1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
#include "mesh_adapter.hpp"

#include <assert.h>                        // for assert
#include <cstddef>                         // for size_t
#include <iostream>                        // for operator<<, endl, basic_os...
#include <set>                             // for set
#include <utility>                         // for pair
#include "AMR/AMR_types.hpp"                 // for Edge_Refinement, edge_list_t
#include "AMR/Loggers.hpp"                   // for trace_out
#include "AMR/Refinement_State.hpp"          // for Refinement_Case, Refinemen...
#include "AMR/edge.hpp"                      // for operator<<, edge_t
#include "AMR/edge_store.hpp"                // for edge_store_t
#include "AMR/marked_refinements_store.hpp"  // for marked_refinements_store_t
#include "AMR/node_connectivity.hpp"         // for node_connectivity_t
#include "AMR/refinement.hpp"                // for refinement_t
#include "AMR/tet_store.hpp"                 // for tet_store_t

#if defined(__clang__)
  #pragma clang diagnostic push
  #pragma clang diagnostic ignored "-Wunreachable-code"
  #pragma clang diagnostic ignored "-Wdocumentation"
#endif

namespace AMR {


#ifdef ENABLE_NODE_STORE
    /**
     * @brief This accepts external coord arrays and allows the node_store to
     * track the new node positions as they are added
     *
     * @param m_x X coodinates
     * @param m_y Y coodinates
     * @param m_z Z coodinates
     * @param graph_size Total number of nodes
     */
    // TODO: remove graph size and use m.size()
    // TODO: remove these pointers
    //void mesh_adapter_t::init_node_store(coord_type* m_x, coord_type* m_y, coord_type* m_z)
    //{
    //    assert( m_x->size() == m_y->size() );
    //    assert( m_x->size() == m_z->size() );

    //    node_store.set_x(*m_x);
    //    node_store.set_y(*m_y);
    //    node_store.set_z(*m_z);
    //}
#endif

    std::pair< bool, std::size_t > mesh_adapter_t::check_same_face(
      std::size_t tet_id,
      const std::unordered_set<std::size_t>& inactive_nodes)
    {
       edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);

       Assert(inactive_nodes.size()==3 || inactive_nodes.size()==2,
         "Incorrectly sized inactive nodes set");

       // for a tet ABCD, the keys (edges) are ordered
       // A-B, A-C, A-D, B-C, B-D, C-D
       // 0-1, 0-2, 0-3, 1-2, 1-3, 2-3

       std::array< std::array< std::size_t, 3 >, 4 >
         edges_on_face;

       // A-B-C
       edges_on_face[0][0] =
         tk::cref_find(node_connectivity.data(),edge_list[0].get_data());
       edges_on_face[0][1] =
         tk::cref_find(node_connectivity.data(),edge_list[1].get_data());
       edges_on_face[0][2] =
         tk::cref_find(node_connectivity.data(),edge_list[3].get_data());

       // A-B-D
       edges_on_face[1][0] =
         tk::cref_find(node_connectivity.data(),edge_list[0].get_data());
       edges_on_face[1][1] =
         tk::cref_find(node_connectivity.data(),edge_list[2].get_data());
       edges_on_face[1][2] =
         tk::cref_find(node_connectivity.data(),edge_list[4].get_data());

       // B-C-D
       edges_on_face[2][0] =
         tk::cref_find(node_connectivity.data(),edge_list[3].get_data());
       edges_on_face[2][1] =
         tk::cref_find(node_connectivity.data(),edge_list[4].get_data());
       edges_on_face[2][2] =
         tk::cref_find(node_connectivity.data(),edge_list[5].get_data());

       // A-C-D
       edges_on_face[3][0] =
         tk::cref_find(node_connectivity.data(),edge_list[1].get_data());
       edges_on_face[3][1] =
         tk::cref_find(node_connectivity.data(),edge_list[2].get_data());
       edges_on_face[3][2] =
         tk::cref_find(node_connectivity.data(),edge_list[5].get_data());

       //Iterate over edges to determine if inactive_nodes are all part of a face
       bool same_face(false);
       [[maybe_unused]] bool tnode_set(false);
       std::size_t third_node = 0;
       for(const auto& face : edges_on_face)
       {
         std::size_t icount = 0;
         for (const auto& np_node : face) {
           if (inactive_nodes.count(np_node)) ++icount;
         }
         if (inactive_nodes.size() == icount) {
           same_face = true;
           // if the two inactive_nodes being checked are on the same parent
           // face, determine the third node on that face
           if (inactive_nodes.size() == 2) {
             for (auto fn:face) {
               if (inactive_nodes.count(fn) == 0) {
                 third_node = fn;
                 tnode_set = true;
                 break;
               }
             }
           }
         }
       }

       if (same_face && inactive_nodes.size() == 2)
         Assert(tnode_set, "Third node on face not set in derefine");

       return {same_face, third_node};
    }

    /** @brief Consume an existing mesh, and turn it into the AMRs
     * representations of tets and nodes
     *
     * @param tetinpoel Vector of nodes grouped together in blocks of 4 to
     * represent tets
     */
    void mesh_adapter_t::consume_tets(const std::vector< std::size_t >& tetinpoel )
    {
        for (size_t i = 0; i < tetinpoel.size(); i+=4)
        {
            tet_t t = {
                {
                    tetinpoel[i],
                    tetinpoel[i+1],
                    tetinpoel[i+2],
                    tetinpoel[i+3]
                }
            };

            trace_out << "Consume tet " << i << std::endl;
            tet_store.add(t, AMR::Refinement_Case::initial_grid);
        }
    }

    /**
     * @brief Place holder function to evaluate error estimate at
     * nodes, and therefor mark things as needing to be refined
     */
    //void mesh_adapter_t::evaluate_error_estimate() {
    //    for (auto& kv : tet_store.edge_store.edges)
    //    {
    //        // Mark them as needing refinement
    //        if (kv.second.refinement_criteria > refinement_cut_off)
    //        {
    //            kv.second.needs_refining = 1;
    //        }
    //        else
    //        {
    //            // TODO: Check this won't be overwriting valuable
    //            // information from last iteration
    //            kv.second.needs_refining = 0;
    //        }
    //    }
    //}

    /**
     * @brief Helper function to apply uniform refinement to all tets
     */
    void mesh_adapter_t::mark_uniform_refinement()
    {
        for (auto& kv : tet_store.edge_store.edges) {
           auto& local = kv.second;
           if (local.lock_case == Edge_Lock_Case::unlocked)
             local.needs_refining = 1;
        }
        mark_refinement();
    }

    /**
     * @brief Helper function to apply uniform derefinement to all tets
     */
    void mesh_adapter_t::mark_uniform_derefinement()
    {
      const auto& inp = tet_store.get_active_inpoel();
      auto& edge_store = tet_store.edge_store;
      for (std::size_t t=0; t<inp.size()/4; ++t) {
        const auto edges =
          edge_store.generate_keys(
            {inp[t*4+0], inp[t*4+1], inp[t*4+2], inp[t*4+3]});
        for (const auto& tetedge : edges) {
          auto e = edge_store.edges.find(tetedge);
          if (e != end(edge_store.edges)) {
            auto& local = e->second;
            //if (local.lock_case == Edge_Lock_Case::unlocked) {
              local.needs_derefining = 1;
            //  trace_out << "edge marked for deref: " << local.A << " - "
            //    << local.B << std::endl;
            //}
          }
        }
      }
      mark_derefinement();
    }

    /**
     * @brief For a given set of edges, set their refinement criteria for
     * refinement
     *
     * @param remote Vector of edges and edge tags
     */
    void mesh_adapter_t::mark_error_refinement(
            const std::vector< std::pair< edge_t, edge_tag > >& remote )
    {
       for (const auto& r : remote) {
         auto& local = tet_store.edge_store.get( r.first );
         if (r.second == edge_tag::REFINE) {
           if (local.lock_case > Edge_Lock_Case::unlocked) {
             local.needs_refining = 0;
           } else {
             local.needs_refining = 1;
             // an edge deemed to be 'needing refinement', cannot be derefined
             local.needs_derefining = 0;
           }
         } else if (r.second == edge_tag::DEREFINE) {
           if (local.lock_case > Edge_Lock_Case::unlocked) {
             local.needs_derefining = 0;
           } else {
             local.needs_derefining = 1;
           }
         }
       }

       mark_refinement();
       mark_derefinement();
    }

   void mesh_adapter_t::mark_error_refinement_corr( const EdgeData& edges )
    {
       for (const auto& r : edges)
       {
           auto& edgeref = tet_store.edge_store.get( edge_t(r.first) );
           edgeref.needs_refining = r.second.first;
           assert(edgeref.lock_case <= r.second.second);
           edgeref.lock_case = r.second.second;
       }
       mark_refinement();
    }

    /**
     * @brief Function to detect the compatibility class (1,
     * 2, or 3) based on the number of locked edges and the existence
     * of intermediate edges
     *
     * @param num_locked_edges The number of locked edges
     * @param num_intermediate_edges The number of intermediate edges
     * @param refinement_case The refinement case of the tet
     * @param normal TODO: Document this!
     *
     * @return The compatibili4y class of the current scenario
     */
    int mesh_adapter_t::detect_compatibility(
            int num_locked_edges,
            int num_intermediate_edges,
            AMR::Refinement_Case refinement_case,
            int normal
    )
    {
        int compatibility = 0;
        num_locked_edges += num_intermediate_edges;

        /*
        // Split this into three categories
        // 1. Normal elements without locked edges. => 1
        //if (normal) {

            // 3. Intermediate elements with at least one edge marked for refinement => 3
            if (num_intermediate_edges > 0)
            {
                compatibility = 3;
            }
            else if (num_locked_edges == 0) {
                compatibility = 1;
            }
        // 2. Normal elements with locked edges. => 2
            else {
                compatibility = 2;
            }
        //}
        */

        //else {
            //if (num_intermediate_edges > 0) { compatibility = 3; }
        //}



        // Only 1:2 and 1:4 are intermediates and eligible for class3 // NOT TRUE!
        /*
        if (num_intermediate_edges > 0)
        {
            if (!normal) {
                trace_out << " not normal 3 " << std::endl;
                compatibility = 3;
            }
            else { // Attempt to allow for "normal" 1:4 and 1:8
                compatibility = 2;
                trace_out << " normal 3 " << std::endl;
            }

        }
        else {
            if (num_locked_edges == 0) {
                trace_out << " no lock 1 " << std::endl;
                compatibility = 1;
            }
            else {
                trace_out << " lock 2 " << std::endl;
                compatibility = 2;
            }
        }
        */


        // Old implementation
        // Only 1:2 and 1:4 are intermediates and eligible for class3 // NOT TRUE!
        if (
                (refinement_case == AMR::Refinement_Case::one_to_two) or
                (refinement_case == AMR::Refinement_Case::one_to_four)
           )
        {
            if (!normal) {
                trace_out << " not normal 3 " << std::endl;
                compatibility = 3;
            }
            else { // Attempt to allow for "normal" 1:4 and 1:8
                compatibility = 2;
                trace_out << " normal 3 " << std::endl;
            }

        }
        else {
            if (num_locked_edges == 0) {
                trace_out << " no lock 1 " << std::endl;
                compatibility = 1;
            }
            else {
                trace_out << " lock 2 " << std::endl;
                compatibility = 2;
            }
        }

        assert(compatibility > 0);
        assert(compatibility < 4);
        return compatibility;
    }

    /**
     * @brief Function which implements the main refinement algorithm from
     * the paper Iterating over the cells, deciding which refinement and
     * compatibility types are appropriate etc
     */
    void mesh_adapter_t::mark_refinement() {

#ifndef AMR_MAX_ROUNDS
        // Paper says the average actual num rounds will be 5-15
#define AMR_MAX_ROUNDS 50
#endif
        const size_t max_num_rounds = AMR_MAX_ROUNDS;

        // Mark refinements
        size_t iter;
        //Iterate until convergence
        for (iter = 0; iter < max_num_rounds; iter++)
        {

            tet_store.marked_refinements.get_state_changed() = false;

            // Loop over Tets.
            for (const auto& kv : tet_store.tets)
            {
                size_t tet_id = kv.first;

                trace_out << "Process tet " << tet_id << std::endl;

                // Only apply checks to tets on the active list
                if (tet_store.is_active(tet_id)) {
                    int num_locked_edges = 0;
                    int num_intermediate_edges = 0;

                    // Loop over nodes and count the number which need refining
                    int num_to_refine = 0;

                    // This is useful for later inspection
                    edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);

                    //Iterate over edges
                    for(auto & key : edge_list)
                    {

                        trace_out << "Edge " << key << std::endl;

                        //Count locked edges and edges in need of
                        // refinement
                        // Count Locked Edges
                        if(tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::locked)
                        {
                            trace_out << "Found locked edge " << key << std::endl;
                            trace_out << "Locked :" << tet_store.edge_store.get(key).lock_case << std::endl;
                            num_locked_edges++;
                        }
                        else if(tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::intermediate)
                        {
                            trace_out << "Found intermediate edge " << key << std::endl;
                            num_intermediate_edges++;
                        }
                        else
                        {
                            // Count edges which need refining
                            //  We check in here as we won't refine a
                            //  locked edge and will thus ignore it
                            if (tet_store.edge_store.get(key).needs_refining == 1)
                            {
                                num_to_refine++;
                                trace_out << "key needs ref " << key << std::endl;
                            }
                        }
                    }

                    // TODO: Should this be a reference?
                    AMR::Refinement_Case refinement_case = tet_store.get_refinement_case(tet_id);
                    int normal = tet_store.is_normal(tet_id);

                    trace_out << "Checking " << tet_id <<
                        " ref case " << refinement_case <<
                        " num ref " << num_to_refine <<
                        " normal " << normal <<
                        std::endl;



                    //If we have any tets to refine
                    if (num_to_refine > 0)
                    {
                        //Determine compatibility case

                        int compatibility = detect_compatibility(num_locked_edges,
                                num_intermediate_edges, refinement_case, normal);

                        trace_out << "Compat " << compatibility << std::endl;

                        // Now check num_to_refine against situations
                        if (compatibility == 1)
                        {
                            refinement_class_one(num_to_refine, tet_id);
                        }
                        else if (compatibility == 2)
                        {
                            refinement_class_two(edge_list, tet_id);
                        }
                        else if (compatibility == 3)
                        {
                            refinement_class_three(tet_id);
                        }

                        /*
                        // Write temp mesh out
                        std::string temp_file =  "temp." +
                        std::to_string(iter) + "." +
                        std::to_string(tet_id) + ".exo";

                        std::cout << "Writing " << temp_file << std::endl;
                        Adaptive_UnsMesh outmesh(
                        get_active_inpoel(), x(), y(), z()
                        );
                        tk::ExodusIIMeshWriter( temp_file, tk::ExoWriter::CREATE ).
                        writeMesh(outmesh);
                        */

                    } // if num_to_refine
                    else {
                        // If we got here, we don't want to refine this guy
                        tet_store.marked_refinements.add(tet_id, AMR::Refinement_Case::none);
                    }
                } // if active
                else {
                    trace_out << "Inactive" << std::endl;
                }
            } // For

            // If nothing changed during that round, break
            if (!tet_store.marked_refinements.get_state_changed())
            {
                trace_out << "Terminating loop at iter " << iter << std::endl;
                break;
            }
            trace_out << "End iter " << iter << std::endl;
        }
        trace_out << "Loop took " << iter << " rounds." << std::endl;

        //std::cout << "Print Tets" << std::endl;
        //print_tets();
    }

    /**
     * @brief Helper function to print tet information when needed
     */
    void mesh_adapter_t::print_tets() {
        tet_store.print_tets();
    }

    /**
     * @brief Function to call refinement after each tet has had it's
     * refinement case marked and calculated
     */
    void mesh_adapter_t::perform_refinement()
    {
        // Track tets which need to be deleted this iteration
        std::set<size_t> round_two;

        trace_out << "Perform ref" << std::endl;

        // Do refinements
        for (const auto& kv : tet_store.tets)
        {
            size_t tet_id = kv.first;

            trace_out << "Do refine of " << tet_id << std::endl;
            if (tet_store.has_refinement_decision(tet_id))
            {
                switch(tet_store.marked_refinements.get(tet_id))
                {
                    case AMR::Refinement_Case::one_to_two:
                        refiner.refine_one_to_two(tet_store,node_connectivity,tet_id);
                        break;
                    case AMR::Refinement_Case::one_to_four:
                        refiner.refine_one_to_four(tet_store,node_connectivity,tet_id);
                        break;
                    case AMR::Refinement_Case::one_to_eight:
                        refiner.refine_one_to_eight(tet_store,node_connectivity,tet_id);
                        break;
                    case AMR::Refinement_Case::two_to_eight:
                        round_two.insert( tet_store.get_parent_id(tet_id) );
                        //std::cout << "2->8\n";
                        break;
                    case AMR::Refinement_Case::four_to_eight:
                        round_two.insert( tet_store.get_parent_id(tet_id));
                        //std::cout << "4->8\n";
                        break;
                    case AMR::Refinement_Case::initial_grid:
                        // Do nothing
                    case AMR::Refinement_Case::none:
                        // Do nothing
                        break;
                        // No need for default as enum is explicitly covered
                }
                // Mark tet as not needing refinement
                tet_store.marked_refinements.erase(tet_id);
            }
        }

        trace_out << "round_two size " << round_two.size() << std::endl;
        for (const auto i : round_two)
        {
            trace_out << "round two i " << i << std::endl;

            // Cache children as we're about to change this data
            auto former_children = tet_store.data(i).children;

            AMR::Refinement_State& element = tet_store.data(i);

            if (element.children.size() == 2)
            {
                trace_out << "perform 2:8" << std::endl;
                refiner.derefine_two_to_one(tet_store,node_connectivity,i);
            }
            else if (element.children.size() == 4)
            {
                trace_out << "perform 4:8" << std::endl;
                refiner.derefine_four_to_one(tet_store,node_connectivity,i);
            }
            else {
                std::cout << "num children " << element.children.size() << std::endl;
                assert(0);
            }
            // remove tets and edges marked for deletion above
            refiner.delete_intermediates_of_children(tet_store);
            tet_store.process_delete_list();

            refiner.refine_one_to_eight(tet_store,node_connectivity,i);

            // Grab children after it has been updated
            auto current_children = tet_store.data(i).children;

            // I want to set the children stored in *my* own children, to be
            // the value of my new children....
            //refiner.overwrite_children(tet_store, former_children, current_children);

            tet_store.unset_marked_children(i); // FIXME: This will not work well in parallel
            element.refinement_case = AMR::Refinement_Case::one_to_eight;
        }

        // Clean up dead edges
        // clean_up_dead_edges(); // Nothing get's marked as "dead" atm?

        //std::cout << "Total Edges : " << tet_store.edge_store.size() << std::endl;
        //std::cout << "Total Tets : " << tet_store.size() << std::endl;
        //std::cout << "Total Nodes : " << m_x.size() << std::endl;

        trace_out << "Done ref" << std::endl;
        node_connectivity.print();
        node_connectivity.print();
        tet_store.print_node_types();
        tet_store.print_tets();
        //node_connectivity.print();

        //reset_intermediate_edges();
        remove_edge_locks(1);
        remove_normals();

        lock_intermediates();

        for (auto& kv : tet_store.edge_store.edges) {
           auto& local = kv.second;
           local.needs_refining = 0;
        }
    }

    void mesh_adapter_t::lock_intermediates()
    {
        /*
        for (auto k : tet_store.intermediate_list)
        {
            refiner.lock_edges_from_node(tet_store,k, Edge_Lock_Case::intermediate);
        }
        */
        // TODO: Passing tet_store twice probably isn't the best
        refiner.lock_intermediates(tet_store, tet_store.intermediate_list, Edge_Lock_Case::intermediate);
    }

    /**
     * @brief A method implementing "Algorithm 1" from the paper
     *
     * @param num_to_refine Number of edges to refine
     * @param tet_id The id of the given tet
     */
    void mesh_adapter_t::refinement_class_one(int num_to_refine, size_t tet_id)
    {
        trace_out << "Refinement Class One" << std::endl;

        // "If nrefine = 1
        // Accept as a 1:2 refinement"
        if (num_to_refine == 1)
        {
            tet_store.mark_one_to_two(tet_id);
        }

        // "Else if nrefine = 2 OR nrefine = 3"
        else if (num_to_refine > 1 && num_to_refine < 4)
        {

            // We need to detect if the edges which need to refine are
            // on the same face
            // and if so which face so we know how to 1:4

            face_list_t face_list = tet_store.generate_face_lists(tet_id);
            bool edges_on_same_face = false;
            size_t face_refine_id = 0;

            // Iterate over each face
            for (size_t face = 0; face < NUM_TET_FACES; face++)
            {
                int num_face_refine_edges = 0;
                face_ids_t face_ids = face_list[face];

                trace_out << "Face is " <<
                    face_ids[0] << ", " <<
                    face_ids[1] << ", " <<
                    face_ids[2] << ", " <<
                    std::endl;

                edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
                // For this face list, see which ones need refining
                for (size_t k = 0; k < NUM_FACE_NODES; k++)
                {
                    edge_t key = face_edge_list[k];
                    if (tet_store.edge_store.get(key).needs_refining == 1)
                    {
                        num_face_refine_edges++;
                    }
                }
                if (num_face_refine_edges == num_to_refine)
                {
                    edges_on_same_face = true;
                    face_refine_id = face;
                    trace_out << "Breaking with face value " << face << std::endl;
                    break;
                }
            }

            // "If active edges are on the same face
            // Activate any inactive edges of the face
            // Accept as a 1:4 // refinement"
            if (edges_on_same_face)
            {
                size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list,
                        face_refine_id);

                tet_t tet = tet_store.get(tet_id);
                size_t opposite_id = tet[opposite_offset];

                trace_out << "face_refine_id " << face_refine_id << std::endl;
                trace_out << "opposite_offset " << opposite_offset << std::endl;
                trace_out << "opposite_id " << opposite_id << std::endl;

                // Activate edges on this face
                edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_list[face_refine_id]);

                for (size_t k = 0; k < NUM_FACE_NODES; k++)
                {
                    edge_t key = face_edge_list[k];
                    tet_store.edge_store.mark_for_refinement(key);
                }

                //refiner.refine_one_to_four(tet_id, face_list[face_refine_id],
                //opposite_id);
                tet_store.mark_one_to_four(tet_id);
            }
            // "Else if active edges are not on the same face
            // Activate all edges
            // Accept as a 1:8 refinement"
            else {
                //refiner.refine_one_to_eight(tet_id);
                tet_store.mark_edges_for_refinement(tet_id);
                tet_store.mark_one_to_eight(tet_id);
            }

        }

        // "Else if nrefine > 3
        // Activate any inactive edges
        // Accept as a 1:8 refinement"
        else if (num_to_refine > 3)
        {
            //refiner.refine_one_to_eight(tet_id);
            tet_store.mark_edges_for_refinement(tet_id);
            tet_store.mark_one_to_eight(tet_id);
        }
    }

    // TODO: Document this
    void mesh_adapter_t::lock_tet_edges(size_t tet_id) {
        edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];
            if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
            {
                trace_out << "LOCKING! " << key << std::endl;
                tet_store.edge_store.get(key).lock_case = AMR::Edge_Lock_Case::locked;
            }
        }
    }

    // TODO: Document this
    // TODO: This has too similar a name to deactivate_tet
    void mesh_adapter_t::deactivate_tet_edges(size_t tet_id) {
        edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];

            tet_store.edge_store.unmark_for_refinement(key);
            trace_out << "Deactivating " << key << std::endl;
            tet_store.edge_store.get(key).needs_derefining = false;
        }
    }

    /**
     * @brief Unmarks edges of given tet for derefinement only
     *
     * @param tet_id The id of the given tet
     */
    void mesh_adapter_t::deactivate_deref_tet_edges(size_t tet_id) {
        edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];

            trace_out << "Deactivating " << key << std::endl;
            tet_store.edge_store.get(key).needs_derefining = false;
        }
    }

    /**
     * @brief An implementation of "Algorithm 2" from the paper
     *
     * @param edge_list The list of edges for the given tet
     * @param tet_id The id of the given tet
     */
    void mesh_adapter_t::refinement_class_two(edge_list_t edge_list, size_t tet_id)
    {
        trace_out << "Refinement Class Two" << std::endl;


        // "Deactivate all locked edges"

        // count number of active edges
        int num_active_edges = 0;
        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];
            if (tet_store.edge_store.get(key).lock_case != AMR::Edge_Lock_Case::unlocked)
            {
                tet_store.edge_store.unmark_for_refinement(key);
            }
            // "Count number of active edges"
            if (tet_store.edge_store.get(key).needs_refining == 1) {
                num_active_edges++;
            }
        }

        // Find out of two active edges live on the same face
        bool face_refine = false;
        size_t face_refine_id = 0; // FIXME: Does this need a better default
        face_list_t face_list = tet_store.generate_face_lists(tet_id);

        // Iterate over each face
        for (size_t face = 0; face < NUM_TET_FACES; face++)
        {
            trace_out << "face " << face << std::endl;
            int num_face_refine_edges = 0;
            int num_face_locked_edges = 0;

            face_ids_t face_ids = face_list[face];
            edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
            // For this face list, see which ones need refining
            for (size_t k = 0; k < NUM_FACE_NODES; k++)
            {
                edge_t key = face_edge_list[k];
                trace_out << "Checking " << key << std::endl;
                if (tet_store.edge_store.get(key).needs_refining == 1)
                {
                    num_face_refine_edges++;
                    trace_out << "ref! " << key << std::endl;
                }

                // Check for locked edges
                // This case only cares about faces with no locks
                if (tet_store.edge_store.get(key).lock_case != AMR::Edge_Lock_Case::unlocked)
                {
                    num_face_locked_edges++;
                    trace_out << "locked! " << key << std::endl;
                }
            }


            // Decide if we want to process this face
            if (num_face_refine_edges >= 2 && num_face_locked_edges == 0)
            {
                // We can refine this face
                face_refine = true;
                face_refine_id = face;
                break;
            }
        }

        // "If nrefine = 1
        // Accept as 1:2 refinement"
        // TODO: can we hoist this higher
        if (num_active_edges == 1)
        {
            //node_pair_t nodes = find_single_refinement_nodes(edge_list);
            //refine_one_to_two( tet_id, nodes[0], nodes[1]);
            tet_store.mark_one_to_two(tet_id);
        }
        // "Else if any face has nrefine >= 2 AND no locked edges
        // Active any inactive edges of the face
        // Accept as a 1:4 refinement"
        else if (face_refine)
        {
            size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);

            tet_t tet = tet_store.get(tet_id);
            size_t opposite_id = tet[opposite_offset];

            trace_out << "Tet ID " << tet_id << std::endl;
            trace_out << "Opposite offset " << opposite_offset << std::endl;
            trace_out << "Opposite id " << opposite_id << std::endl;
            trace_out << "Face refine id " << face_refine_id << std::endl;

            edge_list_t face_edge_list =
                AMR::edge_store_t::generate_keys_from_face_ids(face_list[face_refine_id]);

            for (size_t k = 0; k < NUM_FACE_NODES; k++)
            {
                edge_t key = face_edge_list[k];
                tet_store.edge_store.mark_for_refinement(key);
            }

            //refiner.refine_one_to_four(tet_id, face_list[face_refine_id], opposite_id);
            tet_store.mark_one_to_four(tet_id);
        }

        // "Else
        // Deactivate all edges
        // Mark all edges as locked"
        else {
            trace_out << "Class 2 causes some locking.." << std::endl;
            deactivate_tet_edges(tet_id);
            lock_tet_edges(tet_id);
        }

    }

    /**
     * @brief Based on a tet_id, decide if it's current state of locked
     * and marked edges maps to a valid refinement case. The logic for
     * this was derived from talking to JW and reading Chicoma.
     *
     * It basically just checks if something a 1:2 and has 3
     * intermediates and 3 makred edges, or is a 1:4 and has 5/6
     * intermediates
     *
     * @param child_id the id of the tet to check
     *
     * @return A bool saying if the tet is in a valid state to be refined
     */
    bool mesh_adapter_t::check_valid_refinement_case(size_t child_id) {

        trace_out << "check valid ref " << child_id << std::endl;
        edge_list_t edge_list = tet_store.generate_edge_keys(child_id);

        size_t num_to_refine = 0;
        size_t num_intermediate = 0;
        size_t unlocked = 0;
        size_t locked = 0;

        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];
            trace_out << "Key " << key << std::endl;

            // Count intermediate edges
            if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::intermediate)
            {
                trace_out << "found intermediate" << std::endl;
                num_intermediate++;
            }

            // Count number of marked for refinement
            if (tet_store.edge_store.get(key).needs_refining == 1)
            {
                trace_out << "found refine" << std::endl;
                num_to_refine++;
            }

            if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
            {
                trace_out << "found unlocked" << std::endl;
                unlocked++;
            }

            if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::locked)
            {
                trace_out << "found locked" << std::endl;
                locked++;
            }

        }

        AMR::Refinement_State& element = tet_store.data(child_id);<--- Variable 'element' can be declared with const

        trace_out <<
            "Intermediates " << num_intermediate <<
            " num to refine " << num_to_refine <<
            " unlocked " << unlocked <<
            " locked " << locked <<
            " Case " << element.refinement_case <<
            std::endl;

        // check if element is 1:2
        if (element.refinement_case == AMR::Refinement_Case::one_to_two)
        {
            // If so check it has 3 intermediates and 3 which need refining
            if (num_intermediate != 3 || num_to_refine != 3) {
                return false;
            }
            else {
                trace_out << "True " <<
                    "Intermediates " << num_intermediate <<
                    " num to refine " << num_to_refine <<
                    " Case " << element.refinement_case <<
                    " 2:1 " << AMR::Refinement_Case::one_to_two <<
                    std::endl;
            }
        }

        // check if element is 1:4
        else if (element.refinement_case == AMR::Refinement_Case::one_to_four)
        {
            // TODO: Check if it's a center tet for a 1:4
            // FIXME: Is this even needed? How else would you get these
            // combinations? Can't we just combine these two checks?

            bool is_center_tet = tet_store.is_center(child_id);

            if (is_center_tet)
            {
                if (num_to_refine != 0 || num_intermediate != 6)
                {
                    trace_out << "Fail compat 1:4 center" << std::endl;
                    return false;
                }
            }
            else { // Is one of the outsides (not center)
                if (num_to_refine != 1 || num_intermediate != 5)
                {
                    trace_out << "Fail compat 1:4 non center" << std::endl;
                    return false;
                }
            }
        }

        // If it makes it here, it's compatible
        return true;

    }

    /**
     * @brief Place holder method for the implementation of "Algorithm
     * 3" from the paper
     */
    // TODO: Does this parse a childs siblings multiple times?
    void mesh_adapter_t::refinement_class_three(size_t tet_id) {

        trace_out << "Refinement Class Three" << std::endl;

        // "Identify parent element iparent"
        // TODO: WE should either always use the id to fetch, or always do the data lookup
        //size_t parent_id = master_elements.get_parent(tet_id);
        size_t parent_id = tet_store.get_parent_id(tet_id);

        trace_out << "Parent id = " << parent_id << std::endl;

        // NOTE: This implies comms when we use these ids?
        child_id_list_t children = tet_store.data(parent_id).children;

        // "Do for each child element ielement
        // Activate all non-locked edges
        // Deactivate all locked edges"
        for (size_t i = 0; i < children.size(); i++)
        {
            // TODO: Is this in element or tet ids?
            trace_out << "Checking child " << children[i] << std::endl;
            edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
            for (size_t k = 0; k < NUM_TET_EDGES; k++)
            {
                edge_t key = edge_list[k];
                trace_out << "Compat 3 " << key << std::endl;
                if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
		{
                    trace_out << "Compat 3 marking edge " << key << std::endl;
                    tet_store.edge_store.mark_for_refinement(key);
                }
                else {
                    tet_store.edge_store.unmark_for_refinement(key);
                }
            }
        }

        // "Set compatible = TRUE
        bool compatible = true;

        // Do for each child element ielement
        // If ielement is not a valid refinement case
        // compatible = FALSE"
        for (size_t i = 0; i < children.size(); i++)
        {
            size_t child = children[i];
            if ( !check_valid_refinement_case(child) )
            {
                trace_out << "Compat 3 Marking compatible false because of invalid refinement case" << std::endl;

                compatible = false;
            }
            else {
                trace_out << "Is compatible" << std::endl;
            }
        }

        // "If compatible = FALSE
        // Do for each child element ielement
        // Deactive all edges of ielement
        // Mark all edges of ielement as locked
        // Mark ielement as normal"
        if (compatible == false)
        {
            for (size_t i = 0; i < children.size(); i++)
            {
                size_t child = children[i];
                deactivate_tet_edges(child);
                lock_tet_edges(child);
                trace_out << "Compat 3 locking edges of " << child << std::endl;
                // Here we interpret normal to mean "don't treat it like it has intermediates"
                tet_store.mark_normal(child);
                trace_out << "Compat 3 " << child << std::endl;
            }
        }
        else {
            trace_out << "TIME TO 2:8 " << tet_id << std::endl;
            // Accept as 2:8 or 4:8
            AMR::Refinement_State& element = tet_store.data(tet_id);
            if (element.refinement_case == AMR::Refinement_Case::one_to_two)
            {
                tet_store.mark_two_to_eight(tet_id);
            }
            else if (element.refinement_case == AMR::Refinement_Case::one_to_four)
            {
                tet_store.mark_four_to_eight(tet_id);
            }
            else {
                trace_out << " I don't know what to do with this..it looks like you're trying to 2/4:8 an 8... " << std::endl;
            }

        }
    }

    void mesh_adapter_t::remove_normals()
    {
        for (const auto& kv : tet_store.tets)
        {
            size_t tet_id = kv.first;
            tet_store.set_normal(tet_id, 0);
        }
    }

    void mesh_adapter_t::remove_edge_locks(int intermediate)
    {
        for (const auto& kv : tet_store.tets)
        {
            size_t tet_id = kv.first;

            trace_out << "Process tet removelock " << tet_id << std::endl;

            // Only apply checks to tets on the active list
            if (tet_store.is_active(tet_id)) {
                // change it from intermediate to locked
                update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::locked, AMR::Edge_Lock_Case::unlocked);
                if (intermediate) {
                    update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::intermediate, AMR::Edge_Lock_Case::unlocked);
                }
            }
        }

    }
    //void mesh_adapter_t::reset_intermediate_edges()
    //{
    //    for (const auto& kv : tet_store.tets)
    //    {
    //        size_t tet_id = kv.first;

    //        trace_out << "Process tet reset " << tet_id << std::endl;

    //        // Only apply checks to tets on the active list
    //        if (tet_store.is_active(tet_id)) {
    //            // change it from intermediate to locked
    //            update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::intermediate, AMR::Edge_Lock_Case::locked);
    //        }
    //    }
    //}

    void mesh_adapter_t::update_tet_edges_lock_type(size_t tet_id, AMR::Edge_Lock_Case check, AMR::Edge_Lock_Case new_case) {
        edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
        for (size_t k = 0; k < NUM_TET_EDGES; k++)
        {
            edge_t key = edge_list[k];
            if (tet_store.edge_store.get(key).lock_case == check)
            {
                tet_store.edge_store.get(key).lock_case = new_case;
            }
        }
    }

    void mesh_adapter_t::mark_derefinement()
    {
        const size_t max_num_rounds = AMR_MAX_ROUNDS;

        // Mark refinements
        size_t iter;
        //Iterate until convergence
        for (iter = 0; iter < max_num_rounds; iter++)
        {
            tet_store.marked_derefinements.get_state_changed() = false;

            // set of elements which have been considered for derefinement
            std::unordered_set< size_t > done_deref_marking;

            // Loop over tets
            for (const auto& kv : tet_store.tets)
            {
                // this loop only runs for active tets
                if (!tet_store.is_active(kv.first)) {
                  deactivate_deref_tet_edges(kv.first);
                  continue;
                }
                size_t activetet_id = kv.first;

                // check if activetet_id has a parent (assign to tet_id)
                // if it does not, activetet_id is not a derefinement candidate
                size_t tet_id;
                const auto& activetet_data = tet_store.data(activetet_id);
                if (!activetet_data.has_parent) {
                  deactivate_deref_tet_edges(activetet_id);
                  continue;
                }
                else {
                  tet_id = activetet_data.parent_id;
                }

                // if already considered for deref, do not reconsider
                if (done_deref_marking.count(tet_id) > 0) {
                  continue;
                }
                done_deref_marking.insert(tet_id);

                child_id_list_t children = tet_store.data(tet_id).children;

                // check if any child of tet_id (i.e. any active tet) is marked
                // for refinement
                bool is_child_ref(false);
                for (size_t i=0; i<children.size(); i++) {
                  edge_list_t chedge_list = tet_store.generate_edge_keys(children[i]);
                  // Check each edge, see if it is marked for refinement
                  for (size_t k=0; k<NUM_TET_EDGES; k++) {
                    edge_t edge = chedge_list[k];

                    if (tet_store.edge_store.get(edge).needs_refining == 1) {
                      is_child_ref = true;
                      continue;
                    }
                  }
                }
                // deactivate from deref if marked for ref
                if (is_child_ref) {
                  for (auto child_id : children) {
                    deactivate_deref_tet_edges(child_id);
                  }
                  deactivate_deref_tet_edges(tet_id);
                  continue;
                }

                // This is useful for later inspection
                //edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
                std::size_t num_to_derefine = 0; // Nodes

                AMR::Refinement_Case refinement_case = tet_store.get_refinement_case(tet_id);

                auto derefine_node_set = refiner.find_derefine_node_set(tet_store, tet_id);
                // Find the set of nodes which are not in the parent
                std::unordered_set<size_t> non_parent_nodes =
                  refiner.child_exclusive_nodes(tet_store, tet_id);

                //for (auto drnode: derefine_node_set)
                //  trace_out << "derefine node: " << drnode << std::endl;

                num_to_derefine = derefine_node_set.size();

                if (num_to_derefine > 0) {
                    trace_out << "num_to_derefine " << num_to_derefine << std::endl;
                    trace_out << "ref_case " << refinement_case << std::endl;
                    trace_out << "num children " << children.size() << std::endl;
                }

                //num_to_derefine = convert_derefine_edges_to_points(tet_store, tet_id, num_edges_to_derefine, refinement_case);

                // "If nderefine = 1
                if (num_to_derefine == 1)
                {
                    // If icase = 1:2

                    //if (refinement_case == AMR::Refinement_Case::one_to_two)
                    if (children.size() == 2)
                    {
                        // Accept as 2:1 derefine"
                        trace_out << "Accept as 2:1" << std::endl;
                        //refiner.derefine_two_to_one(tet_store, node_connectivity, tet_id);
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::two_to_one);
                    }
                    // "Else
                    else {
                        // Deactivate all points"
                        for (auto child_id : children) {
                          deactivate_deref_tet_edges(child_id);
                        }
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
                        trace_out << "giving up on deref decision. deactivate near 2:1 ntd = 1" << std::endl;
                    }
                }


                // "If nderefine = 2
                else if (num_to_derefine == 2)
                {
                    // If icase = 1:4
                    //if (refinement_case == AMR::Refinement_Case::one_to_four)
                    if (children.size() == 4)
                    {
                        // Accept as 4:2 derefine"
                        trace_out << "Accept as 4:2" << std::endl;
                        //refiner.derefine_four_to_two(tet_store,  node_connectivity, tet_id);
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::four_to_two);
                    }
                    // "Else
                    else {
                        // Deactivate all points"
                        for (auto child_id : children) {
                          deactivate_deref_tet_edges(child_id);
                        }
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
                        trace_out << "giving up on deref decision. deactivate near 4:2 ntd = 2" << std::endl;
                    }
                }

                // "If nderefine = 3
                else if (num_to_derefine == 3)
                {
                    // If icase = 1:4
                    //if (refinement_case == AMR::Refinement_Case::one_to_four)
                    if (children.size() == 4)
                    {
                        // Accept as 4:1 derefine"
                        trace_out << "Accept as 4:1" << std::endl;
                        //refiner.derefine_four_to_one(tet_store,  node_connectivity, tet_id);
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::four_to_one);
                    }
                    // "Else if icase = 1:8
                    //else if (refinement_case == AMR::Refinement_Case::one_to_eight)
                    else if (children.size() == 8)
                    {
                        // we have a list of (non-parent) nodes that is marked
                        // for derefinement. First, determine the nodes that are
                        // unmarked for derefinement (or inactive_nodes). Then,
                        // determine if these are on a single face.
                        std::unordered_set<size_t> inactive_node_set;
                        for (auto npn : non_parent_nodes) {
                          if (derefine_node_set.count(npn) == 0)
                            inactive_node_set.insert(npn);
                        }
                        Assert(inactive_node_set.size() == 3, "Incorrectly "
                          "sized inactive-node set");
                        auto same_face = check_same_face(tet_id, inactive_node_set);
                        // If inactive points lie on same face
                        if (same_face.first == true)
                        {
                            // Accept as 8:4 derefinement
                            trace_out << "Accept as 8:4" << std::endl;

                            // create a vector of node-array-pairs to mark edges
                            // for refinement 1:4
                            std::vector< std::array< std::size_t, 2 > > ref_edges;
                            for (auto n:inactive_node_set) {
                              ref_edges.push_back(node_connectivity.get(n));<--- Consider using std::transform algorithm instead of a raw loop.
                            }

                            tet_store.edge_store.mark_edges_for_deref_ref(ref_edges);
                            //refiner.derefine_eight_to_four(tet_store,  node_connectivity, tet_id);
                            tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_four);
                        }
                        // "Else
                        else {
                            // Deactivate all points"
                            for (auto child_id : children) {
                              deactivate_deref_tet_edges(child_id);
                            }
                            tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
                            trace_out << "giving up on deref decision. deactivate near 8:4 ntd = 3" << std::endl;
                        }

                    }
                }

                // "If nderefine = 4
                else if (num_to_derefine == 4)
                //else if (children.size() == 4)
                {
                    // we have a list of (non-parent) nodes that is marked
                    // for derefinement. First, determine the nodes that are
                    // unmarked for derefinement (or inactive_nodes). Then,
                    // determine if these are on a single face.
                    std::unordered_set<size_t> inactive_node_set;
                    for (auto npn : non_parent_nodes) {
                      if (derefine_node_set.count(npn) == 0)
                        inactive_node_set.insert(npn);
                    }
                    Assert(inactive_node_set.size() == 2, "Incorrectly "
                      "sized inactive-node set");
                    // Check if the inactive point belong to the same parent
                    // face and deactivate the third point on that face
                    auto same_face = check_same_face(tet_id, inactive_node_set);

                    if (same_face.first == true)
                    {
                        // deactivate the edges associated with same_face.second
                        for (size_t i = 0; i < children.size(); i++)
                        {
                          edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
                          for (size_t k = 0; k < NUM_TET_EDGES; k++)
                          {
                            edge_t edge = edge_list[k];
                            size_t A = edge.first();
                            size_t B = edge.second();
                            if (A == same_face.second || B == same_face.second)
                              tet_store.edge_store.get(edge).needs_derefining = false;
                          }
                        }

                        // create a vector of node-array-pairs to mark edges
                        // for refinement 1:4
                        inactive_node_set.insert(same_face.second);
                        std::vector< std::array< std::size_t, 2 > > ref_edges;
                        for (auto n:inactive_node_set) {
                          ref_edges.push_back(node_connectivity.get(n));<--- Consider using std::transform algorithm instead of a raw loop.
                        }

                        tet_store.edge_store.mark_edges_for_deref_ref(ref_edges);

                        // Accept as 8:4 derefinement
                        trace_out << "Accept as 8:4" << std::endl;
                        //refiner.derefine_eight_to_four(tet_store,  node_connectivity, tet_id);
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_four);
                    }
                    // "Else
                    else {
                        // Deactivate all points"
                        for (auto child_id : children) {
                          deactivate_deref_tet_edges(child_id);
                        }
                        tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
                        trace_out << "giving up on deref decision. deactivate near 8:4 ntd = 4" << std::endl;
                    }
                }

                // "If nderefine = 5
                else if (num_to_derefine == 5)
                {
                    // Accept as 8:2 derefine"
                    trace_out << "Accept as 8:2 " << std::endl;
                    //refiner.derefine_eight_to_two(tet_store,  node_connectivity, tet_id);
                    tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_two);
                }

                // "If nderefine = 6
                else if (num_to_derefine == 6)
                {
                    // Accept as 8:1 derefine"
                    trace_out << "Accept as 8:1" << std::endl;
                    //refiner.derefine_eight_to_one(tet_store,  node_connectivity, tet_id);
                    tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_one);
                }

                // "If nderefine = 0
                else {
                    tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
                    // Deactivate all points"
                    for (auto child_id : children) {
                      deactivate_deref_tet_edges(child_id);
                    }
                    trace_out << "giving up with no deref decision because nderefine = 0" << std::endl;
                }
            }

            // If nothing changed during that round, break
            if (!tet_store.marked_derefinements.get_state_changed())
            {
                trace_out << "Terminating loop at iter " << iter << std::endl;
                break;
            }
            trace_out << "End iter " << iter << std::endl;
            // clear out set of elements considered during this iteration
            done_deref_marking.clear();
        }
        trace_out << "Deref Loop took " << iter << " rounds." << std::endl;
    }

    // TODO: document
    void mesh_adapter_t::perform_derefinement()
    {
        trace_out << "Perform deref" << std::endl;

        // Do derefinements
        for (const auto& kv : tet_store.tets)
        {
            size_t tet_id = kv.first;
            //size_t parent_id = 0;

            // TODO: Do I really want to loop all tets?

            // TODO: is this doing a double lookup?
            if (tet_store.has_derefinement_decision(tet_id))
            {
                trace_out << "Do derefine of " << tet_id << std::endl;
                //size_t parent_id = tet_store.get_parent_id(tet_id);
                //trace_out << "Parent = " << parent_id << std::endl;
                switch(tet_store.marked_derefinements.get(tet_id))
                {
                    case AMR::Derefinement_Case::two_to_one:
                        refiner.derefine_two_to_one(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 2:1 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::four_to_one:
                        refiner.derefine_four_to_one(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 4:1 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::four_to_two:
                        refiner.derefine_four_to_two(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 4:2 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::eight_to_one:
                        refiner.derefine_eight_to_one(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 8:1 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::eight_to_two:
                        refiner.derefine_eight_to_two(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 8:2 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::eight_to_four:
                        refiner.derefine_eight_to_four(tet_store,node_connectivity,tet_id);
                        trace_out << "Completed derefine 8:4 of " << tet_id << std::endl;
                        break;
                    case AMR::Derefinement_Case::skip:
                        // What do we do with skip?
                        break;
                }
                // Mark tet as not needing derefinement
                tet_store.marked_derefinements.erase(tet_id);
            }
        }

        node_connectivity.print();
        refiner.delete_intermediates_of_children(tet_store);
        tet_store.process_delete_list();
        tet_store.print_node_types();

        for (auto& kv : tet_store.edge_store.edges) {
           auto& local = kv.second;
           local.needs_derefining = 0;
        }
    }

}

#if defined(__clang__)
  #pragma clang diagnostic pop
#endif