1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#ifndef AMR_edge_store_h
#define AMR_edge_store_h

#include <cassert>

#include "Loggers.hpp"
#include "AMR/AMR_types.hpp"

namespace AMR {

    class edge_store_t {
        public:
            // TODO: convert this to an unordered map with a custom hash (can lift from Quinoa)
            edges_t edges;

            // Node connectivity does this any way, but in a slightly less efficient way
            // Maps the edge to the child node which splits it
                // This was added retrospectivley to support the operation "for
                // edge formed of initial nodes {A,B}, what node(s) were added
                // between them"
                // NOTE: At some point, this could probably be deleted..
                // NOTE: This is only mainted by split.
            //std::map<edge_t, size_t> children;

            size_t size()
            {
                return edges.size();
            }

            /**
             * @brief Function to create new edge between two nodes with an
             * intermediate. Given nodes A, B, and AB makes edge A->AB and AB->B
             *
             * @param A First end node
             * @param B Second end node
             * @param AB Intermediate node
             * @param lc Lock case for the new edges
             */
            void split(size_t A, size_t B, size_t AB, Edge_Lock_Case lc)
            {
                trace_out << "Splitting with lock case " << lc << std::endl;
                generate(A, AB, lc);
                generate(B, AB, lc);

                //children.insert( std::pair<edge_t, size_t>(edge_t(A,B), AB));
                // Generate pertinent keys
                //edge_t keyAB = nodes_to_key(A, B);

                // NOTE: This isn't explicitly needed in the paper, and may be
                    // implicitly dealt with somewhere?
                //mark_edge_for_refinement(keyAB);
            }

            /**
             * @brief Given nodes A and B, generate an edge between them
             *
             * @param A First node
             * @param B Second node
             * @param lc Lock case for new edge
             */
            void generate(size_t A, size_t B, Edge_Lock_Case lc)
            {
                if ((A != 0) && (B != 0)) {
                    trace_out << "A " << A << " B " << B << std::endl;
                    assert(A != B);
                }

                // Generate key
                edge_t keyAB = nodes_to_key(A, B);
                //Create refined edge
                Edge_Refinement edgeAB = Edge_Refinement(A, B, false, false, lc);
                // Add edge to store
                add(keyAB, edgeAB);
            }

            bool exists(edge_t key)
            {
                if (edges.find(key) != edges.end())
                {
                    return true;
                }
                return false;
            }

            /**
             * @brief Function to retrieve an edge from the edge store
             *
             * @param key Key of the edge to get
             *
             * @return A reference to the fetched edge
             */
            Edge_Refinement& get(edge_t key)
            {
                //trace_out << "get edge " << key << std::endl;
                // cppcheck-suppress assertWithSideEffect
                if (!exists(key)) trace_out << "key not found " << key.first()
                  << " - " << key.second() << std::endl;
                assert( exists(key) );
                return edges[key];
            }

            Edge_Lock_Case lock_case(const edge_t& key)
            {
                return get(key).lock_case;
            }

            void erase(edge_t key)
            {
                trace_out << "Deref removing edge: " << key.first() << " - "
                  << key.second() << std::endl;
                edges.erase(key);
            }

            /**
             * @brief Function to add edge to edge store
             *
             * @param key The key for the given edge
             * @param e The edge data
             *
             * Note: This tolerate the addition of duplicate edges
             */
            void add(edge_t key, Edge_Refinement e)
            {
                // Add edge if it doesn't exist (default behavior of insert)
                edges.insert( std::pair<edge_t, Edge_Refinement>(key, e));

                // TODO: It may be worth adding a check here to ensure if we're
                // trying to add a new edge that exists it should contain the
                // same data
            }

            static edge_t nodes_to_key(size_t A, size_t B)
            {
                return edge_t(A,B);
            }

            /**
             * @brief Function to build a  string key from two node ids
             * NOTE: Regardless of order of arguments, the same key will be generated
             */
            //static std::string nodes_to_key(size_t A, size_t B)
            //{
                //return std::to_string(std::min(A,B)) + KEY_DELIM + std::to_string(std::max(A,B));
            //}

            /**
             * @brief function to take the nodes representing a face
             * and to build the possible edges based on that
             *
             * For a given face {ABC}, generate the edge pairs {AB, AC, BC}
             *
             * @param face_ids The ids of the face to generate this for
             *
             * @return A (partially filled) list of all edges present on the
             * face
             */
            // FIXME: Is it OK that it leaves some of the array blank?
            static edge_list_t generate_keys_from_face_ids(face_ids_t face_ids)
            {
                edge_list_t key_list;
                size_t A = face_ids[0];
                size_t B = face_ids[1];
                size_t C = face_ids[2];

                edge_t key = nodes_to_key(A,B);
                key_list[0] = key; // TODO: Is it OK to use copy assignment here?

                key = nodes_to_key(A,C);
                key_list[1] = key;

                key = nodes_to_key(B,C);
                key_list[2] = key;

                return key_list;
            }

            /**
             * @brief function to take a list of edge and mark them all
             * as needing to be refined
             *
             * @param ids List of ids to mark for refinement
             */
            void mark_edges_for_refinement(std::vector<node_pair_t> ids) {
                for (const auto& id : ids)
            {
                    edge_t key = nodes_to_key(id[0], id[1]);

                    mark_for_refinement(key);
                    trace_out << get(key).needs_refining << std::endl;
                }
            }


            /**
             * @brief function to mark a single edge as needing
             * refinement (provides a nice abstraction from messing with the
             * struct directly).
             *
             * @param key The edge key to mark as refinement
             */
            void mark_for_refinement(const edge_t& key)
            {
                // cppcheck-suppress assertWithSideEffect
                assert( exists(key) );
                get(key).needs_refining = 1;
            }

            /**
             * @brief function to take a list of edge and mark them all
             * as needing to be refined as a part of the 8:4 derefinement
             *
             * @param ids List of ids to mark for deref-refinement
             */
            void mark_edges_for_deref_ref(std::vector<node_pair_t> ids)
            {
              for (const auto& id : ids)
                {
                  edge_t key = nodes_to_key(id[0], id[1]);

                  // cppcheck-suppress assertWithSideEffect
                  assert( exists(key) );
                  // value of 2 for needs_refining indicates part of derefine
                  get(key).needs_refining = 2;

                  trace_out << get(key).needs_refining << std::endl;
                }
            }

            /**
             * @brief Function to unmark and edge as needing refinement
             *
             * @param key The key representing the edge to unmark
             */
            void unmark_for_refinement(const edge_t& key)
            {
                // cppcheck-suppress assertWithSideEffect
                assert( exists(key) );
                get(key).needs_refining = 0;
            }

            /**
             * @brief For a given list of node pairs, mark the edge as needing
             * to be de-refined
             *
             * @param ids a vector of pairs to mark for derefinement
             */
            void mark_edges_for_derefinement(std::vector<node_pair_t> ids) {
                for (const auto& id : ids)
                {
                    edge_t key = nodes_to_key(id[0], id[1]);

                    mark_edge_for_derefinement(key);
                }
            }
            void mark_edge_for_derefinement(const edge_t& key) {
                    get(key).needs_derefining = true;
            }


            /**
             * @brief Function to generate a list of edge keys from a tet
             *
             * @param tet The tet to generate edge pairs for
             *
             * @return A list (array) of edge keys which can be separated out to
             * name the two composing node ids
             */
            edge_list_t generate_keys(tet_t tet)
            {
                // FIXME : Generate these with a (2d) loop and not hard code them?
                edge_list_t key_list;

                size_t A = tet[0];
                size_t B = tet[1];
                size_t C = tet[2];
                size_t D = tet[3];

                edge_t key;

                key = nodes_to_key(A,B);
                key_list[0] = key;

                key = nodes_to_key(A,C);
                key_list[1] = key;

                key = nodes_to_key(A,D);
                key_list[2] = key;

                key = nodes_to_key(B,C);
                key_list[3] = key;

                key = nodes_to_key(B,D);
                key_list[4] = key;

                key = nodes_to_key(C,D);
                key_list[5] = key;

                return key_list;
            }

            /**
             * @brief Helper debug function to print edge information
             */
            void print() {
                for (const auto& kv : edges)
                {
                    trace_out << "edge " << kv.first << " between " <<
                        kv.second.A << " and " << kv.second.B <<
                    std::endl;
                }
            }
    };
}

#endif // AMR_edge_store