1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723 | // *****************************************************************************
/*!
\file src/PDE/CompFlow/CGCompFlow.hpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Compressible single-material flow using continuous Galerkin
\details This file implements the physics operators governing compressible
single-material flow using continuous Galerkin discretization.
*/
// *****************************************************************************
#ifndef CGCompFlow_h
#define CGCompFlow_h
#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <unordered_map>
#include "DerivedData.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "EoS/EoS.hpp"
#include "Mesh/Around.hpp"
#include "Reconstruction.hpp"
#include "Problem/FieldOutput.hpp"
#include "Problem/BoxInitialization.hpp"
#include "Riemann/Rusanov.hpp"
#include "NodeBC.hpp"
#include "EoS/EoS.hpp"
#include "History.hpp"
#include "Table.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
namespace cg {
//! \brief CompFlow used polymorphically with tk::CGPDE
//! \details The template arguments specify policies and are used to configure
//! the behavior of the class. The policies are:
//! - Physics - physics configuration, see PDE/CompFlow/Physics.h
//! - Problem - problem configuration, see PDE/CompFlow/Problems.h
//! \note The default physics is Euler, set in inciter::deck::check_compflow()
template< class Physics, class Problem >
class CompFlow {
private:
using ncomp_t = kw::ncomp::info::expect::type;
using eq = tag::compflow;
using real = tk::real;
using param = tag::param;
static constexpr std::size_t m_ncomp = 5;
static constexpr real muscl_eps = 1.0e-9;
static constexpr real muscl_const = 1.0/3.0;
static constexpr real muscl_m1 = 1.0 - muscl_const;
static constexpr real muscl_p1 = 1.0 + muscl_const;
public:
//! \brief Constructor
//! \param[in] c Equation system index (among multiple systems configured)
explicit CompFlow( ncomp_t c ) :
m_physics(),
m_problem(),
m_system( c ),
m_offset( g_inputdeck.get< tag::component >().offset< eq >(c) ),
m_stagCnf( g_inputdeck.specialBC< eq, tag::stag >( c ) ),
m_skipCnf( g_inputdeck.specialBC< eq, tag::skip >( c ) ),
m_fr( g_inputdeck.get< param, eq, tag::farfield_density >().size() > c ?
g_inputdeck.get< param, eq, tag::farfield_density >()[c] : 1.0 ),
m_fp( g_inputdeck.get< param, eq, tag::farfield_pressure >().size() > c ?
g_inputdeck.get< param, eq, tag::farfield_pressure >()[c] : 1.0 ),
m_fu( g_inputdeck.get< param, eq, tag::farfield_velocity >().size() > c ?
g_inputdeck.get< param, eq, tag::farfield_velocity >()[c] :
std::vector< real >( 3, 0.0 ) )
{
Assert( g_inputdeck.get< tag::component >().get< eq >().at(c) == m_ncomp,
"Number of CompFlow PDE components must be " + std::to_string(m_ncomp) );
}
//! Determine nodes that lie inside the user-defined IC box
//! \param[in] coord Mesh node coordinates
//! \param[in,out] inbox List of nodes at which box user ICs are set for
//! each IC box
void IcBoxNodes( const tk::UnsMesh::Coords& coord,
std::vector< std::unordered_set< std::size_t > >& inbox ) const
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// Detect if user has configured a IC boxes
const auto& icbox = g_inputdeck.get<tag::param, eq, tag::ic, tag::box>();
if (icbox.size() > m_system) {
std::size_t bcnt = 0;
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
inbox.emplace_back();
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
const auto eps = std::numeric_limits< tk::real >::epsilon();
// Determine which nodes lie in the IC box
if ( std::any_of( begin(box), end(box), [=](auto p)
{ return abs(p) > eps; } ) )
{
for (ncomp_t i=0; i<x.size(); ++i) {
if ( x[i]>box[0] && x[i]<box[1] && y[i]>box[2] && y[i]<box[3] &&
z[i]>box[4] && z[i]<box[5] )
{
inbox[bcnt].insert( i );
}
}
}
++bcnt;
}
}
}
//! Initalize the compressible flow equations, prepare for time integration
//! \param[in] coord Mesh node coordinates
//! \param[in,out] unk Array of unknowns
//! \param[in] t Physical time
//! \param[in] V Discrete volume of user-defined IC box
//! \param[in] inbox List of nodes at which box user ICs are set (for each
//! box IC)
void initialize(
const std::array< std::vector< real >, 3 >& coord,
tk::Fields& unk,
real t,
real V,
const std::vector< std::unordered_set< std::size_t > >& inbox ) const
{
Assert( coord[0].size() == unk.nunk(), "Size mismatch" );
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
const auto eps = 1000.0 * std::numeric_limits< tk::real >::epsilon();
const auto& bgpreic = ic.get< tag::pressure >();
tk::real bgpre =
(bgpreic.size() > m_system && !bgpreic[m_system].empty()) ?
bgpreic[m_system][0] : 0.0;
auto c_v = cv< eq >(m_system);
// Set initial and boundary conditions using problem policy
for (ncomp_t i=0; i<x.size(); ++i) {
auto s = Problem::initialize( m_system, m_ncomp, x[i], y[i], z[i], t );
// initialize the user-defined box IC
if (icbox.size() > m_system) {
std::size_t bcnt = 0;
for (const auto& b : icbox[m_system]) { // for all boxes
if (inbox.size() > bcnt && inbox[bcnt].find(i) != inbox[bcnt].end())
{
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
if (V_ex < eps) V = 1.0;
initializeBox( m_system, V_ex/V, t, b, bgpre, c_v, s );
}
++bcnt;
}
}
unk(i,0,m_offset) = s[0]; // rho
if (!skipPoint(x[i],y[i],z[i]) && stagPoint(x[i],y[i],z[i])) {
unk(i,1,m_offset) = unk(i,2,m_offset) = unk(i,3,m_offset) = 0.0;
} else {
unk(i,1,m_offset) = s[1]; // rho * u
unk(i,2,m_offset) = s[2]; // rho * v
unk(i,3,m_offset) = s[3]; // rho * w
}
unk(i,4,m_offset) = s[4]; // rho * e, e: total = kinetic + internal
}
}
//! Query the fluid velocity
//! \param[in] u Solution vector of conserved variables
//! \param[in,out] v Velocity components
void velocity( const tk::Fields& u, tk::UnsMesh::Coords& v ) const {
for (std::size_t j=0; j<3; ++j) {
// extract momentum
v[j] = u.extract( 1+j, m_offset );
Assert( v[j].size() == u.nunk(), "Size mismatch" );
// divide by density
for (std::size_t i=0; i<u.nunk(); ++i) v[j][i] /= u(i,0,m_offset);
}
}
//! Query the sound speed
//! \param[in] U Solution vector of conserved variables
//! \param[in,out] s Speed of sound in mesh nodes
void soundspeed( const tk::Fields& U, std::vector< tk::real >& s ) const {
s.resize( U.nunk() );
for (std::size_t i=0; i<U.nunk(); ++i) {
auto r = U(i,0,m_offset);
auto ru = U(i,1,m_offset);
auto rv = U(i,2,m_offset);
auto rw = U(i,3,m_offset);
auto re = U(i,4,m_offset);
auto p = eos_pressure< eq >( m_system, r, ru/r, rv/r, rw/r, re );
s[i] = eos_soundspeed< eq >( m_system, r, p );
}
}
//! Return analytic solution (if defined by Problem) at xi, yi, zi, t
//! \param[in] xi X-coordinate
//! \param[in] yi Y-coordinate
//! \param[in] zi Z-coordinate
//! \param[in] t Physical time
//! \return Vector of analytic solution at given location and time
std::vector< real >
analyticSolution( real xi, real yi, real zi, real t ) const
{ return Problem::analyticSolution( m_system, m_ncomp, xi, yi, zi, t ); }
//! Return analytic solution for conserved variables
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::initialize( m_system, m_ncomp, xi, yi, zi, t ); }
//! Compute right hand side for DiagCG (CG+FCT)
//! \param[in] t Physical time
//! \param[in] deltat Size of time step
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] U Solution vector at recent time step
//! \param[in,out] Ue Element-centered solution vector at intermediate step
//! (used here internally as a scratch array)
//! \param[in,out] R Right-hand side vector computed
void rhs( real t,
real deltat,
const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const tk::Fields& U,
tk::Fields& Ue,
tk::Fields& R ) const
{
Assert( U.nunk() == coord[0].size(), "Number of unknowns in solution "
"vector at recent time step incorrect" );
Assert( R.nunk() == coord[0].size(),
"Number of unknowns and/or number of components in right-hand "
"side vector incorrect" );
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// 1st stage: update element values from node values (gather-add)
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
// access node IDs
const std::array< std::size_t, 4 >
N{{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] }};
// compute element Jacobi determinant
const std::array< real, 3 >
ba{{ x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]] }},
ca{{ x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]] }},
da{{ x[N[3]]-x[N[0]], y[N[3]]-y[N[0]], z[N[3]]-z[N[0]] }};
const auto J = tk::triple( ba, ca, da ); // J = 6V
Assert( J > 0, "Element Jacobian non-positive" );
// shape function derivatives, nnode*ndim [4][3]
std::array< std::array< real, 3 >, 4 > grad;
grad[1] = tk::crossdiv( ca, da, J );
grad[2] = tk::crossdiv( da, ba, J );
grad[3] = tk::crossdiv( ba, ca, J );
for (std::size_t i=0; i<3; ++i)
grad[0][i] = -grad[1][i]-grad[2][i]-grad[3][i];
// access solution at element nodes
std::array< std::array< real, 4 >, m_ncomp > u;
for (ncomp_t c=0; c<m_ncomp; ++c) u[c] = U.extract( c, m_offset, N );
// apply stagnation BCs
for (std::size_t a=0; a<4; ++a)
if ( !skipPoint(x[N[a]],y[N[a]],z[N[a]]) &&
stagPoint(x[N[a]],y[N[a]],z[N[a]]) )
{
u[1][a] = u[2][a] = u[3][a] = 0.0;
}
// access solution at elements
std::array< const real*, m_ncomp > ue;
for (ncomp_t c=0; c<m_ncomp; ++c) ue[c] = Ue.cptr( c, m_offset );
// pressure
std::array< real, 4 > p;
for (std::size_t a=0; a<4; ++a)
p[a] = eos_pressure< eq >
( m_system, u[0][a], u[1][a]/u[0][a], u[2][a]/u[0][a],
u[3][a]/u[0][a], u[4][a] );
// sum flux contributions to element
real d = deltat/2.0;
for (std::size_t j=0; j<3; ++j)
for (std::size_t a=0; a<4; ++a) {
// mass: advection
Ue.var(ue[0],e) -= d * grad[a][j] * u[j+1][a];
// momentum: advection
for (std::size_t i=0; i<3; ++i)
Ue.var(ue[i+1],e) -= d * grad[a][j] * u[j+1][a]*u[i+1][a]/u[0][a];
// momentum: pressure
Ue.var(ue[j+1],e) -= d * grad[a][j] * p[a];
// energy: advection and pressure
Ue.var(ue[4],e) -= d * grad[a][j] *
(u[4][a] + p[a]) * u[j+1][a]/u[0][a];
}
// add (optional) source to all equations
for (std::size_t a=0; a<4; ++a) {
real s[m_ncomp];
Problem::src( m_system, x[N[a]], y[N[a]], z[N[a]], t,
s[0], s[1], s[2], s[3], s[4] );
for (std::size_t c=0; c<m_ncomp; ++c)
Ue.var(ue[c],e) += d/4.0 * s[c];
}
}
// 2nd stage: form rhs from element values (scatter-add)
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
// access node IDs
const std::array< std::size_t, 4 >
N{{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] }};
// compute element Jacobi determinant
const std::array< real, 3 >
ba{{ x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]] }},
ca{{ x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]] }},
da{{ x[N[3]]-x[N[0]], y[N[3]]-y[N[0]], z[N[3]]-z[N[0]] }};
const auto J = tk::triple( ba, ca, da ); // J = 6V
Assert( J > 0, "Element Jacobian non-positive" );
// shape function derivatives, nnode*ndim [4][3]
std::array< std::array< real, 3 >, 4 > grad;
grad[1] = tk::crossdiv( ca, da, J );
grad[2] = tk::crossdiv( da, ba, J );
grad[3] = tk::crossdiv( ba, ca, J );
for (std::size_t i=0; i<3; ++i)
grad[0][i] = -grad[1][i]-grad[2][i]-grad[3][i];
// access solution at elements
std::array< real, m_ncomp > ue;
for (ncomp_t c=0; c<m_ncomp; ++c) ue[c] = Ue( e, c, m_offset );
// access pointer to right hand side at component and offset
std::array< const real*, m_ncomp > r;
for (ncomp_t c=0; c<m_ncomp; ++c) r[c] = R.cptr( c, m_offset );
// pressure
auto p = eos_pressure< eq >
( m_system, ue[0], ue[1]/ue[0], ue[2]/ue[0], ue[3]/ue[0],
ue[4] );
// scatter-add flux contributions to rhs at nodes
real d = deltat * J/6.0;
for (std::size_t j=0; j<3; ++j)
for (std::size_t a=0; a<4; ++a) {
// mass: advection
R.var(r[0],N[a]) += d * grad[a][j] * ue[j+1];
// momentum: advection
for (std::size_t i=0; i<3; ++i)
R.var(r[i+1],N[a]) += d * grad[a][j] * ue[j+1]*ue[i+1]/ue[0];
// momentum: pressure
R.var(r[j+1],N[a]) += d * grad[a][j] * p;
// energy: advection and pressure
R.var(r[4],N[a]) += d * grad[a][j] * (ue[4] + p) * ue[j+1]/ue[0];
}
// add (optional) source to all equations
auto xc = (x[N[0]] + x[N[1]] + x[N[2]] + x[N[3]]) / 4.0;
auto yc = (y[N[0]] + y[N[1]] + y[N[2]] + y[N[3]]) / 4.0;
auto zc = (z[N[0]] + z[N[1]] + z[N[2]] + z[N[3]]) / 4.0;
real s[m_ncomp];
Problem::src( m_system, xc, yc, zc, t+deltat/2,
s[0], s[1], s[2], s[3], s[4] );
for (std::size_t c=0; c<m_ncomp; ++c)
for (std::size_t a=0; a<4; ++a)
R.var(r[c],N[a]) += d/4.0 * s[c];
}
// // add viscous stress contribution to momentum and energy rhs
// m_physics.viscousRhs( deltat, J, N, grad, u, r, R );
// // add heat conduction contribution to energy rhs
// m_physics.conductRhs( deltat, J, N, grad, u, r, R );
}
//! \brief Compute nodal gradients of primitive variables for ALECG along
//! chare-boundary
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] bndel List of elements contributing to chare-boundary nodes
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] U Solution vector at recent time step
//! \param[in,out] G Nodal gradients of primitive variables
//! \details This function only computes local contributions to gradients
//! at chare-boundary nodes. Internal node gradients are calculated as
//! required, and do not need to be stored.
void chBndGrad( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& bndel,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const tk::Fields& U,
tk::Fields& G ) const
{
Assert( U.nunk() == coord[0].size(), "Number of unknowns in solution "
"vector at recent time step incorrect" );
// compute gradients of primitive variables in points
G.fill( 0.0 );
// access node cooordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
for (auto e : bndel) { // elements contributing to chare boundary nodes
// access node IDs
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
real bax = x[N[1]]-x[N[0]];
real bay = y[N[1]]-y[N[0]];
real baz = z[N[1]]-z[N[0]];
real cax = x[N[2]]-x[N[0]];
real cay = y[N[2]]-y[N[0]];
real caz = z[N[2]]-z[N[0]];
real dax = x[N[3]]-x[N[0]];
real day = y[N[3]]-y[N[0]];
real daz = z[N[3]]-z[N[0]];
auto J = tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
ErrChk( J > 0, "Element Jacobian non-positive" );
auto J24 = J/24.0;
// shape function derivatives, nnode*ndim [4][3]
real g[4][3];
tk::crossdiv( cax, cay, caz, dax, day, daz, J,
g[1][0], g[1][1], g[1][2] );
tk::crossdiv( dax, day, daz, bax, bay, baz, J,
g[2][0], g[2][1], g[2][2] );
tk::crossdiv( bax, bay, baz, cax, cay, caz, J,
g[3][0], g[3][1], g[3][2] );
for (std::size_t i=0; i<3; ++i)
g[0][i] = -g[1][i] - g[2][i] - g[3][i];
// scatter-add gradient contributions to boundary nodes
for (std::size_t a=0; a<4; ++a) {
auto i = bid.find( gid[N[a]] );
if (i != end(bid)) {
real u[5];
for (std::size_t b=0; b<4; ++b) {
u[0] = U(N[b],0,m_offset);
u[1] = U(N[b],1,m_offset)/u[0];
u[2] = U(N[b],2,m_offset)/u[0];
u[3] = U(N[b],3,m_offset)/u[0];
u[4] = U(N[b],4,m_offset)/u[0]
- 0.5*(u[1]*u[1] + u[2]*u[2] + u[3]*u[3]);
if ( !skipPoint(x[N[b]],y[N[b]],z[N[b]]) &&
stagPoint(x[N[b]],y[N[b]],z[N[b]]) )
{
u[1] = u[2] = u[3] = 0.0;
}
for (std::size_t c=0; c<5; ++c)
for (std::size_t j=0; j<3; ++j)
G(i->second,c*3+j,0) += J24 * g[b][j] * u[c];
}
}
}
}
}
//! Compute right hand side for ALECG
//! \param[in] t Physical time
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] triinpoel Boundary triangle face connecitivity with local ids
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] gid Local->glocal node ids
//! \param[in] lid Global->local node ids
//! \param[in] dfn Dual-face normals
//! \param[in] psup Points surrounding points
//! \param[in] esup Elements surrounding points
//! \param[in] symbctri Vector with 1 at symmetry BC boundary triangles
//! \param[in] spongenodes Unique set of nodes at which to apply sponge
// conditions
//! \param[in] vol Nodal volumes
//! \param[in] edgenode Local node IDs of edges
//! \param[in] edgeid Edge ids in the order of access
//! \param[in] boxnodes Mesh node ids within user-defined IC boxes
//! \param[in] G Nodal gradients
//! \param[in] U Solution vector at recent time step
//! \param[in] W Mesh velocity
//! \param[in] tp Physical time for each mesh node
//! \param[in] V Total box volume
//! \param[in,out] R Right-hand side vector computed
void rhs( real t,
const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& triinpoel,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::unordered_map< std::size_t, std::size_t >& lid,
const std::vector< real >& dfn,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& psup,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup,
const std::vector< int >& symbctri,
const std::unordered_set< std::size_t >& spongenodes,
const std::vector< real >& vol,
const std::vector< std::size_t >& edgenode,
const std::vector< std::size_t >& edgeid,
const std::vector< std::unordered_set< std::size_t > >& boxnodes,
const tk::Fields& G,
const tk::Fields& U,
const tk::Fields& W,
const std::vector< tk::real >& tp,
real V,
tk::Fields& R ) const
{
Assert( G.nprop() == m_ncomp*3,
"Number of components in gradient vector incorrect" );
Assert( U.nunk() == coord[0].size(), "Number of unknowns in solution "
"vector at recent time step incorrect" );
Assert( R.nunk() == coord[0].size(),
"Number of unknowns and/or number of components in right-hand "
"side vector incorrect" );
Assert( W.nunk() == coord[0].size(), "Size mismatch " );
// compute/assemble gradients in points
auto Grad = nodegrad( coord, inpoel, lid, bid, vol, esup, U, G );
// zero right hand side for all components
for (ncomp_t c=0; c<m_ncomp; ++c) R.fill( c, m_offset, 0.0 );
// compute sponge pressure multiplers at sponge side sets
auto spmult = spongePressures( coord, spongenodes );
// compute domain-edge integral
domainint( coord, gid, edgenode, edgeid, psup, dfn, U, W, Grad,
spmult, R );
// compute boundary integrals
bndint( coord, triinpoel, symbctri, U, W, spmult, R );
// compute external (energy) sources
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
if (icbox.size() > m_system && !boxnodes.empty()) {
std::size_t bcnt = 0;
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
const auto& initiate = b.template get< tag::initiate >();
auto inittype = initiate.template get< tag::init >();
if (inittype == ctr::InitiateType::LINEAR) {
boxSrc( V, t, inpoel, esup, boxnodes[bcnt], coord, R );
}
++bcnt;
}
}
// compute optional source integral
src( coord, inpoel, t, tp, R );
}
//! Compute the minimum time step size (for unsteady time stepping)
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] t Physical time
//! \param[in] dtn Time step size at the previous time step
//! \param[in] U Solution vector at recent time step
//! \param[in] vol Nodal volume (with contributions from other chares)
//! \param[in] voln Nodal volume (with contributions from other chares) at
//! the previous time step
//! \return Minimum time step size
real dt( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
tk::real t,
tk::real dtn,
const tk::Fields& U,
const std::vector< tk::real >& vol,
const std::vector< tk::real >& voln ) const
{
Assert( U.nunk() == coord[0].size(), "Number of unknowns in solution "
"vector at recent time step incorrect" );
// energy source propagation time and velocity
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// ratio of specific heats
auto g = gamma< eq >(m_system);
// compute the minimum dt across all elements we own
real mindt = std::numeric_limits< real >::max();
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
const std::array< std::size_t, 4 > N{{ inpoel[e*4+0], inpoel[e*4+1],
inpoel[e*4+2], inpoel[e*4+3] }};
// compute cubic root of element volume as the characteristic length
const std::array< real, 3 >
ba{{ x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]] }},
ca{{ x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]] }},
da{{ x[N[3]]-x[N[0]], y[N[3]]-y[N[0]], z[N[3]]-z[N[0]] }};
const auto L = std::cbrt( tk::triple( ba, ca, da ) / 6.0 );
// access solution at element nodes at recent time step
std::array< std::array< real, 4 >, m_ncomp > u;
for (ncomp_t c=0; c<m_ncomp; ++c) u[c] = U.extract( c, m_offset, N );
// compute the maximum length of the characteristic velocity (fluid
// velocity + sound velocity) across the four element nodes
real maxvel = 0.0;
for (std::size_t j=0; j<4; ++j) {
auto& r = u[0][j]; // rho
auto& ru = u[1][j]; // rho * u
auto& rv = u[2][j]; // rho * v
auto& rw = u[3][j]; // rho * w
auto& re = u[4][j]; // rho * e
auto p = eos_pressure< eq >( m_system, r, ru/r, rv/r, rw/r, re );
if (p < 0) p = 0.0;
auto c = eos_soundspeed< eq >( m_system, r, p );
auto v = std::sqrt((ru*ru + rv*rv + rw*rw)/r/r) + c; // char. velocity
// energy source propagation velocity (in all IC boxes configured)
if (icbox.size() > m_system) {
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
const auto& initiate = b.template get< tag::initiate >();
auto iv = initiate.template get< tag::velocity >();
auto inittype = initiate.template get< tag::init >();
if (inittype == ctr::InitiateType::LINEAR) {
auto zmin = b.template get< tag::zmin >();
auto zmax = b.template get< tag::zmax >();
auto wFront = 0.08;
auto tInit = 0.0;
auto tFinal = tInit + (zmax - zmin - 2.0*wFront) /
std::fabs(iv);
if (t >= tInit && t <= tFinal)
v = std::max(v, std::fabs(iv));
}
}
}
if (v > maxvel) maxvel = v;
}
// compute element dt for the Euler equations
auto euler_dt = L / maxvel;
// compute element dt based on the viscous force
auto viscous_dt = m_physics.viscous_dt( L, u );
// compute element dt based on thermal diffusion
auto conduct_dt = m_physics.conduct_dt( L, g, u );
// compute minimum element dt
auto elemdt = std::min( euler_dt, std::min( viscous_dt, conduct_dt ) );
// find minimum dt across all elements
mindt = std::min( elemdt, mindt );
}
mindt *= g_inputdeck.get< tag::discr, tag::cfl >();
// compute the minimum dt across all nodes we contribute to due to volume
// change in time
auto dvcfl = g_inputdeck.get< tag::ale, tag::dvcfl >();
if (dtn > 0.0 && dvcfl > 0.0) {
Assert( vol.size() == voln.size(), "Size mismatch" );
for (std::size_t p=0; p<vol.size(); ++p) {
auto vol_dt = dtn *
std::min(voln[p],vol[p]) / std::abs(voln[p]-vol[p]+1.0e-14);
mindt = std::min( vol_dt, mindt );
}
mindt *= dvcfl;
}
return mindt;
}
//! Compute a time step size for each mesh node (for steady time stepping)
//! \param[in] U Solution vector at recent time step
//! \param[in] vol Nodal volume (with contributions from other chares)
//! \param[in,out] dtp Time step size for each mesh node
void dt( uint64_t,
const std::vector< tk::real >& vol,
const tk::Fields& U,
std::vector< tk::real >& dtp ) const
{
for (std::size_t i=0; i<U.nunk(); ++i) {
// compute cubic root of element volume as the characteristic length
const auto L = std::cbrt( vol[i] );
// access solution at node p at recent time step
const auto u = U[i];
// compute pressure
auto p = eos_pressure< eq >
( m_system, u[0], u[1]/u[0], u[2]/u[0], u[3]/u[0], u[4] );
if (p < 0) p = 0.0;
auto c = eos_soundspeed< eq >( m_system, u[0], p );
// characteristic velocity
auto v = std::sqrt((u[1]*u[1] + u[2]*u[2] + u[3]*u[3])/u[0]/u[0]) + c;
// compute dt for node
dtp[i] = L / v * g_inputdeck.get< tag::discr, tag::cfl >();
}
}
//! \brief Query Dirichlet boundary condition value on a given side set for
//! all components in this PDE system
//! \param[in] t Physical time
//! \param[in] deltat Time step size
//! \param[in] tp Physical time for each mesh node
//! \param[in] dtp Time step size for each mesh node
//! \param[in] ss Pair of side set ID and (local) node IDs on the side set
//! \param[in] coord Mesh node coordinates
//! \param[in] increment If true, evaluate the solution increment between
//! t and t+dt for Dirichlet BCs. If false, evlauate the solution instead.
//! \return Vector of pairs of bool and boundary condition value associated
//! to mesh node IDs at which Dirichlet boundary conditions are set. Note
//! that if increment is true, instead of the actual boundary condition
//! value, we return the increment between t+deltat and t, since,
//! depending on client code and solver, that may be what the solution
//! requires.
std::map< std::size_t, std::vector< std::pair<bool,real> > >
dirbc( real t,
real deltat,
const std::vector< tk::real >& tp,
const std::vector< tk::real >& dtp,
const std::pair< const int, std::vector< std::size_t > >& ss,
const std::array< std::vector< real >, 3 >& coord,
bool increment ) const
{
using tag::param; using tag::bcdir;
using NodeBC = std::vector< std::pair< bool, real > >;
std::map< std::size_t, NodeBC > bc;
const auto& ubc = g_inputdeck.get< param, eq, tag::bc, bcdir >();
const auto steady = g_inputdeck.get< tag::discr, tag::steady_state >();<--- Variable 'steady' is assigned a value that is never used.
if (!ubc.empty()) {
Assert( ubc.size() > 0, "Indexing out of Dirichlet BC eq-vector" );
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
for (const auto& b : ubc[0])
if (std::stoi(b) == ss.first)
for (auto n : ss.second) {
Assert( x.size() > n, "Indexing out of coordinate array" );
if (steady) { t = tp[n]; deltat = dtp[n]; }
auto s = increment ?
solinc( m_system, m_ncomp, x[n], y[n], z[n],
t, deltat, Problem::initialize ) :
Problem::initialize( m_system, m_ncomp, x[n], y[n], z[n],
t+deltat );
if ( !skipPoint(x[n],y[n],z[n]) && stagPoint(x[n],y[n],z[n]) ) {
s[1] = s[2] = s[3] = 0.0;
}
bc[n] = {{ {true,s[0]}, {true,s[1]}, {true,s[2]}, {true,s[3]},
{true,s[4]} }};
}
}
return bc;
}
//! Set symmetry boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] coord Mesh node coordinates
//! \param[in] bnorm Face normals in boundary points, key local node id,
//! first 3 reals of value: unit normal, outer key: side set id
//! \param[in] nodes Unique set of node ids at which to set symmetry BCs
void
symbc( tk::Fields& U,<--- Parameter 'U' can be declared with const
const std::array< std::vector< real >, 3 >& coord,
const std::unordered_map< int,
std::unordered_map< std::size_t, std::array< real, 4 > > >& bnorm,
const std::unordered_set< std::size_t >& nodes ) const
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
const auto& sbc = g_inputdeck.get< param, eq, tag::bc, tag::bcsym >();
if (sbc.size() > m_system) { // use symbcs for this system
for (auto p : nodes) { // for all symbc nodes
if (!skipPoint(x[p],y[p],z[p])) {
// for all user-def symbc sets
for (std::size_t s=0; s<sbc[m_system].size(); ++s) {
// find nodes & normals for side
auto j = bnorm.find(std::stoi(sbc[m_system][s]));
if (j != end(bnorm)) {
auto i = j->second.find(p); // find normal for node
if (i != end(j->second)) {
std::array< real, 3 >
n{ i->second[0], i->second[1], i->second[2] },
v{ U(p,1,m_offset), U(p,2,m_offset), U(p,3,m_offset) };
auto v_dot_n = tk::dot( v, n );
// symbc: remove normal component of velocity
U(p,1,m_offset) -= v_dot_n * n[0];
U(p,2,m_offset) -= v_dot_n * n[1];
U(p,3,m_offset) -= v_dot_n * n[2];
}
}
}
}
}
}
}
//! Set farfield boundary conditions at nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] coord Mesh node coordinates
//! \param[in] bnorm Face normals in boundary points, key local node id,
//! first 3 reals of value: unit normal, outer key: side set id
//! \param[in] nodes Unique set of node ids at which to set farfield BCs
void
farfieldbc(
tk::Fields& U,
const std::array< std::vector< real >, 3 >& coord,
const std::unordered_map< int,
std::unordered_map< std::size_t, std::array< real, 4 > > >& bnorm,
const std::unordered_set< std::size_t >& nodes ) const
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
const auto& fbc = g_inputdeck.get<param, eq, tag::bc, tag::bcfarfield>();
if (fbc.size() > m_system) // use farbcs for this system
for (auto p : nodes) // for all farfieldbc nodes
if (!skipPoint(x[p],y[p],z[p]))
for (const auto& s : fbc[m_system]) {// for all user-def farbc sets
auto j = bnorm.find(std::stoi(s));// find nodes & normals for side
if (j != end(bnorm)) {
auto i = j->second.find(p); // find normal for node
if (i != end(j->second)) {
auto& r = U(p,0,m_offset);
auto& ru = U(p,1,m_offset);
auto& rv = U(p,2,m_offset);
auto& rw = U(p,3,m_offset);
auto& re = U(p,4,m_offset);
auto vn =
(ru*i->second[0] + rv*i->second[1] + rw*i->second[2]) / r;
auto a = eos_soundspeed< eq >( m_system, r,
eos_pressure< eq >( m_system, r, ru/r, rv/r, rw/r, re ) );
auto M = vn / a;
if (M <= -1.0) { // supersonic inflow
r = m_fr;
ru = m_fr * m_fu[0];
rv = m_fr * m_fu[1];
rw = m_fr * m_fu[2];
re = eos_totalenergy< eq >
( m_system, m_fr, m_fu[0], m_fu[1], m_fu[2], m_fp );
} else if (M > -1.0 && M < 0.0) { // subsonic inflow
r = m_fr;
ru = m_fr * m_fu[0];
rv = m_fr * m_fu[1];
rw = m_fr * m_fu[2];
re =
eos_totalenergy< eq >( m_system, m_fr, m_fu[0], m_fu[1],
m_fu[2], eos_pressure< eq >( m_system, r, ru/r, rv/r,
rw/r, re ) );
} else if (M >= 0.0 && M < 1.0) { // subsonic outflow
re = eos_totalenergy< eq >( m_system, r, ru/r, rv/r, rw/r,
m_fp );
}
}
}
}
}
//! Apply sponge conditions at sponge nodes
//! \param[in] U Solution vector at recent time step
//! \param[in] coord Mesh node coordinates
//! \param[in] nodes Unique set of node ids at which to apply sponge
//! \details This function applies a sponge-like parameter to nodes of a
//! side set specified in the input file. We remove a user-specified
//! percentage of the kinetic energy by reducing the tangential
//! component of the velocity at a boundary and thereby modeling the
//! effect of a solid wall on the fluid via fluid-structure interaction
//! via a viscosity-like effect.
void
sponge( tk::Fields& U,<--- Shadowed declaration<--- Parameter 'U' can be declared with const
const std::array< std::vector< real >, 3 >& coord,
const std::unordered_set< std::size_t >& nodes ) const
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
const auto& sponge = g_inputdeck.get< param, eq, tag::sponge >();
const auto& ss = sponge.get< tag::sideset >();
if (ss.size() > m_system) { // sponge side set for this system
const auto& spvel = sponge.get< tag::velocity >();
for (auto p : nodes) { // for all sponge nodes
if (!skipPoint(x[p],y[p],z[p])) {
std::vector< tk::real > sp( ss[m_system].size(), 0.0 );
if (spvel.size() > m_system) {
sp = spvel[m_system];
for (auto& s : sp) s = std::sqrt(s);
}
// sponge velocity: reduce kinetic energy by a user percentage
for (std::size_t s=0; s<ss[m_system].size(); ++s) {
U(p,1,m_offset) -= U(p,1,m_offset)*sp[s];
U(p,2,m_offset) -= U(p,2,m_offset)*sp[s];
U(p,3,m_offset) -= U(p,3,m_offset)*sp[s];
}
}
}
}
}
//! Apply user defined time dependent BCs
//! \param[in] t Physical time
//! \param[in,out] U Solution vector at recent time step
//! \param[in] nodes Vector of unique sets of node ids at which to apply BCs
//! \details This function applies user defined time dependent boundary
//! conditions on groups of side sets specified in the input file.
//! The user specifies pressure, density, and velocity as discrete
//! functions of time, in the control file, associated with a group of
//! side sets. Several such groups can be specified, each with their
//! own discrete function: p(t), rho(t), vx(t), vy(t), vz(t).
void
timedepbc( tk::real t,
tk::Fields& U,<--- Parameter 'U' can be declared with const
const std::vector< std::unordered_set< std::size_t > >& nodes,
const std::vector< tk::Table<5> >& timedepfn ) const
{
for (std::size_t ib=0; ib<nodes.size(); ++ib) {
for (auto p:nodes[ib]) {
// sample primitive vars from discrete data at time t
auto unk = tk::sample<5>(t, timedepfn[ib]);
// apply BCs after converting to conserved vars
U(p,0,m_offset) = unk[1];
U(p,1,m_offset) = unk[1]*unk[2];
U(p,2,m_offset) = unk[1]*unk[3];
U(p,3,m_offset) = unk[1]*unk[4];
U(p,4,m_offset) = eos_totalenergy< eq >(m_system, unk[1], unk[2],
unk[3], unk[4], unk[0]);
}
}
}
//! Return analytic field names to be output to file
//! \return Vector of strings labelling analytic fields output in file
std::vector< std::string > analyticFieldNames() const
{ return m_problem.analyticFieldNames( m_ncomp ); }
//! Return surface field names to be output to file
//! \return Vector of strings labelling surface fields output in file
std::vector< std::string > surfNames() const
{ return CompFlowSurfNames(); }
//! Return time history field names to be output to file
//! \return Vector of strings labelling time history fields output in file
std::vector< std::string > histNames() const
{ return CompFlowHistNames(); }
//! Return surface field output going to file
std::vector< std::vector< real > >
surfOutput( const std::map< int, std::vector< std::size_t > >& bnd,
const tk::Fields& U ) const
{ return CompFlowSurfOutput( m_system, bnd, U ); }
//! Return time history field output evaluated at time history points
std::vector< std::vector< real > >
histOutput( const std::vector< HistData >& h,
const std::vector< std::size_t >& inpoel,
const tk::Fields& U ) const
{ return CompFlowHistOutput( m_system, h, inpoel, U ); }
//! Return names of integral variables to be output to diagnostics file
//! \return Vector of strings labelling integral variables output
std::vector< std::string > names() const
{ return m_problem.names( m_ncomp ); }
private:
const Physics m_physics; //!< Physics policy
const Problem m_problem; //!< Problem policy
const ncomp_t m_system; //!< Equation system index
const ncomp_t m_offset; //!< Offset PDE operates from
//! Stagnation BC user configuration: point coordinates and radii
const std::tuple< std::vector< real >, std::vector< real > > m_stagCnf;
//! Skip BC user configuration: point coordinates and radii
const std::tuple< std::vector< real >, std::vector< real > > m_skipCnf;
const real m_fr; //!< Farfield density
const real m_fp; //!< Farfield pressure
const std::vector< real > m_fu; //!< Farfield velocity
//! Decide if point is a stagnation point
//! \param[in] x X mesh point coordinates to query
//! \param[in] y Y mesh point coordinates to query
//! \param[in] z Z mesh point coordinates to query
//! \return True if point is configured as a stagnation point by the user
#pragma omp declare simd
bool
stagPoint( real x, real y, real z ) const {
const auto& pnt = std::get< 0 >( m_stagCnf );
const auto& rad = std::get< 1 >( m_stagCnf );
for (std::size_t i=0; i<rad.size(); ++i) {
if (tk::length( x-pnt[i*3+0], y-pnt[i*3+1], z-pnt[i*3+2] ) < rad[i])
return true;
}
return false;
}
//! Decide if point is a skip-BC point
//! \param[in] x X mesh point coordinates to query
//! \param[in] y Y mesh point coordinates to query
//! \param[in] z Z mesh point coordinates to query
//! \return True if point is configured as a skip-BC point by the user
#pragma omp declare simd
bool
skipPoint( real x, real y, real z ) const {
const auto& pnt = std::get< 0 >( m_skipCnf );
const auto& rad = std::get< 1 >( m_skipCnf );
for (std::size_t i=0; i<rad.size(); ++i) {
if (tk::length( x-pnt[i*3+0], y-pnt[i*3+1], z-pnt[i*3+2] ) < rad[i])
return true;
}
return false;
}
//! \brief Compute/assemble nodal gradients of primitive variables for
//! ALECG in all points
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] lid Global->local node ids
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] vol Nodal volumes
//! \param[in] esup Elements surrounding points
//! \param[in] U Solution vector at recent time step
//! \param[in] G Nodal gradients of primitive variables in chare-boundary
//! nodes
//! \return Gradients of primitive variables in all mesh points
tk::Fields
nodegrad( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const std::unordered_map< std::size_t, std::size_t >& lid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< real >& vol,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup,
const tk::Fields& U,
const tk::Fields& G ) const
{
// allocate storage for nodal gradients of primitive variables
tk::Fields Grad( U.nunk(), m_ncomp*3 );
Grad.fill( 0.0 );
// access node cooordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// compute gradients of primitive variables in points
auto npoin = U.nunk();
#pragma omp simd
for (std::size_t p=0; p<npoin; ++p)
for (auto e : tk::Around(esup,p)) {
// access node IDs
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
real bax = x[N[1]]-x[N[0]];
real bay = y[N[1]]-y[N[0]];
real baz = z[N[1]]-z[N[0]];
real cax = x[N[2]]-x[N[0]];
real cay = y[N[2]]-y[N[0]];
real caz = z[N[2]]-z[N[0]];
real dax = x[N[3]]-x[N[0]];
real day = y[N[3]]-y[N[0]];
real daz = z[N[3]]-z[N[0]];
auto J = tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
auto J24 = J/24.0;
// shape function derivatives, nnode*ndim [4][3]
real g[4][3];
tk::crossdiv( cax, cay, caz, dax, day, daz, J,
g[1][0], g[1][1], g[1][2] );
tk::crossdiv( dax, day, daz, bax, bay, baz, J,
g[2][0], g[2][1], g[2][2] );
tk::crossdiv( bax, bay, baz, cax, cay, caz, J,
g[3][0], g[3][1], g[3][2] );
for (std::size_t i=0; i<3; ++i)
g[0][i] = -g[1][i] - g[2][i] - g[3][i];
// scatter-add gradient contributions to boundary nodes
real u[m_ncomp];
for (std::size_t b=0; b<4; ++b) {
u[0] = U(N[b],0,m_offset);
u[1] = U(N[b],1,m_offset)/u[0];
u[2] = U(N[b],2,m_offset)/u[0];
u[3] = U(N[b],3,m_offset)/u[0];
u[4] = U(N[b],4,m_offset)/u[0]
- 0.5*(u[1]*u[1] + u[2]*u[2] + u[3]*u[3]);
if ( !skipPoint(x[N[b]],y[N[b]],z[N[b]]) &&
stagPoint(x[N[b]],y[N[b]],z[N[b]]) )
{
u[1] = u[2] = u[3] = 0.0;
}
for (std::size_t c=0; c<m_ncomp; ++c)
for (std::size_t i=0; i<3; ++i)
Grad(p,c*3+i,0) += J24 * g[b][i] * u[c];
}
}
// put in nodal gradients of chare-boundary points
for (const auto& [g,b] : bid) {
auto i = tk::cref_find( lid, g );
for (ncomp_t c=0; c<Grad.nprop(); ++c)
Grad(i,c,0) = G(b,c,0);
}
// divide weak result in gradients by nodal volume
for (std::size_t p=0; p<npoin; ++p)
for (std::size_t c=0; c<m_ncomp*3; ++c)
Grad(p,c,0) /= vol[p];
return Grad;
}
//! Compute domain-edge integral for ALECG
//! \param[in] coord Mesh node coordinates
//! \param[in] gid Local->glocal node ids
//! \param[in] edgenode Local node ids of edges
//! \param[in] edgeid Local node id pair -> edge id map
//! \param[in] psup Points surrounding points
//! \param[in] dfn Dual-face normals
//! \param[in] U Solution vector at recent time step
//! \param[in] W Mesh velocity
//! \param[in] G Nodal gradients
//! \param[in] spmult Sponge pressure multiplers at nodes, one per symBC set
//! \param[in,out] R Right-hand side vector computed
void domainint( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& gid,
const std::vector< std::size_t >& edgenode,
const std::vector< std::size_t >& edgeid,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& psup,
const std::vector< real >& dfn,
const tk::Fields& U,
const tk::Fields& W,
const tk::Fields& G,
const std::vector< tk::real >& spmult,
tk::Fields& R ) const
{
// domain-edge integral: compute fluxes in edges
std::vector< real > dflux( edgenode.size()/2 * m_ncomp );
// access node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// number of side sets configured with sponge pressure multipliers
std::size_t nset = spmult.size() / x.size();
#pragma omp simd
for (std::size_t e=0; e<edgenode.size()/2; ++e) {
auto p = edgenode[e*2+0];
auto q = edgenode[e*2+1];
// compute primitive variables at edge-end points
real rL = U(p,0,m_offset);
real ruL = U(p,1,m_offset) / rL;
real rvL = U(p,2,m_offset) / rL;
real rwL = U(p,3,m_offset) / rL;
real reL = U(p,4,m_offset) / rL - 0.5*(ruL*ruL + rvL*rvL + rwL*rwL);
real w1L = W(p,0,0);
real w2L = W(p,1,0);
real w3L = W(p,2,0);
real rR = U(q,0,m_offset);
real ruR = U(q,1,m_offset) / rR;
real rvR = U(q,2,m_offset) / rR;
real rwR = U(q,3,m_offset) / rR;
real reR = U(q,4,m_offset) / rR - 0.5*(ruR*ruR + rvR*rvR + rwR*rwR);
real w1R = W(q,0,0);
real w2R = W(q,1,0);
real w3R = W(q,2,0);
// apply stagnation BCs to primitive variables
if ( !skipPoint(x[p],y[p],z[p]) && stagPoint(x[p],y[p],z[p]) )
ruL = rvL = rwL = 0.0;
if ( !skipPoint(x[q],y[q],z[q]) && stagPoint(x[q],y[q],z[q]) )
ruR = rvR = rwR = 0.0;
// compute MUSCL reconstruction in edge-end points
muscl( p, q, coord, G,
rL, ruL, rvL, rwL, reL, rR, ruR, rvR, rwR, reR );
// convert back to conserved variables
reL = (reL + 0.5*(ruL*ruL + rvL*rvL + rwL*rwL)) * rL;
ruL *= rL;
rvL *= rL;
rwL *= rL;
reR = (reR + 0.5*(ruR*ruR + rvR*rvR + rwR*rwR)) * rR;
ruR *= rR;
rvR *= rR;
rwR *= rR;
// evaluate pressure at edge-end points
real pL = eos_pressure<eq>( m_system, rL, ruL/rL, rvL/rL, rwL/rL, reL );
real pR = eos_pressure<eq>( m_system, rR, ruR/rR, rvR/rR, rwR/rR, reR );
// apply sponge-pressure multipliers
for (std::size_t s=0; s<nset; ++s) {
pL -= pL*spmult[p*nset+s];
pR -= pR*spmult[q*nset+s];
}
// compute Riemann flux using edge-end point states
real f[m_ncomp];
Rusanov::flux( m_system,
dfn[e*6+0], dfn[e*6+1], dfn[e*6+2],
dfn[e*6+3], dfn[e*6+4], dfn[e*6+5],
rL, ruL, rvL, rwL, reL,
rR, ruR, rvR, rwR, reR,
w1L, w2L, w3L, w1R, w2R, w3R,
pL, pR,
f[0], f[1], f[2], f[3], f[4] );
// store flux in edges
for (std::size_t c=0; c<m_ncomp; ++c) dflux[e*m_ncomp+c] = f[c];
}
// access pointer to right hand side at component and offset
std::array< const real*, m_ncomp > r;
for (ncomp_t c=0; c<m_ncomp; ++c) r[c] = R.cptr( c, m_offset );
// domain-edge integral: sum flux contributions to points
for (std::size_t p=0,k=0; p<U.nunk(); ++p)
for (auto q : tk::Around(psup,p)) {
auto s = gid[p] > gid[q] ? -1.0 : 1.0;
auto e = edgeid[k++];
// the 2.0 in the following expression is so that the RHS contribution
// conforms with Eq 12 (Waltz et al. Computers & fluids (92) 2014);
// The 1/2 in Eq 12 is extracted from the flux function (Rusanov).
// However, Rusanov::flux computes the flux with the 1/2. This 2
// cancels with the 1/2 in Rusanov::flux, so that the 1/2 can be
// extracted out and multiplied as in Eq 12
for (std::size_t c=0; c<m_ncomp; ++c)
R.var(r[c],p) -= 2.0*s*dflux[e*m_ncomp+c];
}
tk::destroy(dflux);
}
//! \brief Compute MUSCL reconstruction in edge-end points using a MUSCL
//! procedure with van Leer limiting
//! \param[in] p Left node id of edge-end
//! \param[in] q Right node id of edge-end
//! \param[in] coord Array of nodal coordinates
//! \param[in] G Gradient of all unknowns in mesh points
//! \param[in,out] rL Left density
//! \param[in,out] uL Left X velocity
//! \param[in,out] vL Left Y velocity
//! \param[in,out] wL Left Z velocity
//! \param[in,out] eL Left internal energy
//! \param[in,out] rR Right density
//! \param[in,out] uR Right X velocity
//! \param[in,out] vR Right Y velocity
//! \param[in,out] wR Right Z velocity
//! \param[in,out] eR Right internal energy
void muscl( std::size_t p,
std::size_t q,
const tk::UnsMesh::Coords& coord,
const tk::Fields& G,
real& rL, real& uL, real& vL, real& wL, real& eL,
real& rR, real& uR, real& vR, real& wR, real& eR ) const
{
// access node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// edge vector
std::array< real, 3 > vw{ x[q]-x[p], y[q]-y[p], z[q]-z[p] };
real delta1[5], delta2[5], delta3[5];
std::array< real, 5 > ls{ rL, uL, vL, wL, eL };
std::array< real, 5 > rs{ rR, uR, vR, wR, eR };
auto url = ls;
auto urr = rs;
// MUSCL reconstruction of edge-end-point primitive variables
for (std::size_t c=0; c<5; ++c) {
// gradients
std::array< real, 3 > g1{ G(p,c*3+0,0), G(p,c*3+1,0), G(p,c*3+2,0) },
g2{ G(q,c*3+0,0), G(q,c*3+1,0), G(q,c*3+2,0) };
delta2[c] = rs[c] - ls[c];
delta1[c] = 2.0 * tk::dot(g1,vw) - delta2[c];
delta3[c] = 2.0 * tk::dot(g2,vw) - delta2[c];
// MUSCL extrapolation option 1:
// ---------------------------------------------------------------------
// Uncomment the following 3 blocks of code if this version is required.
// this reconstruction is from the following paper:
// Waltz, J., Morgan, N. R., Canfield, T. R., Charest, M. R.,
// Risinger, L. D., & Wohlbier, J. G. (2014). A three-dimensional
// finite element arbitrary Lagrangian–Eulerian method for shock
// hydrodynamics on unstructured grids. Computers & Fluids, 92,
// 172-187.
//// form limiters
//auto rcL = (delta2[c] + muscl_eps) / (delta1[c] + muscl_eps);
//auto rcR = (delta2[c] + muscl_eps) / (delta3[c] + muscl_eps);
//auto rLinv = (delta1[c] + muscl_eps) / (delta2[c] + muscl_eps);
//auto rRinv = (delta3[c] + muscl_eps) / (delta2[c] + muscl_eps);
//// van Leer limiter
//// any other symmetric limiter could be used instead too
//auto phiL = (std::abs(rcL) + rcL) / (std::abs(rcL) + 1.0);
//auto phiR = (std::abs(rcR) + rcR) / (std::abs(rcR) + 1.0);
//auto phi_L_inv = (std::abs(rLinv) + rLinv) / (std::abs(rLinv) + 1.0);
//auto phi_R_inv = (std::abs(rRinv) + rRinv) / (std::abs(rRinv) + 1.0);
//// update unknowns with reconstructed unknowns
//url[c] += 0.25*(delta1[c]*muscl_m1*phiL + delta2[c]*muscl_p1*phi_L_inv);
//urr[c] -= 0.25*(delta3[c]*muscl_m1*phiR + delta2[c]*muscl_p1*phi_R_inv);
// ---------------------------------------------------------------------
// MUSCL extrapolation option 2:
// ---------------------------------------------------------------------
// The following 2 blocks of code.
// this reconstruction is from the following paper:
// Luo, H., Baum, J. D., & Lohner, R. (1994). Edge-based finite element
// scheme for the Euler equations. AIAA journal, 32(6), 1183-1190.
// Van Leer, B. (1974). Towards the ultimate conservative difference
// scheme. II. Monotonicity and conservation combined in a second-order
// scheme. Journal of computational physics, 14(4), 361-370.
// get Van Albada limiter
// the following form is derived from the flux limiter phi as:
// s = phi_inv - (1 - phi)
auto sL = std::max(0.0, (2.0*delta1[c]*delta2[c] + muscl_eps)
/(delta1[c]*delta1[c] + delta2[c]*delta2[c] + muscl_eps));
auto sR = std::max(0.0, (2.0*delta3[c]*delta2[c] + muscl_eps)
/(delta3[c]*delta3[c] + delta2[c]*delta2[c] + muscl_eps));
// update unknowns with reconstructed unknowns
url[c] += 0.25*sL*(delta1[c]*(1.0-muscl_const*sL)
+ delta2[c]*(1.0+muscl_const*sL));
urr[c] -= 0.25*sR*(delta3[c]*(1.0-muscl_const*sR)
+ delta2[c]*(1.0+muscl_const*sR));
// ---------------------------------------------------------------------
}
// force first order if the reconstructions for density or internal energy
// would have allowed negative values
if (ls[0] < delta1[0] || ls[4] < delta1[4]) url = ls;
if (rs[0] < -delta3[0] || rs[4] < -delta3[4]) urr = rs;
rL = url[0];
uL = url[1];
vL = url[2];
wL = url[3];
eL = url[4];
rR = urr[0];
uR = urr[1];
vR = urr[2];
wR = urr[3];
eR = urr[4];
}
//! Compute boundary integrals for ALECG
//! \param[in] coord Mesh node coordinates
//! \param[in] triinpoel Boundary triangle face connecitivity with local ids
//! \param[in] symbctri Vector with 1 at symmetry BC boundary triangles
//! \param[in] U Solution vector at recent time step
//! \param[in] W Mesh velocity
//! \param[in] spmult Sponge pressure multiplers at nodes, one per symBC set
//! \param[in,out] R Right-hand side vector computed
void bndint( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& triinpoel,
const std::vector< int >& symbctri,
const tk::Fields& U,
const tk::Fields& W,
const std::vector< tk::real >& spmult,
tk::Fields& R ) const
{
// access node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// boundary integrals: compute fluxes in edges
std::vector< real > bflux( triinpoel.size() * m_ncomp * 2 );
// number of side sets configured with sponge pressure multipliers
std::size_t nset = spmult.size() / x.size();
#pragma omp simd
for (std::size_t e=0; e<triinpoel.size()/3; ++e) {
// access node IDs
std::size_t N[3] =
{ triinpoel[e*3+0], triinpoel[e*3+1], triinpoel[e*3+2] };
// access solution at element nodes
real rA = U(N[0],0,m_offset);
real rB = U(N[1],0,m_offset);
real rC = U(N[2],0,m_offset);
real ruA = U(N[0],1,m_offset);
real ruB = U(N[1],1,m_offset);
real ruC = U(N[2],1,m_offset);
real rvA = U(N[0],2,m_offset);
real rvB = U(N[1],2,m_offset);
real rvC = U(N[2],2,m_offset);
real rwA = U(N[0],3,m_offset);
real rwB = U(N[1],3,m_offset);
real rwC = U(N[2],3,m_offset);
real reA = U(N[0],4,m_offset);
real reB = U(N[1],4,m_offset);
real reC = U(N[2],4,m_offset);
real w1A = W(N[0],0,0);
real w2A = W(N[0],1,0);
real w3A = W(N[0],2,0);
real w1B = W(N[1],0,0);
real w2B = W(N[1],1,0);
real w3B = W(N[1],2,0);
real w1C = W(N[2],0,0);
real w2C = W(N[2],1,0);
real w3C = W(N[2],2,0);
// apply stagnation BCs
if ( !skipPoint(x[N[0]],y[N[0]],z[N[0]]) &&
stagPoint(x[N[0]],y[N[0]],z[N[0]]) )
{
ruA = rvA = rwA = 0.0;
}
if ( !skipPoint(x[N[1]],y[N[1]],z[N[1]]) &&
stagPoint(x[N[1]],y[N[1]],z[N[1]]) )
{
ruB = rvB = rwB = 0.0;
}
if ( !skipPoint(x[N[2]],y[N[2]],z[N[2]]) &&
stagPoint(x[N[2]],y[N[2]],z[N[2]]) )
{
ruC = rvC = rwC = 0.0;
}
// compute face normal
real nx, ny, nz;
tk::normal( x[N[0]], x[N[1]], x[N[2]],
y[N[0]], y[N[1]], y[N[2]],
z[N[0]], z[N[1]], z[N[2]],
nx, ny, nz );
// compute boundary flux
real f[m_ncomp][3];
real p, vn;
int sym = symbctri[e];
p = eos_pressure< eq >( m_system, rA, ruA/rA, rvA/rA, rwA/rA, reA );
for (std::size_t s=0; s<nset; ++s) p -= p*spmult[N[0]*nset+s];
vn = sym ? 0.0 : (nx*(ruA/rA-w1A) + ny*(rvA/rA-w2A) + nz*(rwA/rA-w3A));
f[0][0] = rA*vn;
f[1][0] = ruA*vn + p*nx;
f[2][0] = rvA*vn + p*ny;
f[3][0] = rwA*vn + p*nz;
f[4][0] = reA*vn + p*(sym ? 0.0 : (nx*ruA + ny*rvA + nz*rwA)/rA);
p = eos_pressure< eq >( m_system, rB, ruB/rB, rvB/rB, rwB/rB, reB );
for (std::size_t s=0; s<nset; ++s) p -= p*spmult[N[1]*nset+s];
vn = sym ? 0.0 : (nx*(ruB/rB-w1B) + ny*(rvB/rB-w2B) + nz*(rwB/rB-w3B));
f[0][1] = rB*vn;
f[1][1] = ruB*vn + p*nx;
f[2][1] = rvB*vn + p*ny;
f[3][1] = rwB*vn + p*nz;
f[4][1] = reB*vn + p*(sym ? 0.0 : (nx*ruB + ny*rvB + nz*rwB)/rB);
p = eos_pressure< eq >( m_system, rC, ruC/rC, rvC/rC, rwC/rC, reC );
for (std::size_t s=0; s<nset; ++s) p -= p*spmult[N[2]*nset+s];
vn = sym ? 0.0 : (nx*(ruC/rC-w1C) + ny*(rvC/rC-w2C) + nz*(rwC/rC-w3C));
f[0][2] = rC*vn;
f[1][2] = ruC*vn + p*nx;
f[2][2] = rvC*vn + p*ny;
f[3][2] = rwC*vn + p*nz;
f[4][2] = reC*vn + p*(sym ? 0.0 : (nx*ruC + ny*rvC + nz*rwC)/rC);
// compute face area
auto A6 = tk::area( x[N[0]], x[N[1]], x[N[2]],
y[N[0]], y[N[1]], y[N[2]],
z[N[0]], z[N[1]], z[N[2]] ) / 6.0;
auto A24 = A6/4.0;
// store flux in boundary elements
for (std::size_t c=0; c<m_ncomp; ++c) {
auto eb = (e*m_ncomp+c)*6;
auto Bab = A24 * (f[c][0] + f[c][1]);
bflux[eb+0] = Bab + A6 * f[c][0];
bflux[eb+1] = Bab;
Bab = A24 * (f[c][1] + f[c][2]);
bflux[eb+2] = Bab + A6 * f[c][1];
bflux[eb+3] = Bab;
Bab = A24 * (f[c][2] + f[c][0]);
bflux[eb+4] = Bab + A6 * f[c][2];
bflux[eb+5] = Bab;
}
}
// access pointer to right hand side at component and offset
std::array< const real*, m_ncomp > r;
for (ncomp_t c=0; c<m_ncomp; ++c) r[c] = R.cptr( c, m_offset );
// boundary integrals: sum flux contributions to points
for (std::size_t e=0; e<triinpoel.size()/3; ++e)
for (std::size_t c=0; c<m_ncomp; ++c) {
auto eb = (e*m_ncomp+c)*6;
R.var(r[c],triinpoel[e*3+0]) -= bflux[eb+0] + bflux[eb+5];
R.var(r[c],triinpoel[e*3+1]) -= bflux[eb+1] + bflux[eb+2];
R.var(r[c],triinpoel[e*3+2]) -= bflux[eb+3] + bflux[eb+4];
}
tk::destroy(bflux);
}
//! Compute optional source integral
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] t Physical time
//! \param[in] tp Physical time for each mesh node
//! \param[in,out] R Right-hand side vector computed
void src( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
real t,
const std::vector< tk::real >& tp,
tk::Fields& R ) const
{
// access node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// access pointer to right hand side at component and offset
std::array< const real*, m_ncomp > r;
for (ncomp_t c=0; c<m_ncomp; ++c) r[c] = R.cptr( c, m_offset );
// source integral
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
auto J24 = tk::triple(
x[N[1]]-x[N[0]], y[N[1]]-y[N[0]], z[N[1]]-z[N[0]],
x[N[2]]-x[N[0]], y[N[2]]-y[N[0]], z[N[2]]-z[N[0]],
x[N[3]]-x[N[0]], y[N[3]]-y[N[0]], z[N[3]]-z[N[0]] ) / 24.0;
// sum source contributions to nodes
for (std::size_t a=0; a<4; ++a) {
real s[m_ncomp];
if (g_inputdeck.get< tag::discr, tag::steady_state >()) t = tp[N[a]];
Problem::src( m_system, x[N[a]], y[N[a]], z[N[a]], t,
s[0], s[1], s[2], s[3], s[4] );
for (std::size_t c=0; c<m_ncomp; ++c)
R.var(r[c],N[a]) += J24 * s[c];
}
}
}
//! Compute sources corresponding to a propagating front in user-defined box
//! \param[in] V Total box volume
//! \param[in] t Physical time
//! \param[in] inpoel Element point connectivity
//! \param[in] esup Elements surrounding points
//! \param[in] boxnodes Mesh node ids within user-defined box
//! \param[in] coord Mesh node coordinates
//! \param[in] R Right-hand side vector
//! \details This function add the energy source corresponding to a planar
//! wave-front propagating along the z-direction with a user-specified
//! velocity, within a box initial condition, configured by the user.
//! Example (SI) units of the quantities involved:
//! * internal energy content (energy per unit volume): J/m^3
//! * specific energy (internal energy per unit mass): J/kg
void boxSrc( real V,
real t,
const std::vector< std::size_t >& inpoel,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup,
const std::unordered_set< std::size_t >& boxnodes,
const std::array< std::vector< real >, 3 >& coord,
tk::Fields& R ) const<--- Parameter 'R' can be declared with const
{
const auto& ic = g_inputdeck.get< tag::param, eq, tag::ic >();
const auto& icbox = ic.get< tag::box >();
if (icbox.size() > m_system) {
for (const auto& b : icbox[m_system]) { // for all boxes for this eq
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
auto boxenc = b.template get< tag::energy_content >();
Assert( boxenc > 0.0, "Box energy content must be nonzero" );
auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
// determine times at which sourcing is initialized and terminated
auto iv = b.template get< tag::initiate, tag::velocity >();
auto wFront = 0.08;
auto tInit = 0.0;
auto tFinal = tInit + (box[5] - box[4] - 2.0*wFront) / std::fabs(iv);
auto aBox = (box[1]-box[0]) * (box[3]-box[2]);
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
if (t >= tInit && t <= tFinal) {
// The energy front is assumed to have a half-sine-wave shape. The
// half wave-length is the width of the front. At t=0, the center of
// this front (i.e. the peak of the partial-sine-wave) is at X_0 +
// W_0. W_0 is calculated based on the width of the front and the
// direction of propagation (which is assumed to be along the
// z-direction). If the front propagation velocity is positive, it
// is assumed that the initial position of the energy source is the
// minimum z-coordinate of the box; whereas if this velocity is
// negative, the initial position is the maximum z-coordinate of the
// box.
// initial center of front
tk::real zInit(box[4]);
if (iv < 0.0) zInit = box[5];
// current location of front
auto z0 = zInit + iv*t;
auto z1 = z0 + std::copysign(wFront, iv);
tk::real s0(z0), s1(z1);
// if velocity of propagation is negative, initial position is z1
if (iv < 0.0) {
s0 = z1;
s1 = z0;
}
// Sine-wave (positive part of the wave) source term amplitude
auto pi = 4.0 * std::atan(1.0);
auto amplE = boxenc * V_ex * pi
/ (aBox * wFront * 2.0 * (tFinal-tInit));
//// Square wave (constant) source term amplitude
//auto amplE = boxenc * V_ex
// / (aBox * wFront * (tFinal-tInit));
amplE *= V_ex / V;
// add source
for (auto p : boxnodes) {
if (z[p] >= s0 && z[p] <= s1) {
auto S = amplE * std::sin(pi*(z[p]-s0)/wFront);
for (auto e : tk::Around(esup,p)) {
// access node IDs
std::size_t N[4] =
{inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3]};
// compute element Jacobi determinant, J = 6V
real bax = x[N[1]]-x[N[0]];
real bay = y[N[1]]-y[N[0]];
real baz = z[N[1]]-z[N[0]];
real cax = x[N[2]]-x[N[0]];
real cay = y[N[2]]-y[N[0]];
real caz = z[N[2]]-z[N[0]];
real dax = x[N[3]]-x[N[0]];
real day = y[N[3]]-y[N[0]];
real daz = z[N[3]]-z[N[0]];
auto J =
tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
auto J24 = J/24.0;
R(p,4,m_offset) += J24 * S;
}
}
}
}
}
}
}
//! Compute sponge pressure multiplers at sponge side sets
//! \param[in] coord Mesh node coordinates
//! \param[in] nodes Unique set of nodes for sponge conditions
//! \return Sponge ressure multiplers at nodes, one per sponge side set
//! \details This function computes a sponge-like multiplier that will be
//! applied to nodes of side sets specified in the input file. This is
//! used to reduce the pressure gradient normal to boundaries and thereby
//! modeling the effect of a solid wall on the fluid via fluid-structure
//! interaction.
//! \note If no sponge pressure coefficients are configured, an empty
//! vector is returned.
std::vector< tk::real >
spongePressures( const std::array< std::vector< real >, 3 >& coord,
const std::unordered_set< std::size_t >& nodes ) const
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
std::vector< tk::real > spmult;
std::size_t nset = 0; // number of sponge side sets configured<--- The scope of the variable 'nset' can be reduced. [+]The scope of the variable 'nset' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:<--- Variable 'nset' is assigned a value that is never used.
void f(int x)<--- Variable 'nset' is assigned a value that is never used.
{<--- Variable 'nset' is assigned a value that is never used.
int i = 0;<--- Variable 'nset' is assigned a value that is never used.
if (x) {<--- Variable 'nset' is assigned a value that is never used.
// it's safe to move 'int i = 0;' here<--- Variable 'nset' is assigned a value that is never used.
for (int n = 0; n < 10; ++n) {<--- Variable 'nset' is assigned a value that is never used.
// it is possible but not safe to move 'int i = 0;' here<--- Variable 'nset' is assigned a value that is never used.
do_something(&i);<--- Variable 'nset' is assigned a value that is never used.
}<--- Variable 'nset' is assigned a value that is never used.
}<--- Variable 'nset' is assigned a value that is never used.
}<--- Variable 'nset' is assigned a value that is never used.
When you see this message it is always safe to reduce the variable scope 1 level. <--- Variable 'nset' is assigned a value that is never used.
const auto& sponge = g_inputdeck.get< param, eq, tag::sponge >();<--- Shadow variable
const auto& ss = sponge.get< tag::sideset >();
if (ss.size() > m_system) { // if symbcs configured for this system
const auto& sppre = sponge.get< tag::pressure >();
nset = ss[m_system].size(); // number of sponge side sets configured
spmult.resize( x.size() * nset, 0.0 );
for (auto p : nodes) {
if (not skipPoint(x[p],y[p],z[p]) && sppre.size() > m_system) {
Assert( nset == sppre[m_system].size(), "Size mismatch" );
for (std::size_t s=0; s<nset; ++s)
spmult[p*nset+s] = sppre[m_system][s];
} else {
for (std::size_t s=0; s<nset; ++s)
spmult[p*nset+s] = 0.0;
}
}
}
Assert( ss.size() > m_system ?
spmult.size() == x.size() * ss[m_system].size() :
spmult.size() == 0, "Sponge pressure multipler wrong size" );
return spmult;
}
};
} // cg::
} // inciter::
#endif // CGCompFlow_h
|