + unk[c][9] * B_taylor[9];
    }

    auto B = tk::eval_basis( ndof, coordgp[0][igp], coordgp[1][igp], coordgp[2][igp] );

    for (ncomp_t c=0; c<ncomp; ++c)
    {
      auto mark = c*ndof;
      R[mark] += wt * state[c];

      if(ndof > 1)
      {
        R[mark+1] += wt * state[c] * B[1];
        R[mark+2] += wt * state[c] * B[2];
        R[mark+3] += wt * state[c] * B[3];

        if(ndof > 4)
        {
          R[mark+4] += wt * state[c] * B[4];
          R[mark+5] += wt * state[c] * B[5];
          R[mark+6] += wt * state[c] * B[6];
          R[mark+7] += wt * state[c] * B[7];
          R[mark+8] += wt * state[c] * B[8];
          R[mark+9] += wt * state[c] * B[9];
        }
      }
    }
  }

  for (ncomp_t c=0; c<ncomp; ++c)
  {
    auto mark = c*ndof;
    for(std::size_t idof = 0; idof < ndof; idof++)
      unk[c][idof] = R[mark+idof] / L[idof];
  }
}

std::vector< tk::real >
tk::eval_TaylorBasis( const std::size_t ndof,
                      const std::array< tk::real, 3 >& x,
                      const std::array< tk::real, 3 >& x_c,
                      const std::array< std::array< tk::real, 3>, 4 >& coordel )
// *****************************************************************************
//  Evaluate the Taylor basis at points
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] x Nodal coordinates
//! \param[in] x_c Coordinates of the centroid
//! \param[in] coordel Array of nodal coordinates for the tetrahedron
// *****************************************************************************
{
  std::vector< tk::real > avg( 6, 0.0 );
  if(ndof > 4)
  {
    Assert( ndof == 10, "Mismatch in number of degrees of freedom" );
    auto ng = tk::NGvol(ndof);

    std::array< std::vector< tk::real >, 3 > coordgp;
    std::vector< tk::real > wgp;

    coordgp[0].resize( ng );
    coordgp[1].resize( ng );
    coordgp[2].resize( ng );
    wgp.resize( ng );

    tk::GaussQuadratureTet( ng, coordgp, wgp );

    for (std::size_t igp=0; igp<ng; ++igp)
    {
      // Compute the coordinates of quadrature point at physical domain
      auto gp = tk::eval_gp( igp, coordel, coordgp );

      avg[0] += wgp[igp] * (gp[0] - x_c[0]) * (gp[0] - x_c[0]) * 0.5;
      avg[1] += wgp[igp] * (gp[1] - x_c[1]) * (gp[1] - x_c[1]) * 0.5;
      avg[2] += wgp[igp] * (gp[2] - x_c[2]) * (gp[2] - x_c[2]) * 0.5;
      avg[3] += wgp[igp] * (gp[0] - x_c[0]) * (gp[1] - x_c[1]);
      avg[4] += wgp[igp] * (gp[0] - x_c[0]) * (gp[2] - x_c[2]);
      avg[5] += wgp[igp] * (gp[1] - x_c[1]) * (gp[2] - x_c[2]);
    }
  }

  std::vector< tk::real > B( ndof, 1.0 );

  if(ndof > 1) {
    Assert( (ndof == 4)||(ndof == 10) ,
      "Mismatch in number of degrees of freedom" );
    B[1] = x[0] - x_c[0];
    B[2] = x[1] - x_c[1];
    B[3] = x[2] - x_c[2];
  }

  if(ndof > 4) {
    B[4] = B[1] * B[1] * 0.5 - avg[0];
    B[5] = B[2] * B[2] * 0.5 - avg[1];
    B[6] = B[3] * B[3] * 0.5 - avg[2];
    B[7] = B[1] * B[2] - avg[3];
    B[8] = B[1] * B[3] - avg[4];
    B[9] = B[2] * B[3] - avg[5];
  }

  return B;
}