1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105 | // *****************************************************************************
/*!
\file src/PDE/MultiMat/Problem/InterfaceAdvection.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Problem configuration for the compressible flow equations
\details This file defines a Problem policy class for the compressible flow
equations, defined in PDE/MultiMat/MultiMat.h. See PDE/MultiMat/Problem.h
for general requirements on Problem policy classes for MultiMat.
*/
// *****************************************************************************
#include "InterfaceAdvection.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
} // ::inciter
using inciter::MultiMatProblemInterfaceAdvection;
tk::InitializeFn::result_type
MultiMatProblemInterfaceAdvection::initialize(
ncomp_t ncomp,
const std::vector< EOS >& mat_blk,
tk::real x,
tk::real y,
tk::real /*z*/,
tk::real t )
// *****************************************************************************
//! Evaluate analytical solution at (x,y,z,t) for all components
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] x X coordinate where to evaluate the solution
//! \param[in] y Y coordinate where to evaluate the solution
//! \param[in] t Time where to evaluate the solution
//! \return Values of all components evaluated at (x)
//! \note The function signature must follow tk::InitializeFn
// *****************************************************************************
{
auto nmat =
g_inputdeck.get< eq, tag::nmat >();
auto alphamin = g_inputdeck.get< eq, tag::min_volumefrac >();<--- Variable 'alphamin' is assigned a value that is never used.
// see also Control/Inciter/InputDeck/Grammar.hpp
Assert( ncomp == 3*nmat+3, "Incorrect number of components in multi-material "
"system" );
std::vector< tk::real > s( ncomp, 0.0 );
auto u = std::sqrt(50.0);
auto v = std::sqrt(50.0);
auto w = 0.0;
// center of the cylinder
auto x0 = 0.45 + u*t;
auto y0 = 0.45 + v*t;
// radii of the material-rings
std::vector< tk::real > r0(nmat, 0.0);
r0[nmat-1] = 0.0;
r0[nmat-2] = 0.1;
r0[0] = 0.35;
for (std::size_t k=1; k<nmat-2; ++k)
r0[k] = r0[k-1] - (r0[0]-r0[nmat-2])
/(std::max( 1.0, static_cast<tk::real>(nmat-2)) );
for (std::size_t k=0; k<nmat; ++k)
s[volfracIdx(nmat, k)] = alphamin;
// interface location
auto r = std::sqrt( (x-x0)*(x-x0) + (y-y0)*(y-y0) );
bool is_mat(false);
for (std::size_t k=0; k<nmat-1; ++k)
{
if (r<r0[k] && r>=r0[k+1])
{
s[volfracIdx(nmat, k)] = 1.0 - static_cast<tk::real>(nmat-1)*alphamin;
is_mat = true;
}
}
if (!is_mat)
{
s[volfracIdx(nmat, nmat-1)] = 1.0 - static_cast<tk::real>(nmat-1)*alphamin;
}
auto rhob = 0.0;
for (std::size_t k=0; k<nmat; ++k)
{
auto rhok = mat_blk[k].compute< EOS::density >( 1.0e5, 300.0 );
s[densityIdx(nmat, k)] = s[volfracIdx(nmat, k)] * rhok;
s[energyIdx(nmat, k)] =
mat_blk[k].compute< EOS::totalenergy >( s[volfracIdx(nmat, k)]*rhok,
u, v, w, s[volfracIdx(nmat, k)]*1.0e5, s[volfracIdx(nmat, k)] );
rhob += s[densityIdx(nmat, k)];
}
s[momentumIdx(nmat, 0)] = rhob * u;
s[momentumIdx(nmat, 1)] = rhob * v;
s[momentumIdx(nmat, 2)] = rhob * w;
return s;
}
|