1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028 | // *****************************************************************************
/*!
\file src/Inciter/Refiner.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Mesh refiner for interfacing the mesh refinement library
\see Refiner.h for more info.
*/
// *****************************************************************************
#include <vector>
#include <algorithm>
#include "Refiner.hpp"
#include "Reorder.hpp"
#include "AMR/mesh_adapter.hpp"
#include "AMR/Error.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "CGPDE.hpp"
#include "DGPDE.hpp"
#include "DerivedData.hpp"
#include "UnsMesh.hpp"
#include "Centering.hpp"
#include "Around.hpp"
#include "Sorter.hpp"
#include "Discretization.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
extern ctr::InputDeck g_inputdeck_defaults;
extern std::vector< CGPDE > g_cgpde;
extern std::vector< DGPDE > g_dgpde;
} // inciter::
using inciter::Refiner;
Refiner::Refiner( std::size_t meshid,
const CProxy_Transporter& transporter,
const CProxy_Sorter& sorter,
const tk::CProxy_MeshWriter& meshwriter,
const std::vector< Scheme >& scheme,
const tk::RefinerCallback& cbr,
const tk::SorterCallback& cbs,
const std::vector< std::size_t >& ginpoel,
const tk::UnsMesh::CoordMap& coordmap,
const std::map< int, std::vector< std::size_t > >& bface,
const std::vector< std::size_t >& triinpoel,
const std::map< int, std::vector< std::size_t > >& bnode,
int nchare ) :
m_meshid( meshid ),
m_host( transporter ),
m_sorter( sorter ),
m_meshwriter( meshwriter ),
m_scheme( scheme ),
m_cbr( cbr ),
m_cbs( cbs ),
m_ginpoel( ginpoel ),
m_el( tk::global2local( ginpoel ) ), // fills m_inpoel, m_gid, m_lid
m_coordmap( coordmap ),
m_coord( flatcoord(coordmap) ),
m_bface( bface ),
m_bnode( bnode ),
m_triinpoel( triinpoel ),
m_nchare( nchare ),
m_mode( RefMode::T0REF ),
m_initref( g_inputdeck.get< tag::amr, tag::init >() ),
m_ninitref( g_inputdeck.get< tag::amr, tag::init >().size() ),
m_refiner( m_inpoel ),
m_nref( 0 ),
m_nbnd( 0 ),
m_extra( 0 ),
m_ch(),
m_edgech(),
m_chedge(),
m_localEdgeData(),
m_remoteEdgeData(),
m_nodeCommMap(),
m_oldTets(),
m_addedNodes(),
m_addedTets(),
m_removedNodes(),
m_oldntets( 0 ),
m_coarseBndFaces(),
m_coarseBndNodes(),
m_rid( m_coord[0].size() ),
m_oldrid(),
m_lref( m_rid.size() ),
m_parent(),
m_writeCallback(),
m_outref_ginpoel(),
m_outref_el(),
m_outref_coord(),
m_outref_addedNodes(),
m_outref_addedTets(),
m_outref_nodeCommMap(),
m_outref_bface(),
m_outref_bnode(),
m_outref_triinpoel()
// *****************************************************************************
// Constructor
//! \param[in] meshid Mesh ID
//! \param[in] transporter Transporter (host) proxy
//! \param[in] sorter Mesh reordering (sorter) proxy
//! \param[in] meshwriter Mesh writer proxy
//! \param[in] scheme Discretization schemes (one per mesh)
//! \param[in] cbr Charm++ callbacks for Refiner
//! \param[in] cbs Charm++ callbacks for Sorter
//! \param[in] ginpoel Mesh connectivity (this chare) using global node IDs
//! \param[in] coordmap Mesh node coordinates (this chare) for global node IDs
//! \param[in] bface File-internal elem ids of side sets
//! \param[in] bnode Node lists of side sets
//! \param[in] triinpoel Triangle face connectivity with global IDs
//! \param[in] nchare Total number of refiner chares (chare array elements)
// *****************************************************************************
{
Assert( !m_ginpoel.empty(), "No elements assigned to refiner chare" );
Assert( tk::positiveJacobians( m_inpoel, m_coord ),
"Input mesh to Refiner Jacobian non-positive" );
Assert( !tk::leakyPartition(
tk::genEsuelTet( m_inpoel, tk::genEsup(m_inpoel,4) ),
m_inpoel, m_coord ),
"Input mesh to Refiner leaky" );
#if not defined(__INTEL_COMPILER) || defined(NDEBUG)
// The above ifdef skips running the conformity test with the intel compiler
// in debug mode only. This is necessary because in tk::conforming(), filling
// up the map can fail with some meshes (only in parallel), e.g., tube.exo,
// used by some regression tests, due to the intel compiler generating some
// garbage incorrect code - only in debug, only in parallel, only with that
// mesh.
Assert( tk::conforming( m_inpoel, m_coord, true, m_rid ),
"Input mesh to Refiner not conforming" );
#endif
// Generate local -> refiner lib node id map and its inverse
libmap();
// Reverse initial mesh refinement type list (will pop from back)
std::reverse( begin(m_initref), end(m_initref) );
// Generate boundary data structures for coarse mesh
coarseBnd();
// If initial mesh refinement is configured, start initial mesh refinement.
// See also tk::grm::check_amr_errors in Control/Inciter/InputDeck/Ggrammar.h.
if (g_inputdeck.get< tag::amr, tag::t0ref >() && m_ninitref > 0)
t0ref();
else
endt0ref();
}
void
Refiner::libmap()
// *****************************************************************************
// (Re-)generate local -> refiner lib node id map and its inverse
// *****************************************************************************
{
// Fill initial (matching) mapping between local and refiner node ids
std::iota( begin(m_rid), end(m_rid), 0 );
// Fill in inverse, mapping refiner to local node ids
std::size_t i = 0;
for (auto r : m_rid) m_lref[r] = i++;
}
void
Refiner::coarseBnd()
// *****************************************************************************
// (Re-)generate boundary data structures for coarse mesh
// *****************************************************************************
{
// Generate unique set of faces for each side set of the input (coarsest) mesh
m_coarseBndFaces.clear();
for (const auto& [ setid, faceids ] : m_bface) {
auto& faces = m_coarseBndFaces[ setid ];
for (auto f : faceids) {
faces.insert(
{{{ m_triinpoel[f*3+0], m_triinpoel[f*3+1], m_triinpoel[f*3+2] }}} );
}
}
// Generate unique set of nodes for each side set of the input (coarsest) mesh
m_coarseBndNodes.clear();
for (const auto& [ setid, nodes ] : m_bnode) {
m_coarseBndNodes[ setid ].insert( begin(nodes), end(nodes) );
}
}
void
Refiner::sendProxy()
// *****************************************************************************
// Send Refiner proxy to Discretization objects
//! \details This should be called when bound Discretization chare array
//! elements have already been created.
// *****************************************************************************
{
// Make sure (bound) Discretization chare is already created and accessible
Assert( m_scheme[m_meshid].disc()[thisIndex].ckLocal() != nullptr,
"About to dereference nullptr" );
// Pass Refiner Charm++ chare proxy to fellow (bound) Discretization object
m_scheme[m_meshid].disc()[thisIndex].ckLocal()->setRefiner( thisProxy );
}
void
Refiner::reorder()
// *****************************************************************************
// Query Sorter and update local mesh with the reordered one
// *****************************************************************************
{
m_sorter[thisIndex].ckLocal()->
mesh( m_ginpoel, m_coordmap, m_triinpoel, m_bnode );
// Update local mesh data based on data just received from Sorter
m_el = tk::global2local( m_ginpoel ); // fills m_inpoel, m_gid, m_lid
m_coord = flatcoord( m_coordmap );
// Re-generate boundary data structures for coarse mesh
coarseBnd();
// WARNING: This re-creates the AMR lib which is probably not what we
// ultimately want, beacuse this deletes its history recorded during initial
// (t<0) refinement. However, this appears to correctly update the local mesh
// based on the reordered one (from Sorter) at least when t0ref is off.
m_refiner = AMR::mesh_adapter_t( m_inpoel );
}
tk::UnsMesh::Coords
Refiner::flatcoord( const tk::UnsMesh::CoordMap& coordmap )
// *****************************************************************************
// Generate flat coordinate data from coordinate map
//! \param[in] coordmap Coordinates associated to global node IDs of mesh chunk
//! \return Flat coordinate data
// *****************************************************************************
{
tk::UnsMesh::Coords coord;
// Convert node coordinates associated to global node IDs to a flat vector
auto npoin = coordmap.size();
Assert( m_gid.size() == npoin, "Size mismatch" );
coord[0].resize( npoin );
coord[1].resize( npoin );
coord[2].resize( npoin );
for (const auto& [ gid, coords ] : coordmap) {
auto i = tk::cref_find( m_lid, gid );
Assert( i < npoin, "Indexing out of coordinate map" );
coord[0][i] = coords[0];
coord[1][i] = coords[1];
coord[2][i] = coords[2];
}
return coord;
}
void
Refiner::dtref( const std::map< int, std::vector< std::size_t > >& bface,
const std::map< int, std::vector< std::size_t > >& bnode,
const std::vector< std::size_t >& triinpoel )
// *****************************************************************************
// Start mesh refinement (during time stepping, t>0)
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] bnode Boundary-node lists mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
// *****************************************************************************
{
m_mode = RefMode::DTREF;
// Update boundary node lists
m_bface = bface;
m_bnode = bnode;
m_triinpoel = triinpoel;
start();
}
void
Refiner::outref( const std::map< int, std::vector< std::size_t > >& bface,
const std::map< int, std::vector< std::size_t > >& bnode,
const std::vector< std::size_t >& triinpoel,
CkCallback c,
RefMode mode )
// *****************************************************************************
// Start mesh refinement (for field output)
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] bnode Boundary-node lists mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
//! \param[in] c Function to continue with after the writing field output
//! \param[in] mode Refinement mode
// *****************************************************************************
{
m_mode = mode;
m_writeCallback = c;
// Update boundary node lists
m_bface = bface;
m_bnode = bnode;
m_triinpoel = triinpoel;
start();
}
void
Refiner::t0ref()
// *****************************************************************************
// Output mesh to file before a new step mesh refinement
// *****************************************************************************
{
Assert( m_ninitref > 0, "No initial mesh refinement steps configured" );
// Output initial mesh to file
auto l = m_ninitref - m_initref.size(); // num initref steps completed
auto t0 = g_inputdeck.get< tag::discr, tag::t0 >();
if (l == 0) {
writeMesh( "t0ref", l, t0-1.0,
CkCallback( CkIndex_Refiner::start(), thisProxy[thisIndex] ) );
} else {
start();
}
}
void
Refiner::start()
// *****************************************************************************
// Start new step of mesh refinement
// *****************************************************************************
{
m_extra = 0;
m_ch.clear();
m_remoteEdgeData.clear();
m_remoteEdges.clear();
updateEdgeData();
// Generate and communicate boundary edges
bndEdges();
}
void
Refiner::bndEdges()
// *****************************************************************************
// Generate boundary edges and send them to all chares
//! \details Extract edges on the boundary only. The boundary edges (shared by
//! multiple chares) will be agreed on a refinement that yields a conforming
//! mesh across chares boundaries.
// *****************************************************************************
{
// Compute the number of edges (chunksize) a chare will respond to when
// computing shared edges
auto N = static_cast< std::size_t >( m_nchare );
std::size_t chunksize = std::numeric_limits< std::size_t >::max() / N;<--- Variable 'chunksize' is assigned a value that is never used.
// Generate boundary edges of our mesh chunk
std::unordered_map< int, EdgeSet > chbedges;
auto esup = tk::genEsup( m_inpoel, 4 ); // elements surrounding points
auto esuel = tk::genEsuelTet( m_inpoel, esup ); // elems surrounding elements
for (std::size_t e=0; e<esuel.size()/4; ++e) {
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) {
if (esuel[mark+f] == -1) {
auto A = m_ginpoel[ mark+tk::lpofa[f][0] ];
auto B = m_ginpoel[ mark+tk::lpofa[f][1] ];<--- Variable 'B' is assigned a value that is never used.
auto C = m_ginpoel[ mark+tk::lpofa[f][2] ];<--- Variable 'C' is assigned a value that is never used.
Assert( m_lid.find( A ) != end(m_lid), "Local node ID not found" );
Assert( m_lid.find( B ) != end(m_lid), "Local node ID not found" );
Assert( m_lid.find( C ) != end(m_lid), "Local node ID not found" );
// assign edges to bins a single chare will respond to when computing
// shared edges
auto bin = A / chunksize;
Assert( bin < N, "Will index out of number of chares" );
chbedges[ static_cast<int>(bin) ].insert( {A,B} );
bin = B / chunksize;
Assert( bin < N, "Will index out of number of chares" );
chbedges[ static_cast<int>(bin) ].insert( {B,C} );
bin = C / chunksize;
Assert( bin < N, "Will index out of number of chares" );
chbedges[ static_cast<int>(bin) ].insert( {C,A} );
}
}
}
// Send edges in bins to chares that will compute shared edges
m_nbnd = chbedges.size();
if (m_nbnd == 0)
contribute( sizeof(std::size_t), &m_meshid, CkReduction::nop,
m_cbr.get< tag::queried >() );
else
for (const auto& [ targetchare, bndedges ] : chbedges)
thisProxy[ targetchare ].query( thisIndex, bndedges );
}
void
Refiner::query( int fromch, const EdgeSet& edges )
// *****************************************************************************
// Incoming query for a list boundary edges for which this chare compiles
// shared edges
//! \param[in] fromch Sender chare ID
//! \param[in] edges Chare-boundary edge list from another chare
// *****************************************************************************
{
// Store incoming edges in edge->chare and its inverse, chare->edge, maps
for (const auto& e : edges) m_edgech[ e ].push_back( fromch );
m_chedge[ fromch ].insert( begin(edges), end(edges) );
// Report back to chare message received from
thisProxy[ fromch ].recvquery();
}
void
Refiner::recvquery()
// *****************************************************************************
// Receive receipt of boundary edge lists to query
// *****************************************************************************
{
if (--m_nbnd == 0)
contribute( sizeof(std::size_t), &m_meshid, CkReduction::nop,
m_cbr.get< tag::queried >() );
}
void
Refiner::response()
// *****************************************************************************
// Respond to boundary edge list queries
// *****************************************************************************
{
std::unordered_map< int, std::vector< int > > exp;
// Compute shared edges whose chare ids will be sent back to querying chares
for (const auto& [ neighborchare, bndedges ] : m_chedge) {
auto& e = exp[ neighborchare ];
for (const auto& ed : bndedges)
for (auto d : tk::cref_find(m_edgech,ed))
if (d != neighborchare)
e.push_back( d );<--- Consider using std::copy_if algorithm instead of a raw loop.
}
// Send chare ids of shared edges to chares that issued a query to us. Shared
// boundary edges assigned to chare ids sharing the boundary edge were
// computed above for those chares that queried this map from us. These
// boundary edges form a distributed table and we only work on a chunk of it.
// Note that we only send data back to those chares that have queried us. The
// receiving sides do not know in advance if they receive messages or not.
// Completion is detected by having the receiver respond back and counting
// the responses on the sender side, i.e., this chare.
m_nbnd = exp.size();
if (m_nbnd == 0)
contribute( sizeof(std::size_t), &m_meshid, CkReduction::nop,
m_cbr.get< tag::responded >() );
else
for (const auto& [ targetchare, bndedges ] : exp)
thisProxy[ targetchare ].bnd( thisIndex, bndedges );
}
void
Refiner::bnd( int fromch, const std::vector< int >& chares )
// *****************************************************************************
// Receive shared boundary edges for our mesh chunk
//! \param[in] fromch Sender chare ID
//! \param[in] chares Chare ids we share edges with
// *****************************************************************************
{
// Store chare ids we share edges with
m_ch.insert( begin(chares), end(chares) );
// Report back to chare message received from
thisProxy[ fromch ].recvbnd();
}
void
Refiner::recvbnd()
// *****************************************************************************
// Receive receipt of shared boundary edges
// *****************************************************************************
{
if (--m_nbnd == 0)
contribute( sizeof(std::size_t), &m_meshid, CkReduction::nop,
m_cbr.get< tag::responded >() );
}
void
Refiner::refine()
// *****************************************************************************
// Do a single step of mesh refinement (really, only tag edges)
//! \details During initial (t<0, t0ref) mesh refinement, this is a single step
//! in a potentially multiple-entry list of initial adaptive mesh refinement
//! steps. Distribution of the chare-boundary edges must have preceded this
//! step, so that boundary edges (shared by multiple chares) can agree on a
//! refinement that yields a conforming mesh across chare boundaries.
//!
//! During-timestepping (t>0, dtref) mesh refinement this is called once, as
//! we only do a single step during time stepping.
//!
//! During field-output (outref) mesh refinement, this may be called multiple
//! times, depending the number of refinement levels needed for the field
//! output.
// *****************************************************************************
{
// Free memory used for computing shared boundary edges
tk::destroy( m_edgech );
tk::destroy( m_chedge );
// Perform leak test on old mesh
Assert( !tk::leakyPartition(
tk::genEsuelTet( m_inpoel, tk::genEsup(m_inpoel,4) ),
m_inpoel, m_coord ),
"Mesh partition before refinement leaky" );
if (m_mode == RefMode::T0REF) {
// Refine mesh based on next initial refinement type
if (!m_initref.empty()) {
auto r = m_initref.back(); // consume (reversed) list from its back
if (r == ctr::AMRInitialType::UNIFORM)
uniformRefine();
else if (r == ctr::AMRInitialType::UNIFORM_DEREFINE)
uniformDeRefine();
else if (r == ctr::AMRInitialType::INITIAL_CONDITIONS)
errorRefine();
else if (r == ctr::AMRInitialType::COORDINATES)
coordRefine();
else if (r == ctr::AMRInitialType::EDGELIST)
edgelistRefine();
else Throw( "Initial AMR type not implemented" );
}
} else if (m_mode == RefMode::DTREF) {
if (g_inputdeck.get< tag::amr, tag::dtref_uniform >())
uniformRefine();
else
errorRefine();
} else if (m_mode == RefMode::OUTREF) {
uniformRefine();
} else if (m_mode == RefMode::OUTDEREF) {
uniformDeRefine();
} else Throw( "RefMode not implemented" );
// Communicate extra edges
comExtra();
}
void
Refiner::comExtra()
// *****************************************************************************
// Communicate extra edges along chare boundaries
// *****************************************************************************
{
// Export extra added nodes on our mesh chunk boundary to other chares
if (m_ch.empty()) {
correctref();
} else {
for (auto c : m_ch) { // for all chares we share at least an edge with
thisProxy[c].addRefBndEdges(thisIndex, m_localEdgeData, m_intermediates);
}
}
}
void
Refiner::addRefBndEdges(
int fromch,
const AMR::EdgeData& ed,
const std::unordered_set< std::size_t >& intermediates )
// *****************************************************************************
//! Receive edges on our chare boundary from other chares
//! \param[in] fromch Chare call coming from
//! \param[in] ed Edges on chare boundary
//! \param[in] intermediates Intermediate nodes
// *****************************************************************************
{
// Save/augment buffers of edge data for each sender chare
auto& red = m_remoteEdgeData[ fromch ];
auto& re = m_remoteEdges[ fromch ];
using edge_data_t = std::tuple< Edge, int, AMR::Edge_Lock_Case >;
for (const auto& [ edge, data ] : ed) {
red.push_back( edge_data_t{ edge, data.first, data.second } );
re.push_back( edge );
}
// Add intermediates to mesh refiner lib
for (const auto g : intermediates) {
auto l = m_lid.find( g ); // convert to local node ids
if (l != end(m_lid)) {
m_refiner.tet_store.intermediate_list.insert( m_rid[l->second] );
}
}
// Heard from every worker we share at least a single edge with
if (++m_nref == m_ch.size()) {
m_nref = 0;
// Add intermediates to refiner lib
auto localedges_orig = m_localEdgeData;
//auto intermediates_orig = m_intermediates;
m_refiner.lock_intermediates();
// Run compatibility algorithm
m_refiner.mark_refinement();
// Update edge data from mesh refiner
updateEdgeData();
// If refiner lib modified our edges, need to recommunicate
auto modified = static_cast< std::size_t >(
localedges_orig != m_localEdgeData ? 1 : 0 );
//int modified = ( (localedges_orig != m_localEdgeData ||
// intermediates_orig != m_intermediates) ? 1 : 0 );
std::vector< std::size_t > meshdata{ m_meshid, modified };
contribute( meshdata, CkReduction::max_ulong,
m_cbr.get< tag::compatibility >() );
}
}
void
Refiner::correctref()
// *****************************************************************************
// Correct extra edges to arrive at conforming mesh across chare boundaries
//! \details This function is called repeatedly until there is not a a single
//! edge that needs correction for the whole distributed problem to arrive at
//! a conforming mesh across chare boundaries during a mesh refinement step.
// *****************************************************************************
{
auto unlocked = AMR::Edge_Lock_Case::unlocked;
// Storage for edge data that need correction to yield a conforming mesh
AMR::EdgeData extra;
// loop through all edges shared with other chares
for (const auto& [ neighborchare, edgedata ] : m_remoteEdgeData) {
for (const auto& [edge,remote_needs_refining,remote_lock_case] : edgedata) {
// find local data of remote edge
auto it = m_localEdgeData.find( edge );
if (it != end(m_localEdgeData)) {
auto& local = it->second;
auto& local_needs_refining = local.first;
auto& local_lock_case = local.second;
auto local_needs_refining_orig = local_needs_refining;<--- Variable 'local_needs_refining_orig' is assigned a value that is never used.
auto local_lock_case_orig = local_lock_case;<--- Variable 'local_lock_case_orig' is assigned a value that is never used.
Assert( !(local_lock_case > unlocked && local_needs_refining),
"Invalid local edge: locked & needs refining" );
Assert( !(remote_lock_case > unlocked && remote_needs_refining),
"Invalid remote edge: locked & needs refining" );
// compute lock from local and remote locks as most restrictive
local_lock_case = std::max( local_lock_case, remote_lock_case );
if (local_lock_case > unlocked)
local_needs_refining = 0;
if (local_lock_case == unlocked && remote_needs_refining)
local_needs_refining = 1;
// if the remote sent us data that makes us change our local state,
// e.g., local{0,0} + remote(1,0} -> local{1,0}, i.e., I changed my
// state I need to tell the world about it
if ( (local_lock_case != local_lock_case_orig ||
local_needs_refining != local_needs_refining_orig) ||
// or if the remote data is inconsistent with what I think, e.g.,
// local{1,0} + remote(0,0} -> local{1,0}, i.e., the remote does not
// yet agree, I need to tell the world about it
(local_lock_case != remote_lock_case ||
local_needs_refining != remote_needs_refining) )
{
auto l1 = tk::cref_find( m_lid, edge[0] );
auto l2 = tk::cref_find( m_lid, edge[1] );
Assert( l1 != l2, "Edge end-points local ids are the same" );
auto r1 = m_rid[ l1 ];
auto r2 = m_rid[ l2 ];
Assert( r1 != r2, "Edge end-points refiner ids are the same" );
extra[ {{ std::min(r1,r2), std::max(r1,r2) }} ] =
{ local_needs_refining, local_lock_case };
}
}
}
}
m_remoteEdgeData.clear();
m_extra = extra.size();
if (!extra.empty()) {
// Do refinement including edges that need to be corrected
m_refiner.mark_error_refinement_corr( extra );
// Update our extra-edge store based on refiner
updateEdgeData();
}
// Aggregate number of extra edges that still need correction and some
// refinement/derefinement statistics
const auto& tet_store = m_refiner.tet_store;
std::vector< std::size_t >
m{ m_meshid,
m_extra,
tet_store.marked_refinements.size(),
tet_store.marked_derefinements.size(),
static_cast< std::underlying_type_t< RefMode > >( m_mode ) };
contribute( m, CkReduction::sum_ulong, m_cbr.get< tag::matched >() );
}
void
Refiner::updateEdgeData()
// *****************************************************************************
// Query AMR lib and update our local store of edge data
// *****************************************************************************
{
m_localEdgeData.clear();
m_intermediates.clear();
// This currently takes ALL edges from the AMR lib, i.e., on the whole
// domain. We should eventually only collect edges here that are shared with
// other chares.
const auto& ref_edges = m_refiner.tet_store.edge_store.edges;
const auto& refinpoel = m_refiner.tet_store.get_active_inpoel();
for (std::size_t e=0; e<refinpoel.size()/4; ++e) {
auto A = refinpoel[e*4+0];
auto B = refinpoel[e*4+1];
auto C = refinpoel[e*4+2];
auto D = refinpoel[e*4+3];
std::array<Edge,6> edges{{ {{A,B}}, {{B,C}}, {{A,C}},
{{A,D}}, {{B,D}}, {{C,D}} }};
for (const auto& ed : edges) {
auto ae = AMR::edge_t{{{ std::min(ed[0],ed[1]), std::max(ed[0],ed[1]) }}};
auto r = tk::cref_find( ref_edges, ae );
const auto ged = Edge{{ m_gid[ tk::cref_find( m_lref, ed[0] ) ],
m_gid[ tk::cref_find( m_lref, ed[1] ) ] }};
m_localEdgeData[ ged ] = { r.needs_refining, r.lock_case };
}
}
// Build intermediates to send. This currently takes ALL intermediates from
// the AMR lib, i.e., on the whole domain. We should eventually only collect
// edges here that are shared with other chares.
for (const auto& r : m_refiner.tet_store.intermediate_list) {
m_intermediates.insert( m_gid[ tk::cref_find( m_lref, r ) ] );
}
}
std::tuple< std::vector< std::string >,
std::vector< std::vector< tk::real > >,
std::vector< std::string >,
std::vector< std::vector< tk::real > > >
Refiner::refinementFields() const
// *****************************************************************************
// Collect mesh output fields from refiner lib
//! \return Names and fields of mesh refinement data in mesh cells and nodes
// *****************************************************************************
{
// Find number of nodes in current mesh
auto npoin = tk::npoin_in_graph( m_inpoel );
// Generate edges surrounding points in current mesh
auto esup = tk::genEsup( m_inpoel, 4 );
// Update solution on current mesh
auto u = solution( npoin, esup );
Assert( u.nunk() == npoin, "Solution uninitialized or wrong size" );
// Compute error in edges on current mesh
auto edgeError = errorsInEdges( npoin, esup, u );
// Transfer error from edges to cells for field output
std::vector< tk::real > error( m_inpoel.size()/4, 0.0 );
for (std::size_t e=0; e<m_inpoel.size()/4; ++e) {
auto A = m_inpoel[e*4+0];
auto B = m_inpoel[e*4+1];
auto C = m_inpoel[e*4+2];
auto D = m_inpoel[e*4+3];
std::array<Edge,6> edges{{ {{A,B}}, {{B,C}}, {{A,C}},
{{A,D}}, {{B,D}}, {{C,D}} }};
// sum error from edges to elements
for (const auto& ed : edges) error[e] += tk::cref_find( edgeError, ed );
error[e] /= 6.0; // assign edge-average error to element
}
// Prepare element fields with mesh refinement data
std::vector< std::string >
elemfieldnames{ "refinement level", "cell type", "error" };
auto& tet_store = m_refiner.tet_store;
std::vector< std::vector< tk::real > > elemfields{
tet_store.get_refinement_level_list(),
tet_store.get_cell_type_list(),
error };
using tuple_t = std::tuple< std::vector< std::string >,
std::vector< std::vector< tk::real > >,
std::vector< std::string >,
std::vector< std::vector< tk::real > > >;
return tuple_t{ elemfieldnames, elemfields, {}, {} };
}
void
Refiner::writeMesh( const std::string& basefilename,
uint64_t itr,
tk::real t,
CkCallback c ) const
// *****************************************************************************
// Output mesh to file(s)
//! \param[in] basefilename File name to append to
//! \param[in] itr Iteration count since a new mesh
//! \param[in] t "Physical time" to write to file. "Time" here is used to
//! designate a new time step at which the mesh is saved.
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
auto r = refinementFields();
auto& elemfieldnames = std::get< 0 >( r );
auto& elemfields = std::get< 1 >( r );
auto& nodefieldnames = std::get< 2 >( r );
auto& nodefields = std::get< 3 >( r );
// Prepare solution field names: depvar + component id for all eqs
auto nprop = g_inputdeck.get< tag::component >().nprop();
auto solfieldnames = g_inputdeck.get<tag::component>().depvar( g_inputdeck );
Assert( solfieldnames.size() == nprop, "Size mismatch" );
const auto scheme = g_inputdeck.get< tag::discr, tag::scheme >();
const auto centering = ctr::Scheme().centering( scheme );
auto t0 = g_inputdeck.get< tag::discr, tag::t0 >();
// list of nodes/elements at which box ICs are defined
std::vector< std::unordered_set< std::size_t > > inbox;
tk::real V = 1.0;<--- The scope of the variable 'V' can be reduced. [+]The scope of the variable 'V' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// Prepare node or element fields for output to file
if (centering == tk::Centering::NODE) {
// Augment element field names with solution variable names + field ids
nodefieldnames.insert( end(nodefieldnames),
begin(solfieldnames), end(solfieldnames) );
// Evaluate initial conditions on current mesh at t0
tk::Fields u( m_coord[0].size(), nprop );
for (auto& eq : g_cgpde) eq.initialize( m_coord, u, t0, V, inbox );
// Extract all scalar components from solution for output to file
for (std::size_t i=0; i<nprop; ++i)
nodefields.push_back( u.extract( i, 0 ) );
} else if (centering == tk::Centering::ELEM) {
// Augment element field names with solution variable names + field ids
elemfieldnames.insert( end(elemfieldnames),
begin(solfieldnames), end(solfieldnames) );
auto ndof = g_inputdeck.get< tag::discr, tag::ndof >();
tk::Fields lhs( m_inpoel.size()/4, ndof*nprop );
// Generate left hand side for DG initialize
auto geoElem = tk::genGeoElemTet( m_inpoel, m_coord );
for (const auto& eq : g_dgpde) eq.lhs( geoElem, lhs );
// Evaluate initial conditions on current mesh at t0
auto u = lhs;
for (const auto& eq : g_dgpde)
eq.initialize( lhs, m_inpoel, m_coord, inbox, u, t0, m_inpoel.size()/4 );
// Extract all scalar components from solution for output to file
for (std::size_t i=0; i<nprop; ++i)
elemfields.push_back( u.extract( i, 0 ) );
}
// Output mesh
m_meshwriter[ CkNodeFirst( CkMyNode() ) ].
write( m_meshid, /*meshoutput = */ true, /*fieldoutput = */ true, itr, 1, t,
thisIndex, basefilename, m_inpoel, m_coord, m_bface,
tk::remap(m_bnode,m_lid), tk::remap(m_triinpoel,m_lid),
elemfieldnames, nodefieldnames, {}, elemfields, nodefields, {},
{}, c );
}
void
Refiner::perform()
// *****************************************************************************
// Perform mesh refinement and decide how to continue
//! \details First the mesh refiner object is called to perform a single step
//! of mesh refinement. Then, if this function is called during a step
//! (potentially multiple levels of) initial AMR, it evaluates whether to do
//! another one. If it is called during time stepping, this concludes the
//! single mesh refinement step and the new mesh is sent to the PDE worker
//! (Discretization).
// *****************************************************************************
{
// Save old tets and their ids before performing refinement. Outref is always
// followed by outderef, so to the outside world, the mesh is uchanged, thus
// no update.
if (m_mode != RefMode::OUTREF && m_mode != RefMode::OUTDEREF) {
m_oldntets = m_oldTets.size();
m_oldTets.clear();
for (const auto& [ id, tet ] : m_refiner.tet_store.tets)
m_oldTets.insert( tet );
}
if (m_mode == RefMode::T0REF) {
// Refine mesh based on next initial refinement type
if (!m_initref.empty()) {
auto r = m_initref.back(); // consume (reversed) list from its back
if (r == ctr::AMRInitialType::UNIFORM_DEREFINE)
m_refiner.perform_derefinement();
else
m_refiner.perform_refinement();
}
} else {
// TODO: does not work yet, fix as above
m_refiner.perform_refinement();
m_refiner.perform_derefinement();
}
//auto& tet_store = m_refiner.tet_store;
//std::cout << "before ref: " << tet_store.marked_refinements.size() << ", " << tet_store.marked_derefinements.size() << ", " << tet_store.size() << ", " << tet_store.get_active_inpoel().size() << '\n';
//std::cout << "after ref: " << tet_store.marked_refinements.size() << ", " << tet_store.marked_derefinements.size() << ", " << tet_store.size() << ", " << tet_store.get_active_inpoel().size() << '\n';
//std::cout << "after deref: " << tet_store.marked_refinements.size() << ", " << tet_store.marked_derefinements.size() << ", " << tet_store.size() << ", " << tet_store.get_active_inpoel().size() << '\n';
// Update volume and boundary mesh
updateMesh();
// Save mesh at every initial refinement step (mainly for debugging). Will
// replace with just a 'next()' in production.
if (m_mode == RefMode::T0REF) {
auto l = m_ninitref - m_initref.size() + 1; // num initref steps completed
auto t0 = g_inputdeck.get< tag::discr, tag::t0 >();
// Generate times equally subdividing t0-1...t0 to ninitref steps
auto t =
t0 - 1.0 + static_cast<tk::real>(l)/static_cast<tk::real>(m_ninitref);
auto itr = l;
// Output mesh after refinement step
writeMesh( "t0ref", itr, t,
CkCallback( CkIndex_Refiner::next(), thisProxy[thisIndex] ) );
} else {
next();
}
}
void
Refiner::next()
// *****************************************************************************
// Continue after finishing a refinement step
// *****************************************************************************
{
if (m_mode == RefMode::T0REF) {
// Remove initial mesh refinement step from list
if (!m_initref.empty()) m_initref.pop_back();
// Continue to next initial AMR step or finish
if (!m_initref.empty()) t0ref(); else endt0ref();
} else if (m_mode == RefMode::DTREF) {
// Augment node communication map with newly added nodes on chare-boundary
for (const auto& [ neighborchare, edges ] : m_remoteEdges) {
auto& nodes = tk::ref_find( m_nodeCommMap, neighborchare );
for (const auto& e : edges) {
// If parent nodes were part of the node communication map for chare
if (nodes.find(e[0]) != end(nodes) && nodes.find(e[1]) != end(nodes)) {
// Add new node if local id was generated for it
auto n = Hash<2>()( e );
if (m_lid.find(n) != end(m_lid)) nodes.insert( n );
}
}
}
// Send new mesh, solution, and communication data back to PDE worker
m_scheme[m_meshid].ckLocal< Scheme::resizePostAMR >( thisIndex, m_ginpoel,
m_el, m_coord, m_addedNodes, m_addedTets, m_removedNodes, m_nodeCommMap,
m_bface, m_bnode, m_triinpoel );
} else if (m_mode == RefMode::OUTREF) {
// Augment node communication map with newly added nodes on chare-boundary
for (const auto& [ neighborchare, edges ] : m_remoteEdges) {
auto& nodes = tk::ref_find( m_nodeCommMap, neighborchare );
for (const auto& e : edges) {
// If parent nodes were part of the node communication map for chare
if (nodes.find(e[0]) != end(nodes) && nodes.find(e[1]) != end(nodes)) {
// Add new node if local id was generated for it
auto n = Hash<2>()( e );
if (m_lid.find(n) != end(m_lid)) nodes.insert( n );
}
}
}
// Store field output mesh
m_outref_ginpoel = m_ginpoel;
m_outref_el = m_el;
m_outref_coord = m_coord;
m_outref_addedNodes = m_addedNodes;
m_outref_addedTets = m_addedTets;
m_outref_nodeCommMap = m_nodeCommMap;
m_outref_bface = m_bface;
m_outref_bnode = m_bnode;
m_outref_triinpoel = m_triinpoel;
// Derefine mesh to the state previous to field output
outref( m_outref_bface, m_outref_bnode, m_outref_triinpoel, m_writeCallback,
RefMode::OUTDEREF );
} else if (m_mode == RefMode::OUTDEREF) {
// Send field output mesh to PDE worker
m_scheme[m_meshid].ckLocal< Scheme::extractFieldOutput >( thisIndex,
m_outref_ginpoel, m_outref_el, m_outref_coord, m_outref_addedNodes,
m_outref_addedTets, m_outref_nodeCommMap, m_outref_bface, m_outref_bnode,
m_outref_triinpoel, m_writeCallback );
} else Throw( "RefMode not implemented" );
}
void
Refiner::endt0ref()
// *****************************************************************************
// Finish initial mesh refinement
//! \details This function is called as after initial mesh refinement has
//! finished. If initial mesh reifnement was not configured by the user, this
//! is the point where we continue after the constructor, by computing the
//! total number of elements across the whole problem.
// *****************************************************************************
{
// create sorter Charm++ chare array elements using dynamic insertion
m_sorter[ thisIndex ].insert( m_meshid, m_host, m_meshwriter, m_cbs, m_scheme,
CkCallback(CkIndex_Refiner::reorder(), thisProxy[thisIndex]), m_ginpoel,
m_coordmap, m_el, m_bface, m_triinpoel, m_bnode, m_nchare );
// Compute final number of cells across whole problem
std::vector< std::size_t >
meshdata{ m_meshid, m_ginpoel.size()/4, m_coord[0].size() };
contribute( meshdata, CkReduction::sum_ulong, m_cbr.get< tag::refined >() );
// // Free up memory if no dtref
// if (!g_inputdeck.get< tag::amr, tag::dtref >()) {
// tk::destroy( m_ginpoel );
// tk::destroy( m_el );
// tk::destroy( m_coordmap );
// tk::destroy( m_coord );
// tk::destroy( m_bface );
// tk::destroy( m_bnode );
// tk::destroy( m_triinpoel );
// tk::destroy( m_initref );
// tk::destroy( m_ch );
// tk::destroy( m_edgech );
// tk::destroy( m_chedge );
// tk::destroy( m_localEdgeData );
// tk::destroy( m_remoteEdgeData );
// tk::destroy( m_remoteEdges );
// tk::destroy( m_intermediates );
// tk::destroy( m_nodeCommMap );
// tk::destroy( m_oldTets );
// tk::destroy( m_addedNodes );
// tk::destroy( m_addedTets );
// tk::destroy( m_coarseBndFaces );
// tk::destroy( m_coarseBndNodes );
// tk::destroy( m_rid );
// tk::destroy( m_oldrid );
// tk::destroy( m_lref );
// tk::destroy( m_parent );
// }
}
void
Refiner::uniformRefine()
// *****************************************************************************
// Do uniform mesh refinement
// *****************************************************************************
{
// Do uniform refinement
m_refiner.mark_uniform_refinement();
// Update our extra-edge store based on refiner
updateEdgeData();
// Set number of extra edges to be zero, skipping correction (if this is the
// only step in this refinement step)
m_extra = 0;
}
void
Refiner::uniformDeRefine()
// *****************************************************************************
// Do uniform mesh derefinement
// *****************************************************************************
{
// Do uniform derefinement
m_refiner.mark_uniform_derefinement();
// Update our extra-edge store based on refiner
updateEdgeData();
// Set number of extra edges to be zero, skipping correction (if this is the
// only step in this refinement step)
m_extra = 0;
}
Refiner::EdgeError
Refiner::errorsInEdges(
std::size_t npoin,
const std::pair< std::vector<std::size_t>, std::vector<std::size_t> >& esup,
const tk::Fields& u ) const
// *****************************************************************************
// Compute errors in edges
//! \param[in] npoin Number nodes in current mesh (partition)
//! \param[in] esup Elements surrounding points linked vectors
//! \param[in] u Solution evaluated at mesh nodes for all scalar components
//! \return A map associating errors (real values between 0.0 and 1.0 incusive)
//! to edges (2 local node IDs)
// *****************************************************************************
{
// Get the indices (in the system of systems) of refinement variables and the
// error indicator configured
const auto& refidx = g_inputdeck.get< tag::amr, tag::id >();
auto errtype = g_inputdeck.get< tag::amr, tag::error >();
// Compute points surrounding points
auto psup = tk::genPsup( m_inpoel, 4, esup );
// Compute errors in ICs and define refinement criteria for edges
AMR::Error error;
EdgeError edgeError;
for (std::size_t p=0; p<npoin; ++p) { // for all mesh nodes on this chare
for (auto q : tk::Around(psup,p)) { // for all nodes surrounding p
tk::real cmax = 0.0;
AMR::edge_t e(p,q);
for (auto i : refidx) { // for all refinement variables
auto c = error.scalar( u, e, i, m_coord, m_inpoel, esup, errtype );
if (c > cmax) cmax = c; // find max error at edge
}
edgeError[ {{p,q}} ] = cmax; // associate error to edge
}
}
return edgeError;
}
tk::Fields
Refiner::solution( std::size_t npoin,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup ) const
// *****************************************************************************
// Update (or evaluate) solution on current mesh
//! \param[in] npoin Number nodes in current mesh (partition)
//! \param[in] esup Elements surrounding points linked vectors
//! \return Solution updated/evaluated for all scalar components
// *****************************************************************************
{
// Get solution whose error to evaluate
tk::Fields u;
if (m_mode == RefMode::T0REF) {
// Evaluate initial conditions at mesh nodes
u = nodeinit( npoin, esup );
} else if (m_mode == RefMode::DTREF) {
// Query current solution
u = m_scheme[m_meshid].ckLocal< Scheme::solution >( thisIndex );
const auto scheme = g_inputdeck.get< tag::discr, tag::scheme >();
const auto centering = ctr::Scheme().centering( scheme );
if (centering == tk::Centering::ELEM) {
// ...
}
} else if (m_mode == RefMode::OUTREF) {
} else if (m_mode == RefMode::OUTDEREF) {
} else Throw( "RefMode not implemented" );
return u;
}
void
Refiner::errorRefine()
// *****************************************************************************
// Do error-based mesh refinement and derefinement
// *****************************************************************************
{
// Find number of nodes in old mesh
auto npoin = tk::npoin_in_graph( m_inpoel );
// Generate edges surrounding points in old mesh
auto esup = tk::genEsup( m_inpoel, 4 );
// Update solution on current mesh
auto u = solution( npoin, esup );
Assert( u.nunk() == npoin, "Solution uninitialized or wrong size" );
using AMR::edge_t;
using AMR::edge_tag;
// Compute error in edges. Tag edge for refinement if error exceeds
// refinement tolerance, tag edge for derefinement if error is below
// derefinement tolerance.
auto tolref = g_inputdeck.get< tag::amr, tag::tolref >();
auto tolderef = g_inputdeck.get< tag::amr, tag::tolderef >();
std::vector< std::pair< edge_t, edge_tag > > tagged_edges;
for (const auto& e : errorsInEdges(npoin,esup,u)) {
if (e.second > tolref) {
tagged_edges.push_back( { edge_t( m_rid[e.first[0]], m_rid[e.first[1]] ),
edge_tag::REFINE } );
} else if (e.second < tolderef) {
tagged_edges.push_back( { edge_t( m_rid[e.first[0]], m_rid[e.first[1]] ),
edge_tag::DEREFINE } );
}
}
// Do error-based refinement
m_refiner.mark_error_refinement( tagged_edges );
// Update our extra-edge store based on refiner
updateEdgeData();
// Set number of extra edges to a nonzero number, triggering correction
m_extra = 1;
}
void
Refiner::edgelistRefine()
// *****************************************************************************
// Do mesh refinement based on user explicitly tagging edges
// *****************************************************************************
{
// Get user-defined node-pairs (edges) to tag for refinement
const auto& edgenodelist = g_inputdeck.get< tag::amr, tag::edge >();
if (!edgenodelist.empty()) { // if user explicitly tagged edges
// Find number of nodes in old mesh
auto npoin = tk::npoin_in_graph( m_inpoel );
// Generate edges surrounding points in old mesh
auto esup = tk::genEsup( m_inpoel, 4 );
auto psup = tk::genPsup( m_inpoel, 4, esup );
EdgeSet useredges;
for (std::size_t i=0; i<edgenodelist.size()/2; ++i)
useredges.insert( {{ {edgenodelist[i*2+0], edgenodelist[i*2+1]} }} );
using AMR::edge_t;
using AMR::edge_tag;
// Tag edges the user configured
std::vector< std::pair< edge_t, edge_tag > > tagged_edges;
for (std::size_t p=0; p<npoin; ++p) // for all mesh nodes on this chare
for (auto q : tk::Around(psup,p)) { // for all nodes surrounding p
Edge e{{ m_gid[p], m_gid[q] }};
auto f = useredges.find(e);
if (f != end(useredges)) { // tag edge if on user's list
tagged_edges.push_back( { edge_t( m_rid[p], m_rid[q] ),
edge_tag::REFINE } );
useredges.erase( f );
}
}
// Do error-based refinement
m_refiner.mark_error_refinement( tagged_edges );
// Update our extra-edge store based on refiner
updateEdgeData();
// Set number of extra edges to a nonzero number, triggering correction
m_extra = 1;
}
}
void
Refiner::coordRefine()
// *****************************************************************************
// Do mesh refinement based on tagging edges based on end-point coordinates
// *****************************************************************************
{
// Get user-defined half-world coordinates
auto xminus = g_inputdeck.get< tag::amr, tag::xminus >();
auto xplus = g_inputdeck.get< tag::amr, tag::xplus >();
auto yminus = g_inputdeck.get< tag::amr, tag::yminus >();
auto yplus = g_inputdeck.get< tag::amr, tag::yplus >();
auto zminus = g_inputdeck.get< tag::amr, tag::zminus >();
auto zplus = g_inputdeck.get< tag::amr, tag::zplus >();
// The default is the largest representable double
auto eps =
std::numeric_limits< kw::amr_xminus::info::expect::type >::epsilon();
auto xminus_default = g_inputdeck_defaults.get< tag::amr, tag::xminus >();
auto xplus_default = g_inputdeck_defaults.get< tag::amr, tag::xplus >();
auto yminus_default = g_inputdeck_defaults.get< tag::amr, tag::yminus >();
auto yplus_default = g_inputdeck_defaults.get< tag::amr, tag::yplus >();
auto zminus_default = g_inputdeck_defaults.get< tag::amr, tag::zminus >();
auto zplus_default = g_inputdeck_defaults.get< tag::amr, tag::zplus >();
// Decide if user has configured the half-world
bool xm = std::abs(xminus - xminus_default) > eps ? true : false;
bool xp = std::abs(xplus - xplus_default) > eps ? true : false;
bool ym = std::abs(yminus - yminus_default) > eps ? true : false;
bool yp = std::abs(yplus - yplus_default) > eps ? true : false;
bool zm = std::abs(zminus - zminus_default) > eps ? true : false;
bool zp = std::abs(zplus - zplus_default) > eps ? true : false;
using AMR::edge_t;
using AMR::edge_tag;
if (xm || xp || ym || yp || zm || zp) { // if any half-world configured
// Find number of nodes in old mesh
auto npoin = tk::npoin_in_graph( m_inpoel );
// Generate edges surrounding points in old mesh
auto esup = tk::genEsup( m_inpoel, 4 );
auto psup = tk::genPsup( m_inpoel, 4, esup );
// Get access to node coordinates
const auto& x = m_coord[0];
const auto& y = m_coord[1];
const auto& z = m_coord[2];
// Compute edges to be tagged for refinement
std::vector< std::pair< edge_t, edge_tag > > tagged_edges;
for (std::size_t p=0; p<npoin; ++p) // for all mesh nodes on this chare
for (auto q : tk::Around(psup,p)) { // for all nodes surrounding p
Edge e{{p,q}};
bool t = true;
if (xm) { if (x[p]>xminus && x[q]>xminus) t = false; }
if (xp) { if (x[p]<xplus && x[q]<xplus) t = false; }
if (ym) { if (y[p]>yminus && y[q]>yminus) t = false; }
if (yp) { if (y[p]<yplus && y[q]<yplus) t = false; }
if (zm) { if (z[p]>zminus && z[q]>zminus) t = false; }
if (zp) { if (z[p]<zplus && z[q]<zplus) t = false; }
if (t) {
tagged_edges.push_back( { edge_t( m_rid[e[0]], m_rid[e[1]] ),
edge_tag::REFINE } );
}
}
// Do error-based refinement
m_refiner.mark_error_refinement( tagged_edges );
// Update our extra-edge store based on refiner
updateEdgeData();
// Set number of extra edges to a nonzero number, triggering correction
m_extra = 1;
}
}
tk::Fields
Refiner::nodeinit( std::size_t npoin,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup ) const
// *****************************************************************************
// Evaluate initial conditions (IC) at mesh nodes
//! \param[in] npoin Number points in mesh (on this chare)
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Initial conditions (evaluated at t0) at nodes
// *****************************************************************************
{
auto t0 = g_inputdeck.get< tag::discr, tag::t0 >();
auto nprop = g_inputdeck.get< tag::component >().nprop();
// Will store nodal ICs
tk::Fields u( m_coord[0].size(), nprop );
// Evaluate ICs differently depending on nodal or cell-centered discretization
const auto scheme = g_inputdeck.get< tag::discr, tag::scheme >();
const auto centering = ctr::Scheme().centering( scheme );
// list of nodes/elements at which box ICs are defined
std::vector< std::unordered_set< std::size_t > > inbox;
tk::real V = 1.0;<--- The scope of the variable 'V' can be reduced. [+]The scope of the variable 'V' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
if (centering == tk::Centering::NODE) {
// Evaluate ICs for all scalar components integrated
for (auto& eq : g_cgpde) eq.initialize( m_coord, u, t0, V, inbox );
} else if (centering == tk::Centering::ELEM) {
auto esuel = tk::genEsuelTet( m_inpoel, esup ); // elems surrounding elements
// Initialize cell-based unknowns
tk::Fields ue( m_inpoel.size()/4, nprop );
auto lhs = ue;
auto geoElem = tk::genGeoElemTet( m_inpoel, m_coord );
for (const auto& eq : g_dgpde)
eq.lhs( geoElem, lhs );
for (const auto& eq : g_dgpde)
eq.initialize( lhs, m_inpoel, m_coord, inbox, ue, t0, esuel.size()/4 );
// Transfer initial conditions from cells to nodes
for (std::size_t p=0; p<npoin; ++p) { // for all mesh nodes on this chare
std::vector< tk::real > up( nprop, 0.0 );
tk::real vol = 0.0;
for (auto e : tk::Around(esup,p)) { // for all cells around node p
// compute nodal volume: every element contributes their volume / 4
vol += geoElem(e,0,0) / 4.0;
// sum cell value to node weighed by cell volume / 4
for (std::size_t c=0; c<nprop; ++c)
up[c] += ue[e][c] * geoElem(e,0,0) / 4.0;
}
// store nodal value
for (std::size_t c=0; c<nprop; ++c) u(p,c,0) = up[c] / vol;
}
} else Throw( "Scheme centring not handled for nodal initialization" );
Assert( u.nunk() == m_coord[0].size(), "Size mismatch" );
Assert( u.nprop() == nprop, "Size mismatch" );
return u;
}
void
Refiner::updateMesh()
// *****************************************************************************
// Update old mesh after refinement
// *****************************************************************************
{
// Get refined mesh connectivity
const auto& refinpoel = m_refiner.tet_store.get_active_inpoel();
Assert( refinpoel.size()%4 == 0, "Inconsistent refined mesh connectivity" );
// Generate unique node lists of old and refined mesh using local ids
auto rinpoel = m_inpoel;
tk::remap( rinpoel, m_rid );
std::unordered_set< std::size_t > old( begin(rinpoel), end(rinpoel) );
std::unordered_set< std::size_t > ref( begin(refinpoel), end(refinpoel) );
// Augment refiner id -> local node id map with newly added nodes
std::size_t l = m_lref.size();
for (auto r : ref) if (old.find(r) == end(old)) m_lref[r] = l++;
// Get nodal communication map from Discretization worker
if ( m_mode == RefMode::DTREF ||
m_mode == RefMode::OUTREF ||
m_mode == RefMode::OUTDEREF ) {
m_nodeCommMap =
m_scheme[m_meshid].disc()[thisIndex].ckLocal()->NodeCommMap();
}
// Update mesh and solution after refinement
newVolMesh( old, ref );
newBndMesh( ref );
// Update mesh connectivity from refiner lib, remapping refiner to local ids
m_inpoel = m_refiner.tet_store.get_active_inpoel();
tk::remap( m_inpoel, m_lref );
// Update mesh connectivity with new global node ids
m_ginpoel = m_inpoel;
Assert( tk::uniquecopy(m_ginpoel).size() == m_coord[0].size(),
"Size mismatch" );
tk::remap( m_ginpoel, m_gid );
// Ensure valid mesh after refinement
Assert( tk::positiveJacobians( m_inpoel, m_coord ),
"Refined mesh cell Jacobian non-positive" );
Assert( tk::conforming( m_inpoel, m_coord, true, m_rid ),
"Mesh not conforming after updating mesh after mesh refinement" );
// Perform leak test on new mesh
Assert( !tk::leakyPartition(
tk::genEsuelTet( m_inpoel, tk::genEsup(m_inpoel,4) ),
m_inpoel, m_coord ),
"Refined mesh partition leaky" );
}
void
Refiner::newVolMesh( const std::unordered_set< std::size_t >& old,
const std::unordered_set< std::size_t >& ref )
// *****************************************************************************
// Compute new volume mesh after mesh refinement
//! \param[in] old Unique nodes of the old (unrefined) mesh using local ids
//! \param[in] ref Unique nodes of the refined mesh using local ids
// *****************************************************************************
{
const auto& x = m_coord[0];
const auto& y = m_coord[1];
const auto& z = m_coord[2];
// Generate coordinates and ids to newly added nodes after refinement
std::unordered_map< std::size_t, std::size_t > gid_add;
tk::destroy( m_addedNodes );
tk::destroy( m_removedNodes );
for (auto r : ref) { // for all unique nodes of the refined mesh
if (old.find(r) == end(old)) { // if node is newly added
// get (local) parent ids of newly added node
auto p = m_refiner.node_connectivity.get( r );
Assert(p[0] != p[1], "Node without parent edge in newVolMesh");
Assert( old.find(p[0]) != end(old) && old.find(p[1]) != end(old),
"Parent(s) not in old mesh" );
Assert( r >= old.size(), "Attempting to overwrite node with added one" );
// local parent ids
decltype(p) lp{{tk::cref_find(m_lref,p[0]), tk::cref_find(m_lref,p[1])}};
// global parent ids
decltype(p) gp{{m_gid[lp[0]], m_gid[lp[1]]}};
// generate new global ID for newly added node
auto g = Hash<2>()( gp );
// if node added by AMR lib has not yet been added to Refiner's new mesh
if (m_coordmap.find(g) == end(m_coordmap)) {
Assert( g >= old.size(), "Hashed id overwriting old id" );
Assert( m_lid.find(g) == end(m_lid),
"Overwriting entry global->local node ID map" );
auto l = tk::cref_find( m_lref, r );
// store newly added node id and their parent ids (local ids)
m_addedNodes[r] = lp; // key = r for later update to local
// assign new node to refiner->global map
gid_add[r] = g; // key = r for later search
// assign new node to global->local map
m_lid[g] = l;
// generate and store coordinates for newly added node
m_coordmap.insert( {g, {{ (x[lp[0]] + x[lp[1]])/2.0,
(y[lp[0]] + y[lp[1]])/2.0,
(z[lp[0]] + z[lp[1]])/2.0 }} } );
}
}
}
tk::destroy( m_coord );
// Remove coordinates and ids of removed nodes due to derefinement
std::unordered_map< std::size_t, std::size_t > gid_rem;
for (auto o : old) { // for all unique nodes of the old mesh
if (ref.find(o) == end(ref)) { // if node is no longer in new mesh
auto l = tk::cref_find( m_lref, o );
auto g = m_gid[l];
// store global-id to local-id map of removed nodes
m_removedNodes.insert(l);
gid_rem[l] = g;
m_lid.erase( g );
m_coordmap.erase( g );
}
}
// Save previous states of refiner-local node id maps before update
m_oldrid = m_rid;
//m_oldlref = m_lref;
// Generate new node id maps for nodes kept
tk::destroy( m_lref );
std::vector< std::size_t > rid( ref.size() );
std::vector< std::size_t > gid( ref.size() );
std::size_t l = 0; // will generate new local node id
for (std::size_t i=0; i<m_gid.size(); ++i) {
if (gid_rem.find(i) == end(gid_rem)) {
gid[l] = m_gid[i];
rid[l] = m_rid[i];
m_lref[ m_rid[i] ] = l;
++l;
}
}
// Add newly added nodes due to refinement to node id maps
decltype(m_addedNodes) addedNodes( m_addedNodes.size() );<--- Variable 'addedNodes' is assigned a value that is never used.
for (const auto& n : gid_add) {
auto r = n.first;
auto g = n.second;
gid[l] = g;
rid[l] = r;<--- Variable 'rid[l]' is assigned a value that is never used.
Assert(m_lref.find(r) == m_lref.end(), "Overwriting lref");
m_lref[r] = l;
auto it = m_addedNodes.find( r );
Assert( it != end(m_addedNodes), "Cannot find added node" );
addedNodes[l] = std::move(it->second);
++l;
}
Assert( m_lref.size() == ref.size(), "Size mismatch" );
m_rid = std::move( rid );
Assert( m_rid.size() == ref.size(), "Size mismatch" );
m_addedNodes = std::move( addedNodes );
// Update node coordinates, ids, and id maps
auto& rx = m_coord[0];
auto& ry = m_coord[1];
auto& rz = m_coord[2];
rx.resize( ref.size() );
ry.resize( ref.size() );
rz.resize( ref.size() );
for (std::size_t i=0; i<gid.size(); ++i) {
tk::ref_find( m_lid, gid[i] ) = i;
const auto& c = tk::cref_find( m_coordmap, gid[i] );
rx[i] = c[0];
ry[i] = c[1];
rz[i] = c[2];
}
m_gid = std::move( gid );
Assert( m_gid.size() == m_lid.size() && m_gid.size() == ref.size(),
"Size mismatch" );
}
std::unordered_set< std::size_t >
Refiner::ancestors( std::size_t n )
// *****************************************************************************
// Find the oldest parents of a mesh node in the AMR hierarchy
//! \param[in] n Local node id whose ancestors to search
//! \return Parents of local node id from the coarsest (original) mesh
// *****************************************************************************
{
auto d = m_refiner.node_connectivity.get( m_rid[n] );
decltype(d) p{{ tk::cref_find( m_lref, d[0] ),
tk::cref_find( m_lref, d[1] ) }};
std::unordered_set< std::size_t > s;
if (p != AMR::node_pair_t{{n,n}}) {
auto q = ancestors( p[0] );
s.insert( begin(q), end(q) );
auto r = ancestors( p[1] );
s.insert( begin(r), end(r) );
} else {
s.insert( begin(p), end(p) );
}
return s;
}
Refiner::BndFaceData
Refiner::boundary()
// *****************************************************************************
// Generate boundary data structures used to update refined/derefined boundary
// faces and nodes of side sets
//! \return A tuple of boundary face data
//! \details The output of this function is used to regenerate physical boundary
//! face and node data structures after refinement, see updateBndFaces() and
//! updateBndNodes().
// *****************************************************************************
{
// Generate the inverse of AMR's tet store
std::unordered_map< Tet, std::size_t, Hash<4>, Eq<4> > invtets;
for (const auto& [key, tet] : m_refiner.tet_store.tets)
invtets[ tet ] = key;
//std::cout << thisIndex << " invt: " << invtets.size() << '\n';
//std::cout << thisIndex << " active inpoel size: " << m_refiner.tet_store.get_active_inpoel().size() << '\n';
//std::cout << thisIndex << " marked derefinement size: " << m_refiner.tet_store.marked_derefinements.size() << '\n';
// Generate data structure pcReFaceTets, that associates the id of a tet
// adjacent to a refined boundary triangle face for all (physical and chare)
// boundary faces in the old mesh (i.e., before the current
// refinement/derefinement step). Also generate data structure pcDeFaceTets,
// that associates the parent tetrahedron (given by four nodes) adjacent to a
// derefined boundary face for all (physical and chare) boundary faces in the
// old mesh (i.e., before the current refinement/derefinement step).
std::unordered_map< Face, std::size_t, Hash<3>, Eq<3> > pcReFaceTets;
std::unordered_map< Face, Tet, Hash<3>, Eq<3> > pcDeFaceTets;
auto oldesuel = tk::genEsuelTet( m_inpoel, tk::genEsup(m_inpoel,4) );
for (std::size_t e=0; e<oldesuel.size()/4; ++e) {
auto m = e*4;
for (std::size_t f=0; f<4; ++f) {
if (oldesuel[m+f] == -1) { // if a face does not have an adjacent tet
Face b{{ m_ginpoel[ m+tk::lpofa[f][0] ],
m_ginpoel[ m+tk::lpofa[f][1] ],
m_ginpoel[ m+tk::lpofa[f][2] ] }};
Assert( m_inpoel[m+0] < m_oldrid.size() &&
m_inpoel[m+1] < m_oldrid.size() &&
m_inpoel[m+2] < m_oldrid.size() &&
m_inpoel[m+3] < m_oldrid.size(), "Indexing out of rid" );
Tet t{{ m_oldrid[ m_inpoel[m+0] ], m_oldrid[ m_inpoel[m+1] ],
m_oldrid[ m_inpoel[m+2] ], m_oldrid[ m_inpoel[m+3] ] }};
//Tet t{{ m_inpoel[m+0], m_inpoel[m+1],
// m_inpoel[m+2], m_inpoel[m+3] }};
// associate tet id to adjacent (physical or chare) boundary face
auto i = invtets.find( t );
if (i != end(invtets)) {
pcReFaceTets[ b ] = i->second;
} else {
// find parent tet
auto p = tk::cref_find( m_parent, t );
// form all 4 faces of parent
//auto A = p[0];
//auto B = p[1];
//auto C = p[2];
//auto D = p[3];
auto A = tk::cref_find( m_lref, p[0] );
auto B = tk::cref_find( m_lref, p[1] );
auto C = tk::cref_find( m_lref, p[2] );
auto D = tk::cref_find( m_lref, p[3] );
// assign parent tet faces to derefined child's face
pcDeFaceTets[ b ] = {{ A, B, C, D }};
}
}
}
}
// Generate child->parent tet and id maps after refinement/derefinement step
tk::destroy( m_parent );
m_addedTets.clear();
std::size_t p = 0;
std::size_t c = 0;
const auto& tet_store = m_refiner.tet_store;
for (const auto& t : tet_store.tets) {
// query number of children of tet
auto nc = tet_store.data( t.first ).children.size();
for (decltype(nc) i=0; i<nc; ++i ) { // for all child tets
// get child tet id
auto childtet = tet_store.get_child_id( t.first, i );
auto ct = tet_store.tets.find( childtet );
//auto cA = tk::cref_find( m_lref, ct->second[0] );
//auto cB = tk::cref_find( m_lref, ct->second[1] );
//auto cC = tk::cref_find( m_lref, ct->second[2] );
//auto cD = tk::cref_find( m_lref, ct->second[3] );
// get nodes of parent tet
//auto pA = tk::cref_find( m_lref, t.second[0] );
//auto pB = tk::cref_find( m_lref, t.second[1] );
//auto pC = tk::cref_find( m_lref, t.second[2] );
//auto pD = tk::cref_find( m_lref, t.second[3] );
// assign parent tet to child tet
//m_parent[ {{cA,cB,cC,cD}} ] = {{pA,pB,pC,pD}};
m_parent[ ct->second ] = t.second; //{{pA,pB,pC,pD}};
if (m_oldTets.find(ct->second) == end(m_oldTets)) {
m_addedTets[ c++ ] = p - m_oldntets;
}
}
++p;
}
//std::cout << thisIndex << " added: " << m_addedTets.size() << '\n';
//std::cout << thisIndex << " parent: " << m_parent.size() << '\n';
//std::cout << thisIndex << " pcret: " << pcReFaceTets.size() << '\n';
//std::cout << thisIndex << " pcdet: " << pcDeFaceTets.size() << '\n';
// Generate unique set of faces for each side set
std::unordered_map< int, FaceSet > bndFaces;
for (const auto& [ setid, faceids ] : m_bface) {
auto& faces = bndFaces[ setid ];
for (auto f : faceids) {
faces.insert(
{{{ m_triinpoel[f*3+0], m_triinpoel[f*3+1], m_triinpoel[f*3+2] }}} );
}
}
return BndFaceData{ pcReFaceTets, pcDeFaceTets, bndFaces };
}
void
Refiner::newBndMesh( const std::unordered_set< std::size_t >& ref )
// *****************************************************************************
// Update boundary data structures after mesh refinement
//! \param[in] ref Unique nodes of the refined mesh using local ids
// *****************************************************************************
{
// Generate boundary face data structures used to regenerate boundary face
// and node data after mesh refinement
auto bnd = boundary();
// Regerate boundary faces and nodes after mesh refinement
updateBndFaces( ref, bnd );
updateBndNodes( ref, bnd );
}
void
Refiner::updateBndFaces(
[[maybe_unused]] const std::unordered_set< std::size_t >& ref,
const BndFaceData& bnd )
// *****************************************************************************
// Regenerate boundary faces after mesh refinement step
//! \param[in] ref Unique nodes of the refined mesh using local ids
//! \param[in] bnd Boundary face data bundle
// *****************************************************************************
{
// storage for boundary faces associated to side-set IDs of the refined mesh
tk::destroy( m_bface );
// storage for boundary faces-node connectivity of the refined mesh
tk::destroy( m_triinpoel );
// face id counter
std::size_t facecnt = 0;<--- The scope of the variable 'facecnt' can be reduced. [+]The scope of the variable 'facecnt' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
// will collect unique faces added for each side set
std::unordered_map< int, FaceSet > bf;
// Lambda to associate a boundary face and connectivity to a side set.
// Argument 's' is the list of faces (ids) to add the new face to. Argument
// 'ss' is the side set id to which the face is added. Argument 'f' is the
// triangle face connectivity to add.
auto addBndFace = [&]( std::vector< std::size_t >& s, int ss, const Face& f )
{
// only add face if it has not yet been aded to this side set
if (bf[ ss ].insert( f ).second) {
s.push_back( facecnt++ );
m_triinpoel.insert( end(m_triinpoel), begin(f), end(f) );
}
};
// Regenerate boundary faces for refined tets along side sets. For all
// refined faces associated to side sets, we find the ancestors (parents of
// nodes in the original/coarsest mesh) of the nodes comprising the faces of
// the tetrahedron adjacent to the refined face.
const auto& pcReFaceTets = std::get< 0 >( bnd );
const auto& bndFaces = std::get< 2 >( bnd );
const auto& tet_store = m_refiner.tet_store;
for (const auto& [ face, tetid ] : pcReFaceTets) {
// for all side sets of the face, match children's faces to side sets
for (const auto& ss : keys(bndFaces,face)) {
// will associate to side set id of old (unrefined) mesh boundary face
auto& faces = m_bface[ ss ];
const auto& coarsefaces = tk::cref_find( m_coarseBndFaces, ss );
// query number of children of boundary tet adjacent to boundary face
auto nc = tet_store.data( tetid ).children.size();
if (nc == 0) { // if boundary tet is not refined, add its boundary face
addBndFace( faces, ss, face );
} else { // if boundary tet is refined
const auto& tets = tet_store.tets;
for (decltype(nc) i=0; i<nc; ++i ) { // for all child tets
// get child tet id
auto childtet = tet_store.get_child_id( tetid, i );
auto ct = tets.find( childtet );
Assert( ct != end(tets), "Child tet not found" );
// ensure all nodes of child tet are in refined mesh
Assert( std::all_of( begin(ct->second), end(ct->second),
[&]( std::size_t n ){ return ref.find(n) != end(ref); } ),
"Boundary child tet node id not found in refined mesh" );
// get nodes of child tet
auto A = tk::cref_find( m_lref, ct->second[0] );
auto B = tk::cref_find( m_lref, ct->second[1] );
auto C = tk::cref_find( m_lref, ct->second[2] );
auto D = tk::cref_find( m_lref, ct->second[3] );
// form all 4 faces of child tet
std::array<Face,4> g{{{{A,C,B}}, {{A,B,D}}, {{A,D,C}}, {{B,C,D}}}};
// search all faces of child tet and match them to side sets of the
// original (coarsest) mesh
for (const auto& rf : g) { // for all faces of child tet
auto a = ancestors( rf[0] );
auto b = ancestors( rf[1] );
auto c = ancestors( rf[2] );
a.insert( begin(b), end(b) );
a.insert( begin(c), end(c) );
if (a.size() == 3) {
std::vector< std::size_t > p( begin(a), end(a) );
Face par{{ m_gid[p[0]], m_gid[p[1]], m_gid[p[2]] }};
auto it = coarsefaces.find( par );
if (it != end(coarsefaces))
addBndFace(faces,ss,{{m_gid[rf[0]],m_gid[rf[1]],m_gid[rf[2]]}});
}
}
}
}
}
}
// Regenerate boundary faces for derefined tets along side sets. For all
// derefined faces associated to side sets, we find the ancestors (parents of
// nodes in the original/coarsest mesh) of the nodes comprising the faces of
// the parent tetrahedron (previously) associated to the derefined face.
const auto& pcDeFaceTets = std::get< 1 >( bnd );
for (const auto& f : pcDeFaceTets) {
for (const auto& ss : keys(bndFaces,f.first)) {
// will associate to side set id of old (refined) mesh boundary face
auto& faces = m_bface[ ss ];
const auto& coarsefaces = tk::cref_find( m_coarseBndFaces, ss );
// form all 4 faces of parent tet
auto A = f.second[0];
auto B = f.second[1];
auto C = f.second[2];
auto D = f.second[3];
std::array<Face,4> parf{{ {{A,C,B}}, {{A,B,D}}, {{A,D,C}}, {{B,C,D}} }};
for (const auto& pf : parf) {
auto a = ancestors( pf[0] );
auto b = ancestors( pf[1] );
auto c = ancestors( pf[2] );
a.insert( begin(b), end(b) );
a.insert( begin(c), end(c) );
if (a.size() == 3) {
std::vector< std::size_t > p( begin(a), end(a) );
Face par{{ m_gid[p[0]], m_gid[p[1]], m_gid[p[2]] }};
auto it = coarsefaces.find( par );
if (it != end(coarsefaces))
addBndFace(faces,ss,{{m_gid[pf[0]],m_gid[pf[1]],m_gid[pf[2]]}});
}
}
}
}
//std::cout << thisIndex << " bf: " << tk::sumvalsize( m_bface ) << '\n';
// Perform leak-test on boundary face data just updated (only in DEBUG)
Assert( bndIntegral(), "Partial boundary integral" );
}
bool
Refiner::bndIntegral()
// *****************************************************************************
// Compute partial boundary surface integral and sum across all chares
//! \return true so we don't trigger assert in client code
//! \details This function computes a partial surface integral over the boundary
//! of the faces of this mesh partition then sends its contribution to perform
//! the integral acorss the total problem boundary. After the global sum a
//! non-zero vector result indicates a leak, e.g., a hole in the boundary
//! which indicates an error in the boundary face data structures used to
//! compute the partial surface integrals.
// *****************************************************************************
{
const auto& x = m_coord[0];
const auto& y = m_coord[1];
const auto& z = m_coord[2];
std::vector< tk::real > s{{ 0.0, 0.0, 0.0 }};
for (const auto& [ setid, faceids ] : m_bface) {
for (auto f : faceids) {
auto A = tk::cref_find( m_lid, m_triinpoel[f*3+0] );
auto B = tk::cref_find( m_lid, m_triinpoel[f*3+1] );
auto C = tk::cref_find( m_lid, m_triinpoel[f*3+2] );
// Compute geometry data for face
auto geoface = tk::geoFaceTri( {{x[A], x[B], x[C]}},
{{y[A], y[B], y[C]}},
{{z[A], z[B], z[C]}} );
// Sum up face area * face unit-normal
s[0] += geoface(0,0,0) * geoface(0,1,0);
s[1] += geoface(0,0,0) * geoface(0,2,0);
s[2] += geoface(0,0,0) * geoface(0,3,0);
}
}
s.push_back( -1.0 ); // negative: no call-back after reduction
s.push_back( static_cast< tk::real >( m_meshid ) );
// Send contribution to host summing partial surface integrals
contribute( s, CkReduction::sum_double, m_cbr.get< tag::bndint >() );
return true; // don't trigger the assert in client code
}
void
Refiner::updateBndNodes(
[[maybe_unused]] const std::unordered_set< std::size_t >& ref,
const BndFaceData& bnd )
// *****************************************************************************
// Update boundary nodes after mesh refinement
//! \param[in] ref Unique nodes of the refined mesh using local ids
//! \param[in] bnd Boundary face data bundle
// *****************************************************************************
{
// storage for boundary nodes associated to side-set IDs of the refined mesh
tk::destroy( m_bnode );
// Lambda to search the parents in the coarsest mesh of a mesh node and if
// found, add its global id to boundary node lists associated to the side
// set(s) of its parents. Argument 'n' is the local id of the mesh node id
// whose parents to search.
auto search = [&]( std::size_t n ){
auto a = ancestors( n ); // find parents of n in coarse mesh
if (a.size() == 1) {
// node was part of the coarse mesh
auto ss = keys( m_coarseBndNodes, m_gid[*a.cbegin()] );
for (auto s : ss)
m_bnode[ s ].push_back( m_gid[n] );
} else if (a.size() == 2) {
// node was added to an edge of a coarse face
std::vector< std::size_t > p( begin(a), end(a) );
auto ss1 = keys( m_coarseBndNodes, m_gid[p[0]] );
auto ss2 = keys( m_coarseBndNodes, m_gid[p[1]] );
for (auto s : ss1) {
if (ss2.find(s) != end(ss2)) {
m_bnode[ s ].push_back( m_gid[n] );
}
}
} else if (a.size() == 3) {
// node was added inside of a coarse face
std::vector< std::size_t > p( begin(a), end(a) );
auto ss1 = keys( m_coarseBndNodes, m_gid[p[0]] );
auto ss2 = keys( m_coarseBndNodes, m_gid[p[1]] );
auto ss3 = keys( m_coarseBndNodes, m_gid[p[2]] );
for (auto s : ss1) {
if (ss2.find(s) != end(ss2) && ss3.find(s) != end(ss3)) {
m_bnode[ s ].push_back( m_gid[n] );
}
}
}
};
const auto& pcReFaceTets = std::get< 0 >( bnd );
// Regenerate boundary node lists for refined tets along side sets. For all
// refined faces associated to side sets, we find the ancestors (parents of
// nodes in the original/coarsest mesh) of the nodes comprising the nodes of
// the tetrahedron adjacent to the refined face.
const auto& tet_store = m_refiner.tet_store;
for (const auto& [ face, tetid ] : pcReFaceTets) {
// query number of children of boundary tet adjacent to boundary face
auto nc = tet_store.data( tetid ).children.size();
if (nc == 0) {
// if boundary tet is not refined, add its boundary nodes to the side
// set(s) of their parent (in coarse mesh) nodes
auto t = face;
for (auto& n : t) n = tk::cref_find( m_lid, n );<--- Consider using std::transform algorithm instead of a raw loop.
addBndNodes( t, search );
} else { // if boundary tet is refined
const auto& tets = tet_store.tets;
for (decltype(nc) i=0; i<nc; ++i ) { // for all child tets
// get child tet id
auto childtet = tet_store.get_child_id( tetid, i );
auto ct = tets.find( childtet );
Assert( ct != end(tets), "Child tet not found" );
// ensure all nodes of child tet are in refined mesh
Assert( std::all_of( begin(ct->second), end(ct->second),
[&]( std::size_t n ){ return ref.find(n) != end(ref); } ),
"Boundary child tet node id not found in refined mesh" );
// search each child tet of refined boundary tet and add their boundary
// nodes to the side set(s) of their parent (in coarse mesh) nodes
auto A = tk::cref_find( m_lref, ct->second[0] );
auto B = tk::cref_find( m_lref, ct->second[1] );
auto C = tk::cref_find( m_lref, ct->second[2] );
auto D = tk::cref_find( m_lref, ct->second[3] );
addBndNodes( Tet{{A,B,C,D}}, search );
}
}
}
const auto& pcDeFaceTets = std::get< 1 >( bnd );
// Regenerate boundary node lists for derefined tets along side sets. For all
// refined faces associated to side sets, we find the ancestors (parents of
// nodes in the original/coarsest mesh) of the nodes comprising the nodes of
// the parent tetrahedron (previously) associated to the derefined face.
for (const auto& f : pcDeFaceTets) addBndNodes( f.second, search );
// Make boundary node IDs unique for each physical boundary (side set)
for (auto& s : m_bnode) tk::unique( s.second );
//std::cout << thisIndex << " bn: " << tk::sumvalsize( m_bnode ) << '\n';
}
#include "NoWarning/refiner.def.h"
|