1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968 | // *****************************************************************************
/*!
\file src/Mesh/DerivedData.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Generate data structures derived from unstructured mesh
\details Generate data structures derived from the connectivity information
of an unstructured mesh.
*/
// *****************************************************************************
#include <set>
#include <map>
#include <iterator>
#include <numeric>
#include <algorithm>
#include <type_traits>
#include <cstddef>
#include <array>
#include <unordered_set>
#include <unordered_map>
#include <iostream>
#include <cfenv>
#include "Exception.hpp"
#include "DerivedData.hpp"
#include "ContainerUtil.hpp"
#include "Vector.hpp"
namespace tk {
int
orient( const UnsMesh::Edge& t, const UnsMesh::Edge& e )
// *****************************************************************************
// Determine edge orientation
//! \return -1.0 if edge t is oriented the same as edge e, +1.0 opposite
// *****************************************************************************
{
if (t[0] == e[0] && t[1] == e[1])
return -1;
else if (t[0] == e[1] && t[1] == e[0])
return 1;
else
return 0;
}
std::size_t
npoin_in_graph( const std::vector< std::size_t >& inpoel )
// *****************************************************************************
// Compute number of points (nodes) in mesh from connectivity
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! \return Number of mesh points (nodes)
// *****************************************************************************
{
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
return *minmax.second + 1;
}
std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
genEsup( const std::vector< std::size_t >& inpoel, std::size_t nnpe )
// *****************************************************************************
// Generate derived data structure, elements surrounding points
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element
//! \return Linked lists storing elements surrounding points
//! \warning It is not okay to call this function with an empty container or a
//! non-positive number of nodes per element; it will throw an exception.
//! \details The data generated here is stored in a linked list, more precisely,
//! two linked arrays (vectors), _esup1_ and _esup2_, where _esup2_ holds the
//! indices at which _esup1_ holds the element ids surrounding points. Looping
//! over all elements surrounding all points can then be accomplished by the
//! following loop:
//! \code{.cpp}
//! for (std::size_t p=0; p<npoin; ++p)
//! for (auto i=esup.second[p]+1; i<=esup.second[p+1]; ++i)
//! use element id esup.first[i]
//! \endcode
//! To find out the number of points, _npoin_, the mesh connectivity,
//! _inpoel_, can be queried:
//! \code{.cpp}
//! auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
//! Assert( *minmax.first == 0, "node ids should start from zero" );
//! auto npoin = *minmax.second + 1;
//! \endcode
//! \note In principle, this function *should* work for any positive nnpe,
//! however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEsup() on empty container" );
Assert( nnpe > 0, "Attempt to call genEsup() with zero nodes per element" );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
// allocate one of the linked lists storing elements surrounding points: esup2
// fill with zeros
std::vector< std::size_t > esup2( npoin+1, 0 );
// element pass 1: count number of elements connected to each point
for (auto n : inpoel) ++esup2[ n + 1 ];
// storage/reshuffling pass 1: update storage counter and store
// also find out the maximum size of esup1 (mesup)
auto mesup = esup2[0]+1;
for (std::size_t i=1; i<npoin+1; ++i) {
esup2[i] += esup2[i-1];
if (esup2[i]+1 > mesup) mesup = esup2[i]+1;
}
// now we know mesup, so allocate the other one of the linked lists storing
// elements surrounding points: esup1
std::vector< std::size_t > esup1( mesup );
// store the elements in esup1
std::size_t e = 0;
for (auto n : inpoel) {
auto j = esup2[n]+1;
esup2[n] = j;
esup1[j] = e/nnpe;
++e;
}
// storage/reshuffling pass 2
for (auto i=npoin; i>0; --i) esup2[i] = esup2[i-1];
esup2[0] = 0;
// Return (move out) linked lists
return std::make_pair( std::move(esup1), std::move(esup2) );
}
std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
genPsup( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, points surrounding points
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Linked lists storing points surrounding points
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second or a non-positive number of nodes per
//! element; it will throw an exception.
//! \details The data generated here is stored in a linked list, more precisely,
//! two linked arrays (vectors), _psup1_ and _psup2_, where _psup2_ holds the
//! indices at which _psup1_ holds the point ids surrounding points. Looping
//! over all points surrounding all points can then be accomplished by the
//! following loop:
//! \code{.cpp}
//! for (std::size_t p=0; p<npoin; ++p)
//! for (auto i=psup.second[p]+1; i<=psup.second[p+1]; ++i)
//! use point id psup.first[i]
//! \endcode
//! To find out the number of points, _npoin_, the mesh connectivity,
//! _inpoel_, can be queried:
//! \code{.cpp}
//! auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
//! Assert( *minmax.first == 0, "node ids should start from zero" );
//! auto npoin = *minmax.second + 1;
//! \endcode
//! or the length-1 of the generated index list:
//! \code{.cpp}
//! auto npoin = psup.second.size()-1;
//! \endcode
//! \note In principle, this function *should* work for any positive nnpe,
//! however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genPsup() on empty container" );
Assert( nnpe > 0, "Attempt to call genPsup() with zero nodes per element" );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !esup.first.empty(), "Attempt to call genPsup() with empty esup1" );
Assert( !esup.second.empty(), "Attempt to call genPsup() with empty esup2" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
auto& esup1 = esup.first;
auto& esup2 = esup.second;
// allocate both of the linked lists storing points surrounding points, we
// only know the size of psup2, put in a single zero in psup1
std::vector< std::size_t > psup2( npoin+1 ), psup1( 1, 0 );
// allocate and fill with zeros a temporary array, only used locally
std::vector< std::size_t > lpoin( npoin, 0 );
// fill both psup1 and psup2
psup2[0] = 0;
std::size_t j = 0;
for (std::size_t p=0; p<npoin; ++p) {
for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i ) {
for (std::size_t n=0; n<nnpe; ++n) {
auto q = inpoel[ esup1[i] * nnpe + n ];
if (q != p && lpoin[q] != p+1) {
++j;
psup1.push_back( q );
lpoin[q] = p+1;
}
}
}
psup2[p+1] = j;
}
// sort point ids for each point in psup1
for (std::size_t p=0; p<npoin; ++p)
std::sort(
std::next( begin(psup1), static_cast<std::ptrdiff_t>(psup2[p]+1) ),
std::next( begin(psup1), static_cast<std::ptrdiff_t>(psup2[p+1]+1) ) );
// Return (move out) linked lists
return std::make_pair( std::move(psup1), std::move(psup2) );
}
std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
genEdsup( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, edges surrounding points
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element (3 or 4)
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Linked lists storing edges (point ids p < q) emanating from points
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second or a non-positive number of nodes per
//! element; it will throw an exception.
//! \details The data generated here is stored in a linked list, more precisely,
//! two linked arrays (vectors), _edsup1_ and _edsup2_, where _edsup2_ holds
//! the indices at which _edsup1_ holds the edge-end point ids emanating from
//! points for all points. The generated data structure, linked lists edsup1
//! and edsup2, are very similar to psup1 and psup2, generated by genPsup(),
//! except here only unique edges are stored, i.e., for edges with point ids
//! p < q, only ids q are stored that are still associated to point p. Looping
//! over all unique edges can then be accomplished by the following loop:
//! \code{.cpp}
//! for (std::size_t p=0; p<npoin; ++p)
//! for (auto i=edsup.second[p]+1; i<=edsup.second[p+1]; ++i)
//! use edge with point ids p < edsup.first[i]
//! \endcode
//! To find out the number of points, _npoin_, the mesh connectivity,
//! _inpoel_, can be queried:
//! \code{.cpp}
//! auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
//! Assert( *minmax.first == 0, "node ids should start from zero" );
//! auto npoin = *minmax.second + 1;
//! \endcode
//! \note At first sight, this function seems to work for elements with more
//! vertices than that of tetrahedra. However, that is not the case since the
//! algorithm for nnpe > 4 would erronously identify any two combination of
//! vertices as a valid edge of an element. Since only triangles and
//! tetrahedra have no internal edges, this algorithm only works for triangle
//! and tetrahedra element connectivity.
//! \see tk::genInpoed for similar data that sometimes may be more advantageous
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEdsup() on empty container" );
Assert( nnpe > 0, "Attempt to call genEdsup() with zero nodes per element" );
Assert( nnpe == 3 || nnpe == 4,
"Attempt to call genEdsup() with nodes per element, nnpe, that is "
"neither 4 (tetrahedra) nor 3 (triangles)." );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !esup.first.empty(), "Attempt to call genEdsup() with empty esup1" );
Assert( !esup.second.empty(), "Attempt to call genEdsup() with empty esup2" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
auto& esup1 = esup.first;<--- Variable 'esup1' can be declared with const
auto& esup2 = esup.second;<--- Variable 'esup2' can be declared with const
// allocate and fill with zeros a temporary array, only used locally
std::vector< std::size_t > lpoin( npoin, 0 );
// map to contain stars, a point associated to points connected with edges
// storing only the end-point id, q, of point ids p < q
std::map< std::size_t, std::vector< std::size_t > > star;
// generate edge connectivity and store as stars where center id < spike id
for (std::size_t p=0; p<npoin; ++p)
for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
for (std::size_t n=0; n<nnpe; ++n) {
auto q = inpoel[ esup1[i] * nnpe + n ];
if (q != p && lpoin[q] != p+1) {
if (p < q) star[p].push_back(q);
lpoin[q] = p+1;
}
}
// linked lists (vectors) to store edges surrounding points and their indices
std::vector< std::size_t > edsup1( 1, 0 ), edsup2( 1, 0 );
// sort non-center points of each star and store nodes and indices in vectors
for (auto& p : star) {
std::sort( begin(p.second), end(p.second) );
edsup2.push_back( edsup2.back() + p.second.size() );
edsup1.insert( end(edsup1), begin(p.second), end(p.second) );
}
// fill up index array with the last index for points with no new edges
for (std::size_t i=0; i<npoin-star.size(); ++i)
edsup2.push_back( edsup2.back() );
// Return (move out) linked lists
return std::make_pair( std::move(edsup1), std::move(edsup2) );
}
std::vector< std::size_t >
genInpoed( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, edge connectivity
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element (3 or 4)
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Linear vector storing edge connectivity (point ids p < q)
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second or a non-positive number of nodes per
//! element; it will throw an exception.
//! \details The data generated here is stored in a linear vector and is very
//! similar to the linked lists, _edsup1_ and _edsup2, generated by
//! genEdsup(). The difference is that in the linear vector, inpoed, generated
//! here, both edge point ids are stored as a pair, p < q, as opposed to the
//! linked lists edsup1 and edsup2, in which edsup1 only stores the edge-end
//! point ids (still associated to edge-start point ids when used together
//! with edsup2). The rationale is that while inpoed is larger in memory, it
//! allows direct access to edges (pair of point ids making up an edge),
//! edsup1 and edsup2 are smaller in memory, still allow accessing the same
//! data (edge point id pairs) but only in a linear fashion, not by direct
//! access to particular edges. Accessing all unique edges using the edge
//! connectivity data structure, inpoed, generated here can be accomplished by
//! \code{.cpp}
//! for (std::size_t e=0; e<inpoed.size()/2; ++e) {
//! use point id p of edge e = inpoed[e*2];
//! use point id q of edge e = inpoed[e*2+1];
//! }
//! \endcode
//! \note At first sight, this function seems to work for elements with more
//! vertices than that of tetrahedra. However, that is not the case since the
//! algorithm for nnpe > 4 would erronously identify any two combination of
//! vertices as a valid edge of an element. Since only triangles and
//! tetrahedra have no internal edges, this algorithm only works for triangle
//! and tetrahedra element connectivity.
//! \see tk::genEdsup for similar data that sometimes may be more advantageous
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genInpoed() on empty container" );
Assert( nnpe > 0, "Attempt to call genInpoed() with zero nodes per element" );
Assert( nnpe == 3 || nnpe == 4,
"Attempt to call genInpoed() with nodes per element, nnpe, that is "
"neither 4 (tetrahedra) nor 3 (triangles)." );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !esup.first.empty(), "Attempt to call genInpoed() with empty esup1" );
Assert( !esup.second.empty(),
"Attempt to call genInpoed() with empty esup2" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
auto& esup1 = esup.first;<--- Variable 'esup1' can be declared with const
auto& esup2 = esup.second;<--- Variable 'esup2' can be declared with const
// allocate and fill with zeros a temporary array, only used locally
std::vector< std::size_t > lpoin( npoin, 0 );
// map to contain stars, a point associated to points connected with edges,
// storing only the end-point id, q, of point ids p < q
std::map< std::size_t, std::vector< std::size_t > > star;
// generate edge connectivity and store as stars where center id < spike id
for (std::size_t p=0; p<npoin; ++p)
for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
for (std::size_t n=0; n<nnpe; ++n) {
auto q = inpoel[ esup1[i] * nnpe + n ];
if (q != p && lpoin[q] != p+1) {
if (p < q) star[p].push_back( q );
lpoin[q] = p+1;
}
}
// linear vector to store edge connectivity and their indices
std::vector< std::size_t > inpoed;
// sort non-center points of each star and store both start and end points of
// each star in linear vector
for (auto& p : star) {
std::sort( begin(p.second), end(p.second) );
for (auto e : p.second) {
inpoed.push_back( p.first );
inpoed.push_back( e );
}
}
// Return (move out) linear vector
return inpoed;
}
std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
genEsupel( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, elements surrounding points of elements
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Linked lists storing elements surrounding points of elements
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second or a non-positive number of nodes per
//! element; it will throw an exception.
//! \details The data generated here is stored in a linked list, more precisely,
//! two linked arrays (vectors), _esupel1_ and _esupel2_, where _esupel2_
//! holds the indices at which _esupel1_ holds the element ids surrounding
//! points of elements. Looping over all elements surrounding the points of
//! all elements can then be accomplished by the following loop:
//! \code{.cpp}
//! for (std::size_t e=0; e<nelem; ++e)
//! for (auto i=esupel.second[e]+1; i<=esupel.second[e+1]; ++i)
//! use element id esupel.first[i]
//! \endcode
//! To find out the number of elements, _nelem_, the size of the mesh
//! connectivity vector, _inpoel_, can be devided by the number of nodes per
//! elements, _nnpe_:
//! \code{.cpp}
//! auto nelem = inpoel.size()/nnpe;
//! \endcode
//! \note In principle, this function *should* work for any positive nnpe,
//! however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEsupel() on empty container" );
Assert( nnpe > 0, "Attempt to call genEsupel() with zero nodes per element" );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !esup.first.empty(), "Attempt to call genEsupel() with empty esup1" );
Assert( !esup.second.empty(),
"Attempt to call genEsupel() with empty esup2" );
auto& esup1 = esup.first;
auto& esup2 = esup.second;<--- Variable 'esup2' can be declared with const
// linked lists storing elements surrounding points of elements, put in a
// single zero in both
std::vector< std::size_t > esupel2( 1, 0 ), esupel1( 1, 0 );
std::size_t e = 0;
std::set< std::size_t > esuel;
for (auto p : inpoel) { // loop over all points of all elements
// collect unique element ids of elements surrounding points of element
for (auto i=esup2[p]+1; i<=esup2[p+1]; ++i) esuel.insert( esup1[i] );
if (++e%nnpe == 0) { // when finished checking all nodes of element
// erase element whose surrounding elements are considered
esuel.erase( e/nnpe-1 );
// store unique element ids in esupel1
esupel1.insert( end(esupel1), begin(esuel), end(esuel) );
// store end-index for element used to address into esupel1
esupel2.push_back( esupel2.back() + esuel.size() );
esuel.clear();
}
}
// Return (move out) linked lists
return std::make_pair( std::move(esupel1), std::move(esupel2) );
}
std::pair< std::vector< std::size_t >, std::vector< std::size_t > >
genEsuel( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, elements surrounding elements
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Linked lists storing elements surrounding elements
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second; it will throw an exception.
//! \details The data generated here is stored in a linked list, more precisely,
//! two linked arrays (vectors), _esuel1_ and _esuel2_, where _esuel2_ holds
//! the indices at which _esuel1_ holds the element ids surrounding elements.
//! Looping over elements surrounding elements can then be accomplished by the
//! following loop:
//! \code{.cpp}
//! for (std::size_t e=0; e<nelem; ++e)
//! for (auto i=esuel.second[e]+1; i<=esuel.second[e+1]; ++i)
//! use element id esuel.first[i]
//! \endcode
//! To find out the number of elements, _nelem_, the size of the mesh
//! connectivity vector, _inpoel_, can be devided by the number of nodes per
//! elements, _nnpe_:
//! \code{.cpp}
//! auto nelem = inpoel.size()/nnpe;
//! \endcode
//! \note In principle, this function *should* work for any positive nnpe,
//! however, only nnpe = 4 (tetrahedra) and nnpe = 3 (triangles) are tested.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEsuel() on empty container" );
Assert( nnpe > 0, "Attempt to call genEsuel() with zero nodes per element" );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by four" );
Assert( !esup.first.empty(), "Attempt to call genEsuel() with empty esuel1" );
Assert( !esup.second.empty(),
"Attempt to call genEsuel() with empty esuel2" );
auto& esup1 = esup.first;
auto& esup2 = esup.second;<--- Variable 'esup2' can be declared with const
auto nelem = inpoel.size()/nnpe;
// lambda that returns 1 if elements hel and gel share a face
auto adj = [ &inpoel, nnpe ]( std::size_t hel, std::size_t gel ) -> bool {
std::size_t sp = 0;
for (std::size_t h=0; h<nnpe; ++h)
for (std::size_t g=0; g<nnpe; ++g)
if (inpoel[hel*nnpe+h] == inpoel[gel*nnpe+g]) ++sp;
if (sp == nnpe-1) return true; else return false;
};
// map to associate unique elements and their surrounding elements
std::map< std::size_t, std::vector< std::size_t > > es;
for (std::size_t e=0; e<nelem; ++e) {
std::set< std::size_t > faces; // will collect elem ids of shared faces
for (std::size_t n=0; n<nnpe; ++n) {
auto i = inpoel[ e*nnpe+n ];
for (auto j=esup2[i]+1; j<=esup2[i+1]; ++j)
if (adj( e, esup1[j] )) faces.insert( esup1[j] );
}
// store element ids of shared faces
for (auto j : faces) es[e].push_back(j);
}
// storing elements surrounding elements
std::vector< std::size_t > esuel1( 1, 0 ), esuel2( 1, 0 );
// store elements surrounding elements in linked lists
for (const auto& e : es) {
esuel2.push_back( esuel2.back() + e.second.size() );
esuel1.insert( end(esuel1), begin(e.second), end(e.second) );
}
// Return (move out) linked lists
return std::make_pair( std::move(esuel1), std::move(esuel2) );
}
std::vector< std::size_t >
genInedel( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::vector< std::size_t >& inpoed )
// *****************************************************************************
// Generate derived data structure, edges of elements
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element
//! \param[in] inpoed Edge connectivity as linear vector, see tk::genInpoed
//! \return Linear vector storing all edge ids * 2 of all elements
//! \warning It is not okay to call this function with an empty container for
//! inpoel or inpoed or a non-positive number of nodes per element; it will
//! throw an exception.
//! \details The data generated here is stored in a linear vector with all
//! edge ids (as defined by inpoed) of all elements. The edge ids stored in
//! inedel can be directly used to index the vector inpoed. Because the
//! derived data structure generated here, inedel, is intended to be used in
//! conjunction with the linear vector inpoed and not with the linked lists
//! edsup1 and edsup2, this function takes inpoed as an argument. Accessing
//! the edges of element e using the edge of elements data structure, inedel,
//! generated here can be accomplished by
//! \code{.cpp}
//! for (std::size_t e=0; e<nelem; ++e) {
//! for (std::size_t i=0; i<nepe; ++i) {
//! use edge id inedel[e*nepe+i] of element e, or
//! use point ids p < q of edge id inedel[e*nepe+i] of element e as
//! p = inpoed[ inedel[e*nepe+i]*2 ]
//! q = inpoed[ inedel[e*nepe+i]*2+1 ]
//! }
//! }
//! \endcode
//! where _nepe_ denotes the number of edges per elements: 3 for triangles, 6
//! for tetrahedra. To find out the number of elements, _nelem_, the size of
//! the mesh connectivity vector, _inpoel_, can be devided by the number of
//! nodes per elements, _nnpe_:
//! \code{.cpp}
//! auto nelem = inpoel.size()/nnpe;
//! \endcode
//! \note At first sight, this function seems to work for elements with more
//! vertices than that of tetrahedra. However, that is not the case since the
//! algorithm for nnpe > 4 would erronously identify any two combination of
//! vertices as a valid edge of an element. Since only triangles and
//! tetrahedra have no internal edges, this algorithm only works for triangle
//! and tetrahedra element connectivity.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genInedel() on empty container" );
Assert( nnpe > 0, "Attempt to call genInedel() with zero nodes per element" );
Assert( nnpe == 3 || nnpe == 4,
"Attempt to call genInedel() with nodes per element, nnpe, that is "
"neither 4 (tetrahedra) nor 3 (triangles)." );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !inpoed.empty(), "Attempt to call genInedel() with empty inpoed" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
// First, generate index of star centers. This is necessary to avoid a
// brute-force search for point ids of edges when searching for element edges.
// Note that this is the same as edsup2, generated by genEdsup(). However,
// because the derived data structure generated here, inedel, is intended to
// be used in conjunction with the linear vector inpoed and not with the
// linked lists edsup1 and edsup2, this function takes inpoed as an argument,
// and so edsup2 is temporarily generated here to avoid a brute-force search.
// map to contain stars, a point associated to points connected with edges
// storing only the end-point id, q, of point ids p < q
std::map< std::size_t, std::vector< std::size_t > > star;
// generate stars from inpoed; starting with zero, every even is a star
// center, every odd is a spike
for (std::size_t i=0; i<inpoed.size()/2; ++i)
star[ inpoed[i*2] ].push_back( inpoed[i*2+1] );
// store index of star centers in vector; assume non-center points of each
// star have already been sorted
std::vector< std::size_t > edsup2( 1, 0 );
for (const auto& p : star) edsup2.push_back(edsup2.back() + p.second.size());
// fill up index array with the last index for points with no new edges
for (std::size_t i=0; i<npoin-star.size(); ++i)
edsup2.push_back( edsup2.back() );
star.clear();
// Second, generate edges of elements
auto nelem = inpoel.size()/nnpe;
// map associating elem id with vector of edge ids
std::map< std::size_t, std::vector< std::size_t > > edges;
// generate map of elements associated to edge ids
for (std::size_t e=0; e<nelem; ++e)
for (std::size_t n=0; n<nnpe; ++n) {
auto p = inpoel[e*nnpe+n];
for (auto i=edsup2[p]+1; i<=edsup2[p+1]; ++i)
for (std::size_t j=0; j<nnpe; ++j)
if (inpoed[(i-1)*2+1] == inpoel[e*nnpe+j])
edges[e].push_back( i-1 );
}
// linear vector to store the edge ids of all elements
std::vector< std::size_t > inedel( sumvalsize(edges) );
// store edge ids of elements in linear vector
std::size_t j = 0;
for (const auto& e : edges) for (auto p : e.second) inedel[ j++ ] = p;
// Return (move out) vector
return inedel;
}
std::unordered_map< UnsMesh::Edge, std::vector< std::size_t >,
UnsMesh::Hash<2>, UnsMesh::Eq<2> >
genEsued( const std::vector< std::size_t >& inpoel,
std::size_t nnpe,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, elements surrounding edges
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] nnpe Number of nodes per element (3 or 4)
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Associative container storing elements surrounding edges (value),
//! assigned to edge-end points (key)
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second or a non-positive number of nodes per
//! element; it will throw an exception.
//! \details Looping over elements surrounding all edges can be accomplished by
//! the following loop:
//! \code{.cpp}
//! for (const auto& [edge,surr_elements] : esued) {
//! use element edge-end-point ids edge[0] and edge[1]
//! for (auto e : surr_elements) {
//! use element id e
//! }
//! }
//! \endcode
//! esued.size() equals the number of edges.
//! \note At first sight, this function seems to work for elements with more
//! vertices than that of tetrahedra. However, that is not the case since the
//! algorithm for nnpe > 4 would erronously identify any two combination of
//! vertices as a valid edge of an element. Since only triangles and
//! tetrahedra have no internal edges, this algorithm only works for triangle
//! and tetrahedra element connectivity.
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEsued() on empty container" );
Assert( nnpe > 0, "Attempt to call genEsued() with zero nodes per element" );
Assert( nnpe == 3 || nnpe == 4,
"Attempt to call genEsued() with nodes per element, nnpe, that is "
"neither 4 (tetrahedra) nor 3 (triangles)." );
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by nnpe" );
Assert( !esup.first.empty(), "Attempt to call genEsued() with empty esup1" );
Assert( !esup.second.empty(), "Attempt to call genEsued() with empty esup2" );
// find out number of points in mesh connectivity
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
auto& esup1 = esup.first;<--- Variable 'esup1' can be declared with const
auto& esup2 = esup.second;<--- Variable 'esup2' can be declared with const
// allocate and fill with zeros a temporary array, only used locally
std::vector< std::size_t > lpoin( npoin, 0 );
// lambda that returns true if element e contains edge (p < q)
auto has = [ &inpoel, nnpe ]( std::size_t e, std::size_t p, std::size_t q ) {
int sp = 0;
for (std::size_t n=0; n<nnpe; ++n)
if (inpoel[e*nnpe+n] == p || inpoel[e*nnpe+n] == q) ++sp;
return sp == 2;
};
// map to associate edges to unique surrounding element ids
std::unordered_map< UnsMesh::Edge, std::vector< std::size_t >,
UnsMesh::Hash<2>, UnsMesh::Eq<2> > esued;
// generate edges and associated vector of unique surrounding element ids
for (std::size_t p=0; p<npoin; ++p)
for (std::size_t i=esup2[p]+1; i<=esup2[p+1]; ++i )
for (std::size_t n=0; n<nnpe; ++n) {
auto q = inpoel[ esup1[i] * nnpe + n ];
if (q != p && lpoin[q] != p+1) {
if (p < q) { // for edge given point ids p < q
for (std::size_t j=esup2[p]+1; j<=esup2[p+1]; ++j ) {
auto e = esup1[j];
if (has(e,p,q)) esued[{p,q}].push_back(e);
}
}
lpoin[q] = p+1;
}
}
// sort element ids surrounding edges for each edge
for (auto& p : esued) std::sort( begin(p.second), end(p.second) );
// Return elements surrounding edges data structure
return esued;
}
std::size_t
genNbfacTet( std::size_t tnbfac,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& triinpoel_complete,
const std::map< int, std::vector< std::size_t > >& bface_complete,
const std::unordered_map< std::size_t, std::size_t >& lid,
std::vector< std::size_t >& triinpoel,
std::map< int, std::vector< std::size_t > >& bface )
// *****************************************************************************
// Generate the number of boundary-faces and the triangle boundary-face
// connectivity for a chunk of a full mesh.
// \warning This is for Triangular face-elements only.
//! \param[in] tnbfac Total number of boundary faces in the entire mesh.
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh.
//! \param[in] triinpoel_complete Interconnectivity of points and boundary-face
//! in the entire mesh.
//! \param[in] bface_complete Map of boundary-face lists mapped to corresponding
//! side set ids for the entire mesh.
//! \param[in] lid Mapping between the node indices used in the smaller inpoel
//! connectivity (a subset of the entire triinpoel_complete connectivity),
//! e.g., after mesh partitioning.
//! \param[inout] triinpoel Interconnectivity of points and boundary-face in
//! this mesh-partition.
//! \param[inout] bface Map of boundary-face lists mapped to corresponding
//! side set ids for this mesh-partition
//! \return Number of boundary-faces on this chare/mesh-partition.
//! \details This function takes a mesh by its domain-element
//! (tetrahedron-connectivity) in inpoel and a boundary-face (triangle)
//! connectivity in triinpoel_complete. Based on these two arrays, it
//! searches for those faces of triinpoel_complete that are also in inpoel
//! and as a result it generates (1) the number of boundary faces shared with
//! the mesh in inpoel and (2) the intersection of the triangle element
//! connectivity whose faces are shared with inpoel. An example use case is
//! where triinpoel_complete contains the connectivity for the boundary of the
//! full problem/mesh and inpoel contains the connectivity for only a chunk of
//! an already partitioned mesh. This function then intersects
//! triinpoel_complete with inpoel and returns only those faces that share
//! nodes with inpoel.
// *****************************************************************************
{
std::size_t nbfac(0), nnpf(3);<--- Variable 'nnpf' is assigned a value that is never used.
if (tnbfac > 0)
{
Assert( !inpoel.empty(),
"Attempt to call genNbfacTet() on empty inpoel container" );
Assert( !triinpoel_complete.empty(),
"Attempt to call genNbfacTet() on empty triinpoel_complete container" );
Assert( triinpoel_complete.size()/nnpf == tnbfac,
"Incorrect size of triinpoel in genNbfacTet()" );
auto nptet = inpoel;
auto nptri = triinpoel_complete;
unique( nptet );
unique( nptri );
std::unordered_set< std::size_t > snptet;
// getting the reduced inpoel as a set for quick searches
snptet.insert( begin(nptet), end(nptet));
// vector to store boundary-face-nodes in this chunk
std::vector< std::size_t > nptri_chunk;
// getting the nodes of the boundary-faces in this chunk
for (auto i : nptri)
if (snptet.find(i) != end(snptet))
nptri_chunk.push_back(i);
std::size_t tag, icoun;
// matching nodes in nptri_chunk with nodes in inpoel and
// triinpoel_complete to get the number of faces in this chunk
for (const auto& ss : bface_complete)
{
for (auto f : ss.second)
{
icoun = f*nnpf;
tag = 0;
for (std::size_t i=0; i<nnpf; ++i) {
for (auto j : nptri_chunk) {
// cppcheck-suppress useStlAlgorithm
if (triinpoel_complete[icoun+i] == j) ++tag;
}
}
if (tag == nnpf)
// this is a boundary face
{
for (std::size_t i=0; i<nnpf; ++i)
{
auto ip = triinpoel_complete[icoun+i];
// find local renumbered node-id to store in triinpoel
triinpoel.push_back( cref_find(lid,ip) );
}
bface[ss.first].push_back(nbfac);
++nbfac;
}
}
}
}
return nbfac;
}
std::vector< int >
genEsuelTet( const std::vector< std::size_t >& inpoel,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data structure, elements surrounding elements
// as a fixed length data structure as a full vector, including
// boundary elements as -1.
// \warning This is for Tetrahedra only.
//! \param[in] inpoel Inteconnectivity of points and elements. These are the
//! node ids of each element of an unstructured mesh. Example:
//! \code{.cpp}
//! std::vector< std::size_t > inpoel { 12, 14, 9, 11,
//! 10, 14, 13, 12 };
//! \endcode
//! specifies two tetrahedra whose vertices (node ids) are { 12, 14, 9, 11 },
//! and { 10, 14, 13, 12 }.
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Vector storing elements surrounding elements
//! \warning It is not okay to call this function with an empty container for
//! inpoel or esup.first or esup.second; it will throw an exception.
//! \details The data generated here is stored in a single vector, with length
//! nfpe * nelem. Note however, that nelem is not explicitly provided, but
//! calculated from inpoel. For boundary elements, at the boundary face, this
//! esuelTet stores value -1 indicating that this is outside the domain. The
//! convention for numbering the local face (triangle) connectivity is very
//! important, e.g., in generating the inpofa array later. This node ordering
//! convention is stored in tk::lpofa. Thus function is specific to
//! tetrahedra, which is reflected in the fact that nnpe and nfpe are being
//! set here in the function rather than being input arguments. To find out
//! the number of elements, _nelem_, the size of the mesh connectivity vector,
//! _inpoel_, can be devided by the number of nodes per elements, _nnpe_:
//! \code{.cpp}
//! auto nelem = inpoel.size()/nnpe;
//! \endcode
// *****************************************************************************
{
Assert( !inpoel.empty(), "Attempt to call genEsuelTet() on empty container" );
Assert( !esup.first.empty(), "Attempt to call genEsuelTet() with empty esup1" );
Assert( !esup.second.empty(),
"Attempt to call genEsuelTet() with empty esup2" );
auto& esup1 = esup.first;
auto& esup2 = esup.second;
// set tetrahedron geometry
std::size_t nnpe(4), nfpe(4), nnpf(3);<--- Variable 'nfpe' is assigned a value that is never used.<--- Variable 'nnpf' is assigned a value that is never used.
Assert( inpoel.size()%nnpe == 0, "Size of inpoel must be divisible by four" );
// get nelem and npoin
auto nelem = inpoel.size()/nnpe;<--- Variable 'nelem' is assigned a value that is never used.
auto minmax = std::minmax_element( begin(inpoel), end(inpoel) );
Assert( *minmax.first == 0, "node ids should start from zero" );
auto npoin = *minmax.second + 1;
std::vector< int > esuelTet(nfpe*nelem, -1);
std::vector< std::size_t > lhelp(nnpf,0),
lpoin(npoin,0);
for (std::size_t e=0; e<nelem; ++e)
{
auto mark = nnpe*e;
for (std::size_t fe=0; fe<nfpe; ++fe)
{
// array which stores points on this face
lhelp[0] = inpoel[mark+lpofa[fe][0]];
lhelp[1] = inpoel[mark+lpofa[fe][1]];
lhelp[2] = inpoel[mark+lpofa[fe][2]];
// mark in this array
lpoin[lhelp[0]] = 1;
lpoin[lhelp[1]] = 1;
lpoin[lhelp[2]] = 1;
// select a point on this face
auto ipoin = lhelp[0];
// loop over elements around this point
for (std::size_t j=esup2[ipoin]+1; j<=esup2[ipoin+1]; ++j )
{
auto jelem = esup1[j];
// if this jelem is not e itself then proceed
if (jelem != e)
{
for (std::size_t fj=0; fj<nfpe; ++fj)
{
std::size_t icoun(0);
for (std::size_t jnofa=0; jnofa<nnpf; ++jnofa)
{
auto markj = jelem*nnpe;
auto jpoin = inpoel[markj+lpofa[fj][jnofa]];
if (lpoin[jpoin] == 1) { ++icoun; }
}
//store esuel if
if (icoun == nnpf)
{
auto markf = nfpe*e;
esuelTet[markf+fe] = static_cast<int>(jelem);
markf = nfpe*jelem;
esuelTet[markf+fj] = static_cast<int>(e);
}
}
}
}
// reset this array
lpoin[lhelp[0]] = 0;
lpoin[lhelp[1]] = 0;
lpoin[lhelp[2]] = 0;
}
}
return esuelTet;
}
std::size_t
genNipfac( std::size_t nfpe,
std::size_t nbfac,
const std::vector< int >& esuelTet )
// *****************************************************************************
// Generate derived data, number of internal and physical-boundary faces in the
// mesh. This does not include faces that are on partition/chare-boundaries.
//! \param[in] nfpe Number of faces per element.
//! \param[in] nbfac Number of boundary faces.
//! \param[in] esuelTet Elements surrounding elements.
//! \return Total number of faces in the mesh
//! \details The unsigned integer here gives the number of internal and
// physical-boundary faces in the mesh.
// *****************************************************************************
{
Assert( !esuelTet.empty(), "Attempt to call genNipfac() with empty esuelTet" );
Assert( esuelTet.size()%nfpe == 0,
"Size of esuelTet must be divisible by nfpe" );
Assert( nfpe > 0, "Attempt to call genNipfac() with zero faces per element" );
auto nelem = esuelTet.size()/nfpe;
std::size_t nifac = 0;
// loop through elements surrounding elements to find number of internal faces
for (std::size_t e=0; e<nelem; ++e)
{
for (std::size_t ip=nfpe*e; ip<nfpe*(e+1); ++ip)
{
if (esuelTet[ip] != -1)
{
if ( e<static_cast< std::size_t >(esuelTet[ip]) )
{
++nifac;
}
}
}
}
return nifac + nbfac;
}
std::vector< int >
genEsuf( std::size_t nfpe,
std::size_t nipfac,
std::size_t nbfac,
const std::vector< std::size_t >& belem,
const std::vector< int >& esuelTet )
// *****************************************************************************
// Generate derived data, elements surrounding faces
//! \param[in] nfpe Number of faces per element.
//! \param[in] nipfac Number of internal and physical-boundary faces.
//! \param[in] nbfac Number of boundary faces.
//! \param[in] belem Boundary element vector.
//! \param[in] esuelTet Elements surrounding elements.
//! \return Elements surrounding faces.
//! \details The unsigned integer vector gives the IDs of the elements to the
// left and the right of each face in the mesh. The convention followed
// throughout is : The left element always has an ID smaller than the ID of
// the right element.
// *****************************************************************************
{
Assert( esuelTet.size()%nfpe == 0,
"Size of esuelTet must be divisible by nfpe" );
Assert( nfpe > 0, "Attempt to call genEsuf() with zero faces per element" );
auto nelem = esuelTet.size()/nfpe;
std::vector< int > esuf(2*nipfac);
// counters for number of internal and boundary faces
std::size_t icoun(2*nbfac), bcoun(0);
// loop to get face-element connectivity for internal faces
for (std::size_t e=0; e<nelem; ++e) {
for (std::size_t ip=nfpe*e; ip<nfpe*(e+1); ++ip) {
auto jelem = esuelTet[ip];
if (jelem != -1)
{
if ( e < static_cast< std::size_t >(jelem) )
{
esuf[icoun] = static_cast< int >(e);
esuf[icoun+1] = static_cast< int >(jelem);
icoun = icoun + 2;
}
}
}
}
// loop to get face-element connectivity for physical-boundary faces
bcoun = 0;
for (auto ie : belem) {
esuf[bcoun] = static_cast< int >(ie);
esuf[bcoun+1] = -1; // outside domain
bcoun = bcoun + 2;
}
return esuf;
}
std::vector< std::size_t >
genInpofaTet( std::size_t nipfac,
std::size_t nbfac,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& triinpoel,
const std::vector< int >& esuelTet )
// *****************************************************************************
// Generate derived data, points on faces for tetrahedra only
//! \param[in] nipfac Number of internal and physical-boundary faces.
//! \param[in] nbfac Number of boundary faces.
//! \param[in] inpoel Element-node connectivity.
//! \param[in] triinpoel Face-node connectivity.
//! \param[in] esuelTet Elements surrounding elements.
//! \return Points surrounding faces. The unsigned integer vector gives the
//! elements to the left and to the right of each face in the mesh.
// *****************************************************************************
{
std::vector< std::size_t > inpofa;
// set tetrahedron geometry
std::size_t nnpe(4), nfpe(4), nnpf(3);<--- Variable 'nnpe' is assigned a value that is never used.<--- Variable 'nnpf' is assigned a value that is never used.
Assert( esuelTet.size()%nfpe == 0,
"Size of esuelTet must be divisible by nfpe" );
Assert( inpoel.size()%nnpe == 0,
"Size of inpoel must be divisible by nnpe" );
inpofa.resize(nnpf*nipfac);
// counters for number of internal and boundary faces
std::size_t icoun(nnpf*nbfac);
// loop over elems to get nodes on faces
// this fills the interior face-node connectivity part
for (std::size_t e=0; e<inpoel.size()/nnpe; ++e)
{
auto mark = nnpe*e;
for (std::size_t f=0; f<nfpe ; ++f)
{
auto ip = nfpe*e + f;
auto jelem = esuelTet[ip];
if (jelem != -1)
{
if ( e < static_cast< std::size_t >(jelem) )
{
inpofa[icoun] = inpoel[mark+lpofa[f][0]];
inpofa[icoun+1] = inpoel[mark+lpofa[f][1]];
inpofa[icoun+2] = inpoel[mark+lpofa[f][2]];
icoun = icoun + nnpf;
}
}
}
}
// this fills the boundary face-node connectivity part
// consistent with triinpoel
for (std::size_t f=0; f<nbfac; ++f)
{
icoun = nnpf * f;
inpofa[icoun+0] = triinpoel[icoun+0];
inpofa[icoun+1] = triinpoel[icoun+1];
inpofa[icoun+2] = triinpoel[icoun+2];
}
return inpofa;
}
std::vector< std::size_t >
genBelemTet( std::size_t nbfac,
const std::vector< std::size_t >& inpofa,
const std::pair< std::vector< std::size_t >,
std::vector< std::size_t > >& esup )
// *****************************************************************************
// Generate derived data, and array of elements which share one or more of
// their faces with the physical boundary, i.e. where exodus specifies a
// side-set for faces. Such elements are sometimes also called host or
// boundary elements.
//! \param[in] nbfac Number of boundary faces.
//! \param[in] inpofa Face-node connectivity.
//! \param[in] esup Elements surrounding points as linked lists, see tk::genEsup
//! \return Host elements or boundary elements. The unsigned integer vector
//! gives the elements to the left of each boundary face in the mesh.
// *****************************************************************************
{
std::vector< std::size_t > belem(nbfac);
if (nbfac > 0)
{
// set tetrahedron geometry
std::size_t nnpf(3), tag(0);<--- Variable 'tag' is assigned a value that is never used.
// loop over all the boundary faces
for(std::size_t f=0; f<nbfac; ++f)
{
belem[f] = 0;
// array storing the element-cluster around face
std::vector< std::size_t > elemcluster;
// loop over the nodes of this boundary face
for(std::size_t lp=0; lp<nnpf; ++lp)
{
auto gp = inpofa[nnpf*f + lp];
Assert( gp < esup.second.size(), "Indexing out of esup2" );
// loop over elements surrounding this node
for (auto i=esup.second[gp]+1; i<=esup.second[gp+1]; ++i)
{
// form element-cluster vector
elemcluster.push_back(esup.first[i]);
}
}
// loop over element cluster to find repeating elements
for(std::size_t i=0; i<elemcluster.size(); ++i)
{
auto ge = elemcluster[i];
tag = 1;
for(std::size_t j=0; j<elemcluster.size(); ++j)
{
if ( i != j && elemcluster[j] == ge )
{
tag++;
}
}
if (tag == nnpf)
{
// this is the required boundary element
belem[f] = ge;
break;
}
}
}
}
return belem;
}
Fields
genGeoFaceTri( std::size_t nipfac,
const std::vector< std::size_t >& inpofa,
const UnsMesh::Coords& coord )
// *****************************************************************************
// Generate derived data, which stores the geometry details both internal and
// boundary triangular faces in the mesh.
//! \param[in] nipfac Number of internal and physical-boundary faces.
//! \param[in] inpofa Face-node connectivity.
//! \param[in] coord Co-ordinates of nodes in this mesh-chunk.
//! \return Face geometry information. This includes face area, unit normal
//! pointing outward of the element to the left of the face, and face
//! centroid coordinates. Use the following examples to access this
//! information for face-f.
//! \details
//! face area: geoFace(f,0,0),
//! unit-normal x-component: geoFace(f,1,0),
//! y-component: geoFace(f,2,0),
//! z-component: geoFace(f,3,0),
//! centroid x-coordinate: geoFace(f,4,0),
//! y-coordinate: geoFace(f,5,0),
//! z-coordinate: geoFace(f,6,0).
// *****************************************************************************
{
Fields geoFace( nipfac, 7 );
// set triangle geometry
std::size_t nnpf(3);
Assert( inpofa.size()%nnpf == 0,
"Size of inpofa must be divisible by nnpf" );
for(std::size_t f=0; f<nipfac; ++f)
{
std::size_t ip1, ip2, ip3;
real xp1, yp1, zp1,
xp2, yp2, zp2,
xp3, yp3, zp3;
// get area
ip1 = inpofa[nnpf*f];
ip2 = inpofa[nnpf*f + 1];
ip3 = inpofa[nnpf*f + 2];
xp1 = coord[0][ip1];
yp1 = coord[1][ip1];
zp1 = coord[2][ip1];
xp2 = coord[0][ip2];
yp2 = coord[1][ip2];
zp2 = coord[2][ip2];
xp3 = coord[0][ip3];
yp3 = coord[1][ip3];
zp3 = coord[2][ip3];
auto geoif = geoFaceTri( {{xp1, xp2, xp3}},
{{yp1, yp2, yp3}},
{{zp1, zp2, zp3}} );
for (std::size_t i=0; i<7; ++i)
geoFace(f,i,0) = geoif(0,i,0);
}
return geoFace;
}
std::array< real, 3 >
normal( const std::array< real, 3 >& x,
const std::array< real, 3 >& y,
const std::array< real, 3 >& z )
// *****************************************************************************
//! Compute the unit normal vector of a triangle
//! \param[in] x x-coordinates of the three vertices of the triangle
//! \param[in] y y-coordinates of the three vertices of the triangle
//! \param[in] z z-coordinates of the three vertices of the triangle
//! \return Unit normal
// *****************************************************************************
{
real nx, ny, nz;
normal( x[0],x[1],x[2], y[0],y[1],y[2], z[0],z[1],z[2], nx, ny, nz );
return { std::move(nx), std::move(ny), std::move(nz) };
}
real
area( const std::array< real, 3 >& x,
const std::array< real, 3 >& y,
const std::array< real, 3 >& z )
// *****************************************************************************
//! Compute the are of a triangle
//! \param[in] x x-coordinates of the three vertices of the triangle
//! \param[in] y y-coordinates of the three vertices of the triangle
//! \param[in] z z-coordinates of the three vertices of the triangle
//! \return Area
// *****************************************************************************
{
return area( x[0],x[1],x[2], y[0],y[1],y[2], z[0],z[1],z[2] );
}
Fields
geoFaceTri( const std::array< real, 3 >& x,
const std::array< real, 3 >& y,
const std::array< real, 3 >& z )
// *****************************************************************************
//! Compute geometry of the face given by three vertices
//! \param[in] x x-coordinates of the three vertices of the triangular face.
//! \param[in] y y-coordinates of the three vertices of the triangular face.
//! \param[in] z z-coordinates of the three vertices of the triangular face.
//! \return Face geometry information. This includes face area, unit normal
//! pointing outward of the element to the left of the face, and face
//! centroid coordinates.
//! \details
//! face area: geoFace(f,0,0),
//! unit-normal x-component: geoFace(f,1,0),
//! y-component: geoFace(f,2,0),
//! z-component: geoFace(f,3,0),
//! centroid x-coordinate: geoFace(f,4,0),
//! y-coordinate: geoFace(f,5,0),
//! z-coordinate: geoFace(f,6,0).
// *****************************************************************************
{
Fields geoiFace( 1, 7 );
// compute area
geoiFace(0,0,0) = area( x, y, z );
// compute unit normal to face
auto n = normal( x, y, z );
geoiFace(0,1,0) = n[0];
geoiFace(0,2,0) = n[1];
geoiFace(0,3,0) = n[2];
// compute centroid
geoiFace(0,4,0) = (x[0]+x[1]+x[2])/3.0;
geoiFace(0,5,0) = (y[0]+y[1]+y[2])/3.0;
geoiFace(0,6,0) = (z[0]+z[1]+z[2])/3.0;
return geoiFace;
}
Fields
genGeoElemTet( const std::vector< std::size_t >& inpoel,
const UnsMesh::Coords& coord )
// *****************************************************************************
// Generate derived data, which stores the geometry details of tetrahedral
// elements.
//! \param[in] inpoel Element-node connectivity.
//! \param[in] coord Co-ordinates of nodes in this mesh-chunk.
//! \return Element geometry information. This includes element volume,
//! element centroid coordinates, and minimum edge length. Use the following
//! examples to access this information for element-e.
//! volume: geoElem(e,0,0),
//! centroid x-coordinate: geoElem(e,1,0),
//! y-coordinate: geoElem(e,2,0),
//! z-coordinate: geoElem(e,3,0).
//! minimum edge-length: geoElem(e,4,0).
// *****************************************************************************
{
// set tetrahedron geometry
std::size_t nnpe(4);
Assert( inpoel.size()%nnpe == 0,
"Size of inpoel must be divisible by nnpe" );
auto nelem = inpoel.size()/nnpe;
Fields geoElem( nelem, 5 );
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
for(std::size_t e=0; e<nelem; ++e)
{
// get volume
const auto A = inpoel[nnpe*e+0];
const auto B = inpoel[nnpe*e+1];
const auto C = inpoel[nnpe*e+2];
const auto D = inpoel[nnpe*e+3];
std::array< real, 3 > ba{{ x[B]-x[A], y[B]-y[A], z[B]-z[A] }},
ca{{ x[C]-x[A], y[C]-y[A], z[C]-z[A] }},
da{{ x[D]-x[A], y[D]-y[A], z[D]-z[A] }};
const auto vole = triple( ba, ca, da ) / 6.0;
Assert( vole > 0, "Element Jacobian non-positive" );
geoElem(e,0,0) = vole;
// get centroid
geoElem(e,1,0) = (x[A]+x[B]+x[C]+x[D])/4.0;
geoElem(e,2,0) = (y[A]+y[B]+y[C]+y[D])/4.0;
geoElem(e,3,0) = (z[A]+z[B]+z[C]+z[D])/4.0;
// calculate minimum edge-length
tk::real edgelen = std::numeric_limits< tk::real >::max();
for (std::size_t i=0; i<nnpe-1; ++i)
{
for (std::size_t j=i+1; j<nnpe; ++j)
{
auto ni(inpoel[nnpe*e+i]), nj(inpoel[nnpe*e+j]);
edgelen = std::min( edgelen, tk::length( x[ni]-x[nj], y[ni]-y[nj],
z[ni]-z[nj] ) );
}
}
geoElem(e,4,0) = edgelen;
}
return geoElem;
}
bool
leakyPartition( const std::vector< int >& esueltet,
const std::vector< std::size_t >& inpoel,
const UnsMesh::Coords& coord )
// *****************************************************************************
// Perform leak-test on mesh (partition)
//! \param[in] esueltet Elements surrounding elements for tetrahedra, see
//! tk::genEsueltet()
//! \param[in] inpoel Element connectivity
//! \param[in] coord Node coordinates
//! \details This function computes a surface integral over the boundary of the
//! incoming mesh (partition). A non-zero vector result indicates a leak, e.g.,
//! a hole in the mesh (partition), which indicates an error either in the
// mesh geometry, mesh partitioning, or in the data structures that represent
// faces.
//! \return True if partition leaks.
// *****************************************************************************
{
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// Storage for surface integral over our mesh partition
std::array< real, 3 > s{{ 0.0, 0.0, 0.0}};
for (std::size_t e=0; e<esueltet.size()/4; ++e) { // for all our tets
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) // for all tet faces
if (esueltet[mark+f] == -1) { // if face has no outside-neighbor tet
// 3 local node IDs of face
auto A = inpoel[ mark + lpofa[f][0] ];
auto B = inpoel[ mark + lpofa[f][1] ];
auto C = inpoel[ mark + lpofa[f][2] ];
// Compute geometry data for face
auto geoface = geoFaceTri( {{x[A], x[B], x[C]}},
{{y[A], y[B], y[C]}},
{{z[A], z[B], z[C]}} );
// Sum up face area * face unit-normal
s[0] += geoface(0,0,0) * geoface(0,1,0);
s[1] += geoface(0,0,0) * geoface(0,2,0);
s[2] += geoface(0,0,0) * geoface(0,3,0);
}
}
auto eps = 1.0e-9;
return std::abs(s[0]) > eps || std::abs(s[1]) > eps || std::abs(s[2]) > eps;
}
bool
conforming( const std::vector< std::size_t >& inpoel,
const UnsMesh::Coords& coord,
bool cerr,
const std::vector< std::size_t >& rid )
// *****************************************************************************
// Check if mesh (partition) is conforming
//! \param[in] inpoel Element connectivity
//! \param[in] coord Node coordinates
//! \param[in] cerr True if hanging-node edge data should be output to
//! std::cerr (true by default)
//! \param[in] rid AMR Lib node id map
//! std::cerr (true by default)
//! \return True if mesh (partition) has no hanging nodes and thus the mesh is
//! conforming, false if non-conforming.
//! \details A conforming mesh by definition has no hanging nodes. A node is
//! hanging if an edge of one element coincides with two (or more) edges (of
//! two or more other elements). Thus, testing for conformity relies on
//! checking the coordinates of all vertices: if any vertex coincides with
//! that of a mid-point node of an edge, that is a hanging node. Note that
//! this assumes that hanging nodes can only be at the mid-point of edges.
//! This may happen after a mesh refinement step, due to a problem/bug,
//! within the mesh refinement algorithm given by J. Waltz, Parallel adaptive
//! refinement for unsteady flow calculations on 3D unstructured grids,
//! International Journal for Numerical Methods in Fluids, 46: 37–57, 2004,
//! which always adds/removes vertices at the mid-points of edges of a
//! tetrahedron mesh within a single refinement step. Thus this algorithm is
//! intended for this specific case, i.e., test for conformity after a
//! single refinement step and not after multiple ones or for detecting
//! hanging nodes in an arbitrary mesh.
//*****************************************************************************
{
Assert( !inpoel.empty(),
"Attempt to call conforming() with empty mesh connectivity" );
Assert( inpoel.size() % 4 == 0,
"Size of inpoel must be divisible by nnpe" );
Assert( *std::min_element( begin(inpoel), end(inpoel) ) == 0,
"Node ids should start from zero" );
Assert( !coord[0].empty() && !coord[1].empty() && !coord[2].empty(),
"Attempt to call conforming() with empty coordinates container" );
using Coord = UnsMesh::Coord;
using Edge = UnsMesh::Edge;
using Tet = UnsMesh::Tet;
// Compare operator to be used as less-than for std::array< tk::real, 3 >,
// implemented as a lexicographic ordering.
struct CoordLess {
const real eps = std::numeric_limits< real >::epsilon();
bool operator() ( const Coord& lhs, const Coord& rhs ) const {
if (lhs[0] < rhs[0])
return true;
else if (std::abs(lhs[0]-rhs[0]) < eps && lhs[1] < rhs[1])
return true;
else if (std::abs(lhs[0]-rhs[0]) < eps &&
std::abs(lhs[1]-rhs[1]) < eps &&
lhs[2] < rhs[2])
return true;
else
return false;
}
};
// Map associating data on potential hanging nodes. Key: coordinates of nodes
// of edge-half points, value: tet id (local if in parallel), tet connectivity
// (using local ids if in parallel), edge ids (local if in parallel).
std::map< Coord, // edge-half node coordinates: x, y, z
std::tuple< std::size_t, // element id of edge-half node
Tet, // element node ids of edge-half node
Edge >, // edge containing half-node
CoordLess > edgeNodes;
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
fenv_t fe;
feholdexcept( &fe );
// Compute coordinates of nodes of mid-points of all edges
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
auto A = inpoel[e*4+0];
auto B = inpoel[e*4+1];
auto C = inpoel[e*4+2];
auto D = inpoel[e*4+3];
std::array<Edge,6> edge{{ {{A,B}}, {{B,C}}, {{A,C}},
{{A,D}}, {{B,D}}, {{C,D}} }};
for (const auto& n : edge) {
Coord en{{ (x[n[0]] + x[n[1]]) / 2.0,
(y[n[0]] + y[n[1]]) / 2.0,
(z[n[0]] + z[n[1]]) / 2.0 }};
edgeNodes[ en ] = std::tuple<std::size_t,Tet,Edge>{ e, {{A,B,C,D}}, n };
}
}
feclearexcept( FE_UNDERFLOW );
feupdateenv( &fe );
// Find hanging nodes. If the coordinates of an element vertex coincide with
// that of a mid-point node of an edge, that is a hanging node. If we find one
// such node we print out some info on it.
auto ix = x.cbegin();
auto iy = y.cbegin();
auto iz = z.cbegin();
bool hanging_node = false;
while (ix != x.cend()) {
Coord n{{ *ix, *iy, *iz }};
auto i = edgeNodes.find( n );
if (i != end(edgeNodes)) {
const auto& hanging_node_coord = i->first;
const auto& hanging_node_info = i->second;
auto tet_id = std::get< 0 >( hanging_node_info );
const auto& tet = std::get< 1 >( hanging_node_info );
const auto& edge = std::get< 2 >( hanging_node_info );
if (cerr) {
std::cerr
<< "Mesh conformity test found hanging node with coordinates"" ("
<< hanging_node_coord[0] << ", "
<< hanging_node_coord[1] << ", "
<< hanging_node_coord[2] << ") of tetrahedron element "
<< tet_id << " with connectivity (" << tet[0] << ','
<< tet[1] << ',' << tet[2] << ',' << tet[3] << ") on edge ("
<< edge[0] << ',' << edge[1] << ")"
<< "AMR lib node ids for this edge: " << rid[edge[0]] << ','
<< rid[edge[1]] << std::endl;
}
hanging_node = true;
}
++ix; ++iy; ++iz;
}
if (hanging_node) return false;
return true;
}
bool
intet( const std::array< std::vector< real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const std::vector< real >& p,
std::size_t e,
std::array< real, 4 >& N )
// *****************************************************************************
// Determine if a point is in a tetrahedron
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] p Point coordinates
//! \param[in] e Mesh cell index
//! \param[in,out] N Shapefunctions evaluated at the point
//! \return True if ppoint is in mesh cell
//! \see Lohner, An Introduction to Applied CFD Techniques, Wiley, 2008
// *****************************************************************************
{
Assert( p.size() == 3, "Size mismatch" );
// Tetrahedron node indices
const auto A = inpoel[e*4+0];
const auto B = inpoel[e*4+1];
const auto C = inpoel[e*4+2];
const auto D = inpoel[e*4+3];
// Tetrahedron node coordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// Point coordinates
const auto& xp = p[0];
const auto& yp = p[1];
const auto& zp = p[2];
// Evaluate linear shapefunctions at point locations using Cramer's Rule
// | xp | | x1 x2 x3 x4 | | N1 |
// | yp | = | y1 y2 y3 y4 | • | N2 |
// | zp | | z1 z2 z3 z4 | | N3 |
// | 1 | | 1 1 1 1 | | N4 |
real DetX = (y[B]*z[C] - y[C]*z[B] - y[B]*z[D] + y[D]*z[B] +
y[C]*z[D] - y[D]*z[C])*x[A] + x[B]*y[C]*z[A] - x[B]*y[A]*z[C] +
x[C]*y[A]*z[B] - x[C]*y[B]*z[A] + x[B]*y[A]*z[D] - x[B]*y[D]*z[A] -
x[D]*y[A]*z[B] + x[D]*y[B]*z[A] - x[C]*y[A]*z[D] + x[C]*y[D]*z[A] +
x[D]*y[A]*z[C] - x[D]*y[C]*z[A] - x[B]*y[C]*z[D] + x[B]*y[D]*z[C] +
x[C]*y[B]*z[D] - x[C]*y[D]*z[B] - x[D]*y[B]*z[C] + x[D]*y[C]*z[B];
real DetX1 = (y[D]*z[C] - y[C]*z[D] + y[C]*zp - yp*z[C] -
y[D]*zp + yp*z[D])*x[B] + x[C]*y[B]*z[D] - x[C]*y[D]*z[B] -
x[D]*y[B]*z[C] + x[D]*y[C]*z[B] - x[C]*y[B]*zp + x[C]*yp*z[B] +
xp*y[B]*z[C] - xp*y[C]*z[B] + x[D]*y[B]*zp - x[D]*yp*z[B] -
xp*y[B]*z[D] + xp*y[D]*z[B] + x[C]*y[D]*zp - x[C]*yp*z[D] -
x[D]*y[C]*zp + x[D]*yp*z[C] + xp*y[C]*z[D] - xp*y[D]*z[C];
real DetX2 = (y[C]*z[D] - y[D]*z[C] - y[C]*zp + yp*z[C] +
y[D]*zp - yp*z[D])*x[A] + x[C]*y[D]*z[A] - x[C]*y[A]*z[D] +
x[D]*y[A]*z[C] - x[D]*y[C]*z[A] + x[C]*y[A]*zp - x[C]*yp*z[A] -
xp*y[A]*z[C] + xp*y[C]*z[A] - x[D]*y[A]*zp + x[D]*yp*z[A] +
xp*y[A]*z[D] - xp*y[D]*z[A] - x[C]*y[D]*zp + x[C]*yp*z[D] +
x[D]*y[C]*zp - x[D]*yp*z[C] - xp*y[C]*z[D] + xp*y[D]*z[C];
real DetX3 = (y[D]*z[B] - y[B]*z[D] + y[B]*zp - yp*z[B] -
y[D]*zp + yp*z[D])*x[A] + x[B]*y[A]*z[D] - x[B]*y[D]*z[A] -
x[D]*y[A]*z[B] + x[D]*y[B]*z[A] - x[B]*y[A]*zp + x[B]*yp*z[A] +
xp*y[A]*z[B] - xp*y[B]*z[A] + x[D]*y[A]*zp - x[D]*yp*z[A] -
xp*y[A]*z[D] + xp*y[D]*z[A] + x[B]*y[D]*zp - x[B]*yp*z[D] -
x[D]*y[B]*zp + x[D]*yp*z[B] + xp*y[B]*z[D] - xp*y[D]*z[B];
real DetX4 = (y[B]*z[C] - y[C]*z[B] - y[B]*zp + yp*z[B] +
y[C]*zp - yp*z[C])*x[A] + x[B]*y[C]*z[A] - x[B]*y[A]*z[C] +
x[C]*y[A]*z[B] - x[C]*y[B]*z[A] + x[B]*y[A]*zp - x[B]*yp*z[A] -
xp*y[A]*z[B] + xp*y[B]*z[A] - x[C]*y[A]*zp + x[C]*yp*z[A] +
xp*y[A]*z[C] - xp*y[C]*z[A] - x[B]*y[C]*zp + x[B]*yp*z[C] +
x[C]*y[B]*zp - x[C]*yp*z[B] - xp*y[B]*z[C] + xp*y[C]*z[B];
// Shape functions evaluated at point
N[0] = DetX1/DetX;
N[1] = DetX2/DetX;
N[2] = DetX3/DetX;
N[3] = DetX4/DetX;
// if min( N^i, 1-N^i ) > 0 for all i, point is in cell
if ( std::min(N[0],1.0-N[0]) > 0 && std::min(N[1],1.0-N[1]) > 0 &&
std::min(N[2],1.0-N[2]) > 0 && std::min(N[3],1.0-N[3]) > 0 )
{
return true;
} else {
return false;
}
}
tk::UnsMesh::Coords
curl( const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& v )
// *****************************************************************************
// Compute curl of a vector field at nodes of unstructured tetrahedra mesh
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] v Vector field whose curl to compute
//! \return Weak (partial) result of curl of v (partial beacuse it still needs
//! a division by the nodal volumes.
// *****************************************************************************
{
// access node cooordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
// access vector field components
const auto& vx = v[0];
const auto& vy = v[1];
const auto& vz = v[2];
auto npoin = x.size();
tk::UnsMesh::Coords curl;
curl[0].resize( npoin, 0.0 );
curl[1].resize( npoin, 0.0 );
curl[2].resize( npoin, 0.0 );
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
// access node IDs
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
tk::real bax = x[N[1]]-x[N[0]];
tk::real bay = y[N[1]]-y[N[0]];
tk::real baz = z[N[1]]-z[N[0]];
tk::real cax = x[N[2]]-x[N[0]];
tk::real cay = y[N[2]]-y[N[0]];
tk::real caz = z[N[2]]-z[N[0]];
tk::real dax = x[N[3]]-x[N[0]];
tk::real day = y[N[3]]-y[N[0]];
tk::real daz = z[N[3]]-z[N[0]];
auto J = tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
auto J24 = J/24.0;
// shape function derivatives, nnode*ndim [4][3]
tk::real g[4][3];
tk::crossdiv( cax, cay, caz, dax, day, daz, J,
g[1][0], g[1][1], g[1][2] );
tk::crossdiv( dax, day, daz, bax, bay, baz, J,
g[2][0], g[2][1], g[2][2] );
tk::crossdiv( bax, bay, baz, cax, cay, caz, J,
g[3][0], g[3][1], g[3][2] );
for (std::size_t i=0; i<3; ++i)
g[0][i] = -g[1][i] - g[2][i] - g[3][i];
for (std::size_t b=0; b<4; ++b) {
tk::real c[3];
tk::cross( g[b][0], g[b][1], g[b][2],
vx[N[b]], vy[N[b]], vz[N[b]],
c[0], c[1], c[2] );
for (std::size_t a=0; a<4; ++a) {
curl[0][N[a]] += J24 * c[0];
curl[1][N[a]] += J24 * c[1];
curl[2][N[a]] += J24 * c[2];
}
}
}
return curl;
}
std::vector< tk::real >
div( const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& v )
// *****************************************************************************
// Compute divergence of vector field at nodes of unstructured tetrahedra mesh
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] v Vector field whose divergence to compute
//! \return Weak (partial) result of div v (partial beacuse it still needs
//! a division by the nodal volumes.
// *****************************************************************************
{
// access node cooordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
auto npoin = x.size();
std::vector< tk::real > div( npoin, 0.0 );
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
// access node IDs
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
tk::real bax = x[N[1]]-x[N[0]];
tk::real bay = y[N[1]]-y[N[0]];
tk::real baz = z[N[1]]-z[N[0]];
tk::real cax = x[N[2]]-x[N[0]];
tk::real cay = y[N[2]]-y[N[0]];
tk::real caz = z[N[2]]-z[N[0]];
tk::real dax = x[N[3]]-x[N[0]];
tk::real day = y[N[3]]-y[N[0]];
tk::real daz = z[N[3]]-z[N[0]];
auto J = tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
auto J24 = J/24.0;
// shape function derivatives, nnode*ndim [4][3]
tk::real g[4][3];
tk::crossdiv( cax, cay, caz, dax, day, daz, J,
g[1][0], g[1][1], g[1][2] );
tk::crossdiv( dax, day, daz, bax, bay, baz, J,
g[2][0], g[2][1], g[2][2] );
tk::crossdiv( bax, bay, baz, cax, cay, caz, J,
g[3][0], g[3][1], g[3][2] );
for (std::size_t i=0; i<3; ++i)
g[0][i] = -g[1][i] - g[2][i] - g[3][i];
for (std::size_t a=0; a<4; ++a)
for (std::size_t b=0; b<4; ++b)
for (std::size_t i=0; i<3; ++i)
div[N[a]] += J24 * g[b][i] * v[i][N[b]];
}
return div;
}
tk::UnsMesh::Coords
grad( const std::array< std::vector< tk::real >, 3 >& coord,
const std::vector< std::size_t >& inpoel,
const std::vector< tk::real >& phi )
// *****************************************************************************
// Compute gradient of a scalar field at nodes of unstructured tetrahedra mesh
//! \param[in] coord Mesh node coordinates
//! \param[in] inpoel Mesh element connectivity
//! \param[in] phi Scalar field whose gradient to compute
//! \return Weak (partial) result of grad phi (partial beacuse it still needs
//! a division by the nodal volumes.
// *****************************************************************************
{
// access node cooordinates
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
auto npoin = x.size();
tk::UnsMesh::Coords grad;
grad[0].resize( npoin, 0.0 );
grad[1].resize( npoin, 0.0 );
grad[2].resize( npoin, 0.0 );
for (std::size_t e=0; e<inpoel.size()/4; ++e) {
// access node IDs
std::size_t N[4] =
{ inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };
// compute element Jacobi determinant, J = 6V
tk::real bax = x[N[1]]-x[N[0]];
tk::real bay = y[N[1]]-y[N[0]];
tk::real baz = z[N[1]]-z[N[0]];
tk::real cax = x[N[2]]-x[N[0]];
tk::real cay = y[N[2]]-y[N[0]];
tk::real caz = z[N[2]]-z[N[0]];
tk::real dax = x[N[3]]-x[N[0]];
tk::real day = y[N[3]]-y[N[0]];
tk::real daz = z[N[3]]-z[N[0]];
auto J = tk::triple( bax, bay, baz, cax, cay, caz, dax, day, daz );
auto J24 = J/24.0;
// shape function derivatives, nnode*ndim [4][3]
tk::real g[4][3];
tk::crossdiv( cax, cay, caz, dax, day, daz, J,
g[1][0], g[1][1], g[1][2] );
tk::crossdiv( dax, day, daz, bax, bay, baz, J,
g[2][0], g[2][1], g[2][2] );
tk::crossdiv( bax, bay, baz, cax, cay, caz, J,
g[3][0], g[3][1], g[3][2] );
for (std::size_t i=0; i<3; ++i)
g[0][i] = -g[1][i] - g[2][i] - g[3][i];
for (std::size_t a=0; a<4; ++a)
for (std::size_t b=0; b<4; ++b)
for (std::size_t i=0; i<3; ++i)
grad[i][N[a]] += J24 * g[b][i] * phi[N[b]];
}
return grad;
}
} // tk::
|