1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
// *****************************************************************************
/*!
  \file      src/PDE/Integrate/MultiMatTerms.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Functions for computing volume integrals of multi-material terms
     using DG methods
  \details   This file contains functionality for computing volume integrals of
     non-conservative and pressure relaxation terms that appear in the
     multi-material hydrodynamic equations, using the discontinuous Galerkin
     method for various orders of numerical representation.
*/
// *****************************************************************************

#include "QuinoaConfig.hpp"

#include "MultiMatTerms.hpp"
#include "Vector.hpp"
#include "Quadrature.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
#include "Reconstruction.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "EoS/GetMatProp.hpp"

namespace inciter {
extern ctr::InputDeck g_inputdeck;
}

// Lapacke forward declarations
extern "C" {

using lapack_int = long;

#define LAPACK_ROW_MAJOR 101

lapack_int LAPACKE_dsysv( int, char, lapack_int, lapack_int, double*,
    lapack_int, lapack_int*, double*, lapack_int );

}

namespace tk {

void
nonConservativeInt( const bool pref,
                    std::size_t nmat,
                    const std::vector< inciter::EOS >& mat_blk,
                    const std::size_t ndof,
                    const std::size_t rdof,
                    const std::size_t nelem,
                    const std::vector< std::size_t >& inpoel,
                    const UnsMesh::Coords& coord,
                    const Fields& geoElem,
                    const Fields& U,
                    const Fields& P,
                    const std::vector< std::vector< tk::real > >& riemannDeriv,
                    const std::vector< std::size_t >& ndofel,
                    Fields& R,
                    int intsharp )
// *****************************************************************************
//  Compute volume integrals for multi-material DG
//! \details This is called for multi-material DG, computing volume integrals of
//!   terms in the volume fraction and energy equations, which do not exist in
//!   the single-material flow formulation (for `CompFlow` DG). For further
//!   details see Pelanti, M., & Shyue, K. M. (2019). A numerical model for
//!   multiphase liquid–vapor–gas flows with interfaces and cavitation.
//!   International Journal of Multiphase Flow, 113, 208-230.
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] nelem Total number of elements
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] riemannDeriv Derivatives of partial-pressures and velocities
//!   computed from the Riemann solver for use in the non-conservative terms
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in,out] R Right-hand side vector added to
//! \param[in] intsharp Interface reconstruction indicator
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::densityIdx;
  using inciter::momentumIdx;
  using inciter::energyIdx;
  using inciter::velocityIdx;
  using inciter::deformIdx;
  using inciter::newSolidsAccFn;

  const auto& solidx =
    inciter::g_inputdeck.get< tag::matidxmap, tag::solidx >();

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  auto ncomp = U.nprop()/rdof;
  auto nprim = P.nprop()/rdof;

  // compute volume integrals
  for (std::size_t e=0; e<nelem; ++e)
  {
    auto ng = tk::NGvol(ndofel[e]);

    // arrays for quadrature points
    std::array< std::vector< real >, 3 > coordgp;
    std::vector< real > wgp;

    coordgp[0].resize( ng );
    coordgp[1].resize( ng );
    coordgp[2].resize( ng );
    wgp.resize( ng );

    GaussQuadratureTet( ng, coordgp, wgp );

    // Extract the element coordinates
    std::array< std::array< real, 3>, 4 > coordel {{
      {{ cx[ inpoel[4*e  ] ], cy[ inpoel[4*e  ] ], cz[ inpoel[4*e  ] ] }},
      {{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
      {{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
      {{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }}
    }};

    auto jacInv =
            inverseJacobian( coordel[0], coordel[1], coordel[2], coordel[3] );

    // If an rDG method is set up (P0P1), then, currently we compute the P1
    // basis functions and solutions by default. This implies that P0P1 is
    // unsupported in the p-adaptive DG (PDG).
    std::size_t dof_el;
    if (rdof > ndof)
    {
      dof_el = rdof;
    }
    else
    {
      dof_el = ndofel[e];
    }

    // For multi-material p-adaptive simulation, when dofel = 1, p0p1 is
    // applied and ndof for solution evaluation should be 4
    if(dof_el == 1 && pref)
      dof_el = 4;

    // Compute the derivatives of basis function for second order terms
    std::array< std::vector<tk::real>, 3 > dBdx;
    if (ndofel[e] > 1)
      dBdx = eval_dBdx_p1( ndofel[e], jacInv );

    // Gaussian quadrature
    for (std::size_t igp=0; igp<ng; ++igp)
    {
      if (ndofel[e] > 4)
        eval_dBdx_p2( igp, coordgp, jacInv, dBdx );

      // Compute the basis function
      auto B =
        eval_basis( dof_el, coordgp[0][igp], coordgp[1][igp], coordgp[2][igp] );

      auto wt = wgp[igp] * geoElem(e, 0);

      auto state = evalPolynomialSol(mat_blk, intsharp, ncomp, nprim,
        rdof, nmat, e, dof_el, inpoel, coord, geoElem,
        {{coordgp[0][igp], coordgp[1][igp], coordgp[2][igp]}}, B, U, P);

      // get bulk properties
      tk::real rhob(0.0);
      for (std::size_t k=0; k<nmat; ++k)
          rhob += state[densityIdx(nmat, k)];

      // get the velocity vector
      std::array< tk::real, 3 > vel{{ state[ncomp+velocityIdx(nmat, 0)],
                                      state[ncomp+velocityIdx(nmat, 1)],
                                      state[ncomp+velocityIdx(nmat, 2)] }};

      std::vector< tk::real > ymat(nmat, 0.0);
      std::array< tk::real, 3 > dap{{0.0, 0.0, 0.0}};
      for (std::size_t k=0; k<nmat; ++k)
      {
        ymat[k] = state[densityIdx(nmat, k)]/rhob;

        std::size_t mark(3*k);
        if (solidx[k] > 0) mark = 3*nmat+ndof+3*(solidx[k]-1);

        for (std::size_t idir=0; idir<3; ++idir)
          dap[idir] += riemannDeriv[mark+idir][e];
      }

      // compute non-conservative terms
      std::vector< std::vector< tk::real > > ncf
        (ncomp, std::vector<tk::real>(ndofel[e],0.0));

      for (std::size_t idir=0; idir<3; ++idir)
        for(std::size_t idof=0; idof<ndofel[e]; ++idof)
          ncf[momentumIdx(nmat, idir)][idof] = 0.0;

      for (std::size_t k=0; k<nmat; ++k)
      {
        // evaluate non-conservative term for energy equation
        std::size_t mark(3*k);
        if (solidx[k] > 0) mark = 3*nmat+ndof+3*(solidx[k]-1);

        for(std::size_t idof=0; idof<ndofel[e]; ++idof)
        {
          ncf[densityIdx(nmat, k)][idof] = 0.0;

          for (std::size_t idir=0; idir<3; ++idir)
            ncf[energyIdx(nmat, k)][idof] -= vel[idir] * ( ymat[k]*dap[idir]
                                                  - riemannDeriv[mark+idir][e] );
        }

        // Evaluate non-conservative term for volume fraction equation:
        // Here we make an assumption that the derivative of Riemann velocity
        // times the basis function is constant. Therefore, when P0P1/DGP1/DGP2
        // are used for constant velocity problems, the discretization is
        // consistent. However, for a general problem with varying velocity,
        // there will be errors since the said derivative is not constant.
        // A discretization that solves this issue has not been implemented yet.
        // Nevertheless, this does not affect high-order accuracy in
        // single material regions for problems with sharp interfaces. Since
        // volume fractions are nearly constant in such regions, using
        // high-order for volume fractions does not show any benefits over
        // THINC. Therefore, for such problems, we only use FV for the volume
        // fractions, and these non-conservative high-order terms do not need
        // to be computed.
        // In summary, high-order discretization for non-conservative terms in
        // volume fraction equations is avoided for sharp interface problems.
        if (ndof <= 4 || intsharp == 1) {
          for(std::size_t idof=0; idof<ndofel[e]; ++idof)
            ncf[volfracIdx(nmat, k)][idof] = state[volfracIdx(nmat, k)]
                                           * riemannDeriv[3*nmat+idof][e];
        } else if (intsharp == 0) {     // If DGP2 without THINC
          // DGP2 is discretized differently than DGP1/FV to guarantee 3rd order
          // convergence for the testcases with uniform and constant velocity.

          // P0 contributions for all equations
          for(std::size_t idof=0; idof<ndof; ++idof)
          ncf[volfracIdx(nmat, k)][idof] = state[volfracIdx(nmat, k)]
                                         * riemannDeriv[3*nmat][e] * B[idof];
          // High order contributions
          for(std::size_t idof=1; idof<ndof; ++idof)
            for(std::size_t idir=0; idir<3; ++idir)
            ncf[volfracIdx(nmat, k)][idof] += state[volfracIdx(nmat, k)]
                                            * vel[idir] * dBdx[idir][idof];
        }
      }

      updateRhsNonCons( ncomp, nmat, ndof, ndofel[e], wt, e, B, dBdx, ncf, R );
    }
  }
}

void
updateRhsNonCons(
  ncomp_t ncomp,
  const std::size_t nmat,
  const std::size_t ndof,
  [[maybe_unused]] const std::size_t ndof_el,
  const tk::real wt,
  const std::size_t e,
  const std::vector<tk::real>& B,
  [[maybe_unused]] const std::array< std::vector<tk::real>, 3 >& dBdx,
  const std::vector< std::vector< tk::real > >& ncf,
  Fields& R )
// *****************************************************************************
//  Update the rhs by adding the non-conservative term integrals
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] nmat Number of materials
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] ndof_el Number of degrees of freedom for local element
//! \param[in] wt Weight of gauss quadrature point
//! \param[in] e Element index
//! \param[in] B Basis function evaluated at local quadrature point
//! \param[in] dBdx Vector of basis function derivatives
//! \param[in] ncf Vector of non-conservative terms
//! \param[in,out] R Right-hand side vector computed
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::energyIdx;
  using inciter::volfracDofIdx;
  using inciter::energyDofIdx;

  //Assert( dBdx[0].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( dBdx[1].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( dBdx[2].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( ncf.size() == ncomp,
  //        "Size mismatch for non-conservative term" );
  Assert( ncf.size() == ncomp, "Size mismatch for non-conservative term" );

  for (ncomp_t c=0; c<ncomp; ++c)
  {
    auto mark = c*ndof;
    R(e, mark) += wt * ncf[c][0];
  }

  if( ndof_el > 1)
  {
    // Update rhs with distributions from volume fraction and energy equations
    for (std::size_t k=0; k<nmat; ++k)
    {
      for(std::size_t idof = 1; idof < ndof_el; idof++)
      {
        R(e, volfracDofIdx(nmat,k,ndof,idof)) +=
          wt * ncf[volfracIdx(nmat,k)][idof];
        R(e, energyDofIdx(nmat,k,ndof,idof)) +=
          wt * ncf[energyIdx(nmat,k)][idof] * B[idof];
      }
    }
  }
}

std::vector< tk::real >
nonConservativeIntFV(
  std::size_t nmat,
  const std::size_t rdof,
  const std::size_t e,
  const std::array< tk::real, 3 >& fn,
  const Fields& U,
  const Fields& P,
  const std::vector< tk::real >& var_riemann )
// *****************************************************************************
//  Compute integrals of non-conservative terms for multi-material FV
//! \details This is called for multi-material FV, computing integrals of
//!   terms in the volume fraction and energy equations, which do not exist in
//!   the single-material flow formulation (for `CompFlow`). For further
//!   details see Pelanti, M., & Shyue, K. M. (2019). A numerical model for
//!   multiphase liquid–vapor–gas flows with interfaces and cavitation.
//!   International Journal of Multiphase Flow, 113, 208-230.
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] e Element for which contribution is to be calculated
//! \param[in] fn Face normal
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] var_riemann Riemann-values of partial-pressures and velocities
//!   computed from the Riemann solver for use in the non-conservative terms
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::densityIdx;
  using inciter::momentumIdx;
  using inciter::energyIdx;
  using inciter::velocityIdx;
  using inciter::volfracDofIdx;
  using inciter::densityDofIdx;
  using inciter::velocityDofIdx;

  auto ncomp = U.nprop()/rdof;

  // get bulk properties
  tk::real rhob(0.0), p_face(0.0);
  for (std::size_t k=0; k<nmat; ++k)
  {
    rhob += U(e, densityDofIdx(nmat,k,rdof,0));
    p_face += var_riemann[k];
  }

  std::array< tk::real, 3 > vel{{ P(e, velocityDofIdx(nmat,0,rdof,0)),
                                  P(e, velocityDofIdx(nmat,1,rdof,0)),
                                  P(e, velocityDofIdx(nmat,2,rdof,0)) }};

  // compute non-conservative terms
  std::vector< tk::real > ncf(ncomp, 0.0);
  std::vector< tk::real > ymat(nmat, 0.0);
  for (std::size_t k=0; k<nmat; ++k)
  {
    ymat[k] = U(e, densityDofIdx(nmat,k,rdof,0))/rhob;

    // evaluate non-conservative term for energy equation
    for (std::size_t idir=0; idir<3; ++idir)
      ncf[energyIdx(nmat, k)] -= vel[idir] * ( ymat[k]*p_face*fn[idir]
                                            - var_riemann[k]*fn[idir] );

    // evaluate non-conservative term for volume fraction equation
    ncf[volfracIdx(nmat, k)] = U(e, volfracDofIdx(nmat,k,rdof,0))
      * var_riemann[nmat];
  }

  return ncf;
}

void
pressureRelaxationInt( const bool pref,
                       std::size_t nmat,
                       const std::vector< inciter::EOS >& mat_blk,
                       const std::size_t ndof,
                       const std::size_t rdof,
                       const std::size_t nelem,
                       const std::vector< std::size_t >& inpoel,
                       const UnsMesh::Coords& coord,
                       const Fields& geoElem,
                       const Fields& U,
                       const Fields& P,
                       const std::vector< std::size_t >& ndofel,
                       const tk::real ct,
                       Fields& R,
                       int intsharp )
// *****************************************************************************
//  Compute volume integrals of pressure relaxation terms in multi-material DG
//! \details This is called for multi-material DG to compute volume integrals of
//!   finite pressure relaxation terms in the volume fraction and energy
//!   equations, which do not exist in the single-material flow formulation (for
//!   `CompFlow` DG). For further details see Dobrev, V. A., Kolev, T. V.,
//!   Rieben, R. N., & Tomov, V. Z. (2016). Multi‐material closure model for
//!   high‐order finite element Lagrangian hydrodynamics. International Journal
//!   for Numerical Methods in Fluids, 82(10), 689-706.
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] nelem Total number of elements
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] ct Pressure relaxation time-scale for this system
//! \param[in,out] R Right-hand side vector added to
//! \param[in] intsharp Interface reconstruction indicator
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::densityIdx;
  using inciter::momentumIdx;
  using inciter::energyIdx;
  using inciter::pressureIdx;
  using inciter::velocityIdx;
  using inciter::deformIdx;

  const auto& solidx =
    inciter::g_inputdeck.get< tag::matidxmap, tag::solidx >();

  auto ncomp = U.nprop()/rdof;
  auto nprim = P.nprop()/rdof;

  // compute volume integrals
  for (std::size_t e=0; e<nelem; ++e)
  {
    auto dx = geoElem(e,4)/2.0;
    auto ng = NGvol(ndofel[e]);

    // arrays for quadrature points
    std::array< std::vector< real >, 3 > coordgp;
    std::vector< real > wgp;

    coordgp[0].resize( ng );
    coordgp[1].resize( ng );
    coordgp[2].resize( ng );
    wgp.resize( ng );

    GaussQuadratureTet( ng, coordgp, wgp );

    // Compute the derivatives of basis function for DG(P1)
    std::array< std::vector<real>, 3 > dBdx;

    // If an rDG method is set up (P0P1), then, currently we compute the P1
    // basis functions and solutions by default. This implies that P0P1 is
    // unsupported in the p-adaptive DG (PDG).
    std::size_t dof_el;
    if (rdof > ndof)
    {
      dof_el = rdof;
    }
    else
    {
      dof_el = ndofel[e];
    }

    // For multi-material p-adaptive simulation, when dofel = 1, p0p1 is applied
    // and ndof for solution evaluation should be 4
    if(dof_el == 1 && pref)
      dof_el = 4;

    // Gaussian quadrature
    for (std::size_t igp=0; igp<ng; ++igp)
    {
      // Compute the basis function
      auto B =
        eval_basis( dof_el, coordgp[0][igp], coordgp[1][igp], coordgp[2][igp] );

      auto wt = wgp[igp] * geoElem(e, 0);

      auto state = evalPolynomialSol(mat_blk, intsharp, ncomp, nprim,
        rdof, nmat, e, dof_el, inpoel, coord, geoElem,
        {{coordgp[0][igp], coordgp[1][igp], coordgp[2][igp]}}, B, U, P);

      // get bulk properties
      real rhob(0.0);
      for (std::size_t k=0; k<nmat; ++k)
        rhob += state[densityIdx(nmat, k)];

      // get pressures and bulk modulii
      real pb(0.0), nume(0.0), deno(0.0), trelax(0.0);
      std::vector< real > apmat(nmat, 0.0), kmat(nmat, 0.0);
      std::vector< int > do_relax(nmat, 1);
      bool is_relax(false);
      for (std::size_t k=0; k<nmat; ++k)
      {
        real arhomat = state[densityIdx(nmat, k)];
        real alphamat = state[volfracIdx(nmat, k)];
        apmat[k] = state[ncomp+pressureIdx(nmat, k)];
        real amat = 0.0;
        if (solidx[k] == 0 && alphamat >= inciter::volfracPRelaxLim()) {
            amat = mat_blk[k].compute< inciter::EOS::soundspeed >( arhomat,
              apmat[k], alphamat, k );
          kmat[k] = arhomat * amat * amat;
          pb += apmat[k];

          // relaxation parameters
          trelax = std::max(trelax, ct*dx/amat);
          nume += alphamat * apmat[k] / kmat[k];
          deno += alphamat * alphamat / kmat[k];

          is_relax = true;
        }
        else do_relax[k] = 0;
      }
      real p_relax(0.0);
      if (is_relax) p_relax = nume/deno;

      // compute pressure relaxation terms
      std::vector< real > s_prelax(ncomp, 0.0);
      for (std::size_t k=0; k<nmat; ++k)
      {
        // only perform prelax on existing quantities
        if (do_relax[k] == 1) {
          auto s_alpha = (apmat[k]-p_relax*state[volfracIdx(nmat, k)])
            * (state[volfracIdx(nmat, k)]/kmat[k]) / trelax;
          s_prelax[volfracIdx(nmat, k)] = s_alpha;
          s_prelax[energyIdx(nmat, k)] = - pb*s_alpha;
        }
      }

      updateRhsPre( ncomp, ndof, ndofel[e], wt, e, B, s_prelax, R );
    }
  }
}

void
updateRhsPre(
  ncomp_t ncomp,
  const std::size_t ndof,
  [[maybe_unused]] const std::size_t ndof_el,
  const tk::real wt,
  const std::size_t e,
  const std::vector< tk::real >& B,
  std::vector< tk::real >& ncf,
  Fields& R )
// *****************************************************************************
//  Update the rhs by adding the pressure relaxation integrals
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] ndof_el Number of degrees of freedom for local element
//! \param[in] wt Weight of gauss quadrature point
//! \param[in] e Element index
//! \param[in] B Basis function evaluated at local quadrature point
//! \param[in] ncf Vector of non-conservative terms
//! \param[in,out] R Right-hand side vector computed
// *****************************************************************************
{
  //Assert( dBdx[0].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( dBdx[1].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( dBdx[2].size() == ndof_el,
  //        "Size mismatch for basis function derivatives" );
  //Assert( ncf.size() == ncomp,
  //        "Size mismatch for non-conservative term" );
  Assert( ncf.size() == ncomp, "Size mismatch for non-conservative term" );

  for (ncomp_t c=0; c<ncomp; ++c)
  {
    auto mark = c*ndof;
    for(std::size_t idof = 0; idof < ndof; idof++)
      R(e, mark+idof) += wt * ncf[c] * B[idof];
  }
}

void
pressureRelaxationIntFV(
  std::size_t nmat,
  const std::vector< inciter::EOS >& mat_blk,
  const std::size_t rdof,
  const std::size_t nelem,
  const std::vector< std::size_t >& inpoel,
  const UnsMesh::Coords& coord,
  const Fields& geoElem,
  const Fields& U,
  const Fields& P,
  const tk::real ct,
  Fields& R )<--- Parameter 'R' can be declared with const
// *****************************************************************************
//  Compute volume integrals of pressure relaxation terms in multi-material FV
//! \details This is called for multi-material FV to compute volume integrals of
//!   finite pressure relaxation terms in the volume fraction and energy
//!   equations, which do not exist in the single-material flow formulation (for
//!   `CompFlow`). For further details see Dobrev, V. A., Kolev, T. V.,
//!   Rieben, R. N., & Tomov, V. Z. (2016). Multi‐material closure model for
//!   high‐order finite element Lagrangian hydrodynamics. International Journal
//!   for Numerical Methods in Fluids, 82(10), 689-706.
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] nelem Total number of elements
//! \param[in] geoElem Element geometry array
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] ct Pressure relaxation time-scale for this system
//! \param[in,out] R Right-hand side vector added to
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::energyIdx;
  using inciter::pressureIdx;
  using inciter::velocityIdx;
  using inciter::densityIdx;

  auto ncomp = U.nprop()/rdof;
  auto nprim = P.nprop()/rdof;

  // compute volume integrals
  for (std::size_t e=0; e<nelem; ++e)
  {
    auto dx = geoElem(e,4)/2.0;

    // Compute the basis function
    std::vector< tk::real > B(rdof, 0.0);
    B[0] = 1.0;

    auto state = evalPolynomialSol(mat_blk, 0, ncomp, nprim,
      rdof, nmat, e, rdof, inpoel, coord, geoElem,
      {{0.25, 0.25, 0.25}}, B, U, P);

    // get bulk properties
    real rhob(0.0);
    for (std::size_t k=0; k<nmat; ++k)
      rhob += state[densityIdx(nmat, k)];

    // get pressures and bulk modulii
    real pb(0.0), nume(0.0), deno(0.0), trelax(0.0);
    std::vector< real > apmat(nmat, 0.0), kmat(nmat, 0.0);
    std::vector< int > do_relax(nmat, 1);
    bool is_relax(false);
    for (std::size_t k=0; k<nmat; ++k)
    {
      real arhomat = state[densityIdx(nmat, k)];
      real alphamat = state[volfracIdx(nmat, k)];
      if (alphamat >= inciter::volfracPRelaxLim()) {
        apmat[k] = state[ncomp+pressureIdx(nmat, k)];
        real amat = mat_blk[k].compute< inciter::EOS::soundspeed >( arhomat,
          apmat[k], alphamat, k );
        kmat[k] = arhomat * amat * amat;
        pb += apmat[k];

        // relaxation parameters
        trelax = std::max(trelax, ct*dx/amat);
        nume += alphamat * apmat[k] / kmat[k];
        deno += alphamat * alphamat / kmat[k];

        is_relax = true;
      }
      else do_relax[k] = 0;
    }
    real p_relax(0.0);
    if (is_relax) p_relax = nume/deno;

    // compute pressure relaxation terms
    std::vector< real > s_prelax(ncomp, 0.0);

    for (std::size_t k=0; k<nmat; ++k)
    {
      // only perform prelax on existing quantities
      if (do_relax[k] == 1) {
        auto s_alpha = (apmat[k]-p_relax*state[volfracIdx(nmat, k)])
          * (state[volfracIdx(nmat, k)]/kmat[k]) / trelax;
        s_prelax[volfracIdx(nmat, k)] = s_alpha;
        s_prelax[energyIdx(nmat, k)] = - pb*s_alpha;
      }
    }

    for (ncomp_t c=0; c<ncomp; ++c)
    {
      R(e, c) += geoElem(e,0) * s_prelax[c];
    }
  }
}

std::vector< std::vector< tk::real > >
solvevriem( std::size_t nelem,
            const std::vector< std::vector< tk::real > >& vriem,
            const std::vector< std::vector< tk::real > >& riemannLoc )
// *****************************************************************************
//  Solve the reconstruct velocity used for volume fraction equation by
//  Least square method
//! \param[in] nelem Numer of elements
//! \param[in,out] vriem Vector of the riemann velocity
//! \param[in,out] riemannLoc Vector of coordinates where Riemann velocity data
//!   is available
//! \return Vector of Riemann velocity polynomial solution
// *****************************************************************************
{
  std::vector< std::vector< tk::real > >
    vriempoly( nelem, std::vector<tk::real>(12,0.0) );

  for (std::size_t e=0; e<nelem; ++e)
  {
    // Use the normal method to construct the linear system A^T * A * x = u
    auto numgp = riemannLoc[e].size()/3;
    std::vector< std::vector< tk::real > > A(numgp,
                                             std::vector<tk::real>(4, 1.0));

    for(std::size_t k = 0; k < numgp; k++)
    {
      auto mark = k * 3;
      A[k][1] = riemannLoc[e][mark];
      A[k][2] = riemannLoc[e][mark+1];
      A[k][3] = riemannLoc[e][mark+2];
    }

    for(std::size_t idir = 0; idir < 3; idir++)
    {
      double AA_T[4*4], u[4];

      for(std::size_t i = 0; i < 4; i++)
        for(std::size_t j = 0; j < 4; j++)
        {
          auto id = 4 * i + j;
          AA_T[id] = 0;
          for(std::size_t k = 0; k < numgp; k++)
            AA_T[id] += A[k][i] * A[k][j];
        }

      std::vector<tk::real> vel(numgp, 1.0);
      for(std::size_t k = 0; k < numgp; k++)
      {
        auto mark = k * 3 + idir;
        vel[k] = vriem[e][mark];
      }
      for(std::size_t k = 0; k < 4; k++)
      {
        u[k] = 0;
        for(std::size_t i = 0; i < numgp; i++)
          u[k] += A[i][k] * vel[i];
      }
 
      lapack_int IPIV[4];
      #ifndef NDEBUG
      lapack_int info =
      #endif
        LAPACKE_dsysv( LAPACK_ROW_MAJOR, 'U', 4, 1, AA_T, 4, IPIV, u, 1 );
      Assert( info == 0, "Error in linear system solver" );

      auto idirmark = idir * 4;
      for(std::size_t k = 0; k < 4; k++)
        vriempoly[e][idirmark+k] = u[k];
    }
  }
  return vriempoly;
}

void evaluRiemann( ncomp_t ncomp,
                   const int e_left,
                   const int e_right,
                   const std::size_t nmat,
                   const std::vector< tk::real >& fl,
                   const std::array< tk::real, 3 >& fn,
                   const std::array< tk::real, 3 >& gp,
                   const std::array< std::vector< tk::real >, 2 >& state,
                   std::vector< std::vector< tk::real > >& vriem,
                   std::vector< std::vector< tk::real > >& riemannLoc )
// *****************************************************************************
//  Compute the riemann velocity at the interface
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] e_left Index for the left element
//! \param[in] e_right Index for the right element
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] fn Face/Surface normal
//! \param[in] gp Gauss points coordinates
//! \param[in] fl Surface flux
//! \param[in] state Vector of state variables for left and right side
//! \param[in,out] vriem Vector of the riemann velocity
//! \param[in,out] riemannLoc Vector of coordinates where Riemann velocity data
//!   is available
// *****************************************************************************
{
  using inciter::densityIdx;
  using inciter::momentumIdx;

  std::size_t el(0), er(0);
  el = static_cast< std::size_t >(e_left);
  if(e_right != -1)
    er = static_cast< std::size_t >(e_right);

  riemannLoc[el].push_back( gp[0] );
  riemannLoc[el].push_back( gp[1] );
  riemannLoc[el].push_back( gp[2] );

  if(e_right != -1)
  {
    riemannLoc[er].push_back( gp[0] );
    riemannLoc[er].push_back( gp[1] );
    riemannLoc[er].push_back( gp[2] );
  }

  tk::real rhobl(0.0), rhobr(0.0);
  for (std::size_t k=0; k<nmat; ++k)
  {
    rhobl += state[0][densityIdx(nmat, k)];
    rhobr += state[1][densityIdx(nmat, k)];
  }

  auto ul = state[0][momentumIdx(nmat, 0)] / rhobl;
  auto vl = state[0][momentumIdx(nmat, 1)] / rhobl;
  auto wl = state[0][momentumIdx(nmat, 2)] / rhobl;

  auto ur = state[1][momentumIdx(nmat, 0)] / rhobr;
  auto vr = state[1][momentumIdx(nmat, 1)] / rhobr;
  auto wr = state[1][momentumIdx(nmat, 2)] / rhobr;

  // Compute the normal velocities from left and right cells
  auto vnl = ul * fn[0] + vl * fn[1] + wl * fn[2];
  auto vnr = ur * fn[0] + vr * fn[1] + wr * fn[2];

  // The interface velocity is evaluated by adding the normal velocity which
  // is taken from the Riemann solver and the tangential velocity which is
  // evaluated as an average of the left and right cells
  auto urie = 0.5 * ((ul + ur) - fn[0] * (vnl + vnr)) + fl[ncomp+nmat] * fn[0];
  auto vrie = 0.5 * ((vl + vr) - fn[1] * (vnl + vnr)) + fl[ncomp+nmat] * fn[1];
  auto wrie = 0.5 * ((wl + wr) - fn[2] * (vnl + vnr)) + fl[ncomp+nmat] * fn[2];

  vriem[el].push_back(urie);
  vriem[el].push_back(vrie);
  vriem[el].push_back(wrie);

  if(e_right != -1)
  {
    vriem[er].push_back(urie);
    vriem[er].push_back(vrie);
    vriem[er].push_back(wrie);
  }
}

std::vector< std::array< tk::real, 3 > >
fluxTerms(
  std::size_t ncomp,
  std::size_t nmat,
  const std::vector< inciter::EOS >& /*mat_blk*/,
  const std::vector< tk::real >& ugp )
// *****************************************************************************
//  Compute the flux-function for the multimaterial PDEs
//! \param[in] ncomp Number of components in this PDE system
//! \param[in] nmat Number of materials in this PDE system
// //! \param[in] mat_blk EOS material block
//! \param[in] ugp State vector at the Gauss point at which flux is required
//! \return Flux vectors for all components in multi-material PDE system
// *****************************************************************************
{
  using inciter::volfracIdx;
  using inciter::densityIdx;
  using inciter::momentumIdx;
  using inciter::energyIdx;
  using inciter::velocityIdx;
  using inciter::pressureIdx;
  using inciter::deformIdx;

  const auto& solidx =
    inciter::g_inputdeck.get< tag::matidxmap, tag::solidx >();

  std::vector< std::array< tk::real, 3 > > fl( ncomp, {{0, 0, 0}} );

  tk::real rho(0.0);<--- Variable 'rho' is assigned a value that is never used.
  for (std::size_t k=0; k<nmat; ++k)
    rho += ugp[densityIdx(nmat, k)];<--- Variable 'rho' is assigned a value that is never used.

  auto u = ugp[ncomp+velocityIdx(nmat,0)];
  auto v = ugp[ncomp+velocityIdx(nmat,1)];
  auto w = ugp[ncomp+velocityIdx(nmat,2)];

  if (inciter::haveSolid(nmat, solidx))
  {
    std::vector< tk::real > al(nmat, 0.0);
    std::vector< std::array< std::array< tk::real, 3 >, 3 > > g, asig;
    std::array< std::array< tk::real, 3 >, 3 >
      sig {{ {{0, 0, 0}}, {{0, 0, 0}}, {{0, 0, 0}} }};
    for (std::size_t k=0; k<nmat; ++k)
    {
      al[k] = ugp[volfracIdx(nmat, k)];
      // inv deformation gradient and Cauchy stress tensors
      g.push_back(inciter::getDeformGrad(nmat, k, ugp));
      asig.push_back(inciter::getCauchyStress(nmat, k, ncomp, ugp));
      for (std::size_t i=0; i<3; ++i) asig[k][i][i] -= ugp[ncomp+pressureIdx(nmat,k)];

      for (size_t i=0; i<3; ++i)
        for (size_t j=0; j<3; ++j)
          sig[i][j] += asig[k][i][j];
    }

    // conservative part of momentum flux
    fl[momentumIdx(nmat, 0)][0] = ugp[momentumIdx(nmat, 0)] * u - sig[0][0];
    fl[momentumIdx(nmat, 1)][0] = ugp[momentumIdx(nmat, 1)] * u - sig[0][1];
    fl[momentumIdx(nmat, 2)][0] = ugp[momentumIdx(nmat, 2)] * u - sig[0][2];

    fl[momentumIdx(nmat, 0)][1] = ugp[momentumIdx(nmat, 0)] * v - sig[1][0];
    fl[momentumIdx(nmat, 1)][1] = ugp[momentumIdx(nmat, 1)] * v - sig[1][1];
    fl[momentumIdx(nmat, 2)][1] = ugp[momentumIdx(nmat, 2)] * v - sig[1][2];

    fl[momentumIdx(nmat, 0)][2] = ugp[momentumIdx(nmat, 0)] * w - sig[2][0];
    fl[momentumIdx(nmat, 1)][2] = ugp[momentumIdx(nmat, 1)] * w - sig[2][1];
    fl[momentumIdx(nmat, 2)][2] = ugp[momentumIdx(nmat, 2)] * w - sig[2][2];

    for (std::size_t k=0; k<nmat; ++k)
    {
      // conservative part of volume-fraction flux
      fl[volfracIdx(nmat, k)][0] = 0.0;
      fl[volfracIdx(nmat, k)][1] = 0.0;
      fl[volfracIdx(nmat, k)][2] = 0.0;

      // conservative part of material continuity flux
      fl[densityIdx(nmat, k)][0] = u * ugp[densityIdx(nmat, k)];
      fl[densityIdx(nmat, k)][1] = v * ugp[densityIdx(nmat, k)];
      fl[densityIdx(nmat, k)][2] = w * ugp[densityIdx(nmat, k)];

      // conservative part of material total-energy flux
      fl[energyIdx(nmat, k)][0] = u * ugp[energyIdx(nmat, k)]
        - u * asig[k][0][0] - v * asig[k][1][0] - w * asig[k][2][0];
      fl[energyIdx(nmat, k)][1] = v * ugp[energyIdx(nmat, k)]
        - u * asig[k][0][1] - v * asig[k][1][1] - w * asig[k][2][1];
      fl[energyIdx(nmat, k)][2] = w * ugp[energyIdx(nmat, k)]
        - u * asig[k][0][2] - v * asig[k][1][2] - w * asig[k][2][2];

      // conservative part of material inverse deformation gradient
      // g_ij: \partial (g_il u_l) / \partial (x_j)
      if (solidx[k] > 0)
      {
        for (std::size_t i=0; i<3; ++i)
        {
          for (std::size_t j=0; j<3; ++j)
          {
            fl[deformIdx(nmat,solidx[k],i,j)][j] =
              u*g[k][i][0] + v*g[k][i][1] + w*g[k][i][2];
          }
          // other components are zero
        }
      }
    }
  }
  else
  {
    tk::real p(0.0);
    std::vector< tk::real > apk( nmat, 0.0 );
    for (std::size_t k=0; k<nmat; ++k)
    {
      apk[k] = ugp[ncomp+pressureIdx(nmat,k)];
      p += apk[k];
    }

    // conservative part of momentum flux
    fl[momentumIdx(nmat, 0)][0] = ugp[momentumIdx(nmat, 0)] * u + p;
    fl[momentumIdx(nmat, 1)][0] = ugp[momentumIdx(nmat, 1)] * u;
    fl[momentumIdx(nmat, 2)][0] = ugp[momentumIdx(nmat, 2)] * u;

    fl[momentumIdx(nmat, 0)][1] = ugp[momentumIdx(nmat, 0)] * v;
    fl[momentumIdx(nmat, 1)][1] = ugp[momentumIdx(nmat, 1)] * v + p;
    fl[momentumIdx(nmat, 2)][1] = ugp[momentumIdx(nmat, 2)] * v;

    fl[momentumIdx(nmat, 0)][2] = ugp[momentumIdx(nmat, 0)] * w;
    fl[momentumIdx(nmat, 1)][2] = ugp[momentumIdx(nmat, 1)] * w;
    fl[momentumIdx(nmat, 2)][2] = ugp[momentumIdx(nmat, 2)] * w + p;

    for (std::size_t k=0; k<nmat; ++k)
    {
      // conservative part of volume-fraction flux
      fl[volfracIdx(nmat, k)][0] = 0.0;
      fl[volfracIdx(nmat, k)][1] = 0.0;
      fl[volfracIdx(nmat, k)][2] = 0.0;

      // conservative part of material continuity flux
      fl[densityIdx(nmat, k)][0] = u * ugp[densityIdx(nmat, k)];
      fl[densityIdx(nmat, k)][1] = v * ugp[densityIdx(nmat, k)];
      fl[densityIdx(nmat, k)][2] = w * ugp[densityIdx(nmat, k)];

      // conservative part of material total-energy flux
      auto hmat = ugp[energyIdx(nmat, k)] + apk[k];
      fl[energyIdx(nmat, k)][0] = u * hmat;
      fl[energyIdx(nmat, k)][1] = v * hmat;
      fl[energyIdx(nmat, k)][2] = w * hmat;
    }
  }

  return fl;
}

}// tk::