1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918 | // *****************************************************************************
/*!
\file src/PDE/MultiSpecies/DGMultiSpecies.hpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Compressible multi-species flow using discontinuous Galerkin
finite elements
\details This file implements calls to the physics operators governing
compressible multi-species flow using discontinuous Galerkin discretization.
*/
// *****************************************************************************
#ifndef DGMultiSpecies_h
#define DGMultiSpecies_h
#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <map>
#include <array>
#include "Macro.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "ContainerUtil.hpp"
#include "UnsMesh.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Integrate/Basis.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Initialize.hpp"
#include "Integrate/Mass.hpp"
#include "Integrate/Surface.hpp"
#include "Integrate/Boundary.hpp"
#include "Integrate/Volume.hpp"
#include "Integrate/Source.hpp"
#include "Integrate/SolidTerms.hpp"
#include "RiemannChoice.hpp"
#include "MultiSpecies/MultiSpeciesIndexing.hpp"
#include "Reconstruction.hpp"
#include "Limiter.hpp"
#include "Problem/FieldOutput.hpp"
#include "Problem/BoxInitialization.hpp"
#include "PrefIndicator.hpp"
#include "MultiSpecies/BCFunctions.hpp"
#include "MultiSpecies/MiscMultiSpeciesFns.hpp"
#include "EoS/GetMatProp.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
namespace dg {
//! \brief MultiSpecies used polymorphically with tk::DGPDE
//! \details The template arguments specify policies and are used to configure
//! the behavior of the class. The policies are:
//! - Physics - physics configuration, see PDE/MultiSpecies/Physics.h
//! - Problem - problem configuration, see PDE/MultiSpecies/Problem.h
//! \note The default physics is Euler, which is set in
//! inciter::LuaParser::storeInputDeck()
template< class Physics, class Problem >
class MultiSpecies {
private:
using eq = tag::multispecies;
public:
//! Constructor
explicit MultiSpecies() :
m_physics(),
m_ncomp( g_inputdeck.get< tag::ncomp >() ),
m_nprim(nprim()),
m_riemann( multispeciesRiemannSolver( g_inputdeck.get< tag::flux >() ) )
{
// associate boundary condition configurations with state functions
brigand::for_each< ctr::bclist::Keys >( ConfigBC( m_bc,
// BC State functions
{ dirichlet
, symmetry
, invalidBC // Inlet BC not implemented
, invalidBC // Outlet BC not implemented
, farfield
, extrapolate
, noslipwall },
// BC Gradient functions
{ noOpGrad
, symmetryGrad
, noOpGrad
, noOpGrad
, noOpGrad
, noOpGrad
, noOpGrad }
) );
// EoS initialization
initializeSpeciesEoS( m_mat_blk );
}
//! Find the number of primitive quantities required for this PDE system
//! \return The number of primitive quantities required to be stored for
//! this PDE system (zero for multi-species)
std::size_t nprim() const { return 0; }<--- Shadowed declaration
//! Find the number of materials set up for this PDE system
//! \return The number of materials set up for this PDE system
std::size_t nmat() const { return 1; }
//! Assign number of DOFs per equation in the PDE system
//! \param[in,out] numEqDof Array storing number of Dofs for each PDE
//! equation
void numEquationDofs(std::vector< std::size_t >& numEqDof) const
{
// all equation-dofs initialized to ndofs
for (std::size_t i=0; i<m_ncomp; ++i) {
numEqDof.push_back(g_inputdeck.get< tag::ndof >());
}
}
//! Determine elements that lie inside the user-defined IC box
//! \param[in] geoElem Element geometry array
//! \param[in] nielem Number of internal elements
//! \param[in,out] inbox List of nodes at which box user ICs are set for
//! each IC box
void IcBoxElems( const tk::Fields& geoElem,
std::size_t nielem,
std::vector< std::unordered_set< std::size_t > >& inbox ) const
{
tk::BoxElems< eq >(geoElem, nielem, inbox);
}
//! Find how many 'stiff equations' in this PDE system
//! \return number of stiff equations. Zero for now, but will need to change
//! as chemical non-equilibrium is added
std::size_t nstiffeq() const
{
return 0;
}
//! Find how many 'non-stiff equations' in this PDE system
//! \return number of non-stiff equations
std::size_t nnonstiffeq() const
{
return m_ncomp-nstiffeq();
}
//! Locate the stiff equations.
//! \param[out] stiffEqIdx list with pointers to stiff equations. Empty
//! for now but will have to index to chemical non-equilibrium when added
void setStiffEqIdx( std::vector< std::size_t >& stiffEqIdx ) const
{
stiffEqIdx.resize(0);
}
//! Locate the nonstiff equations.
//! \param[out] nonStiffEqIdx list with pointers to nonstiff equations
void setNonStiffEqIdx( std::vector< std::size_t >& nonStiffEqIdx ) const
{
nonStiffEqIdx.resize(0);
}
//! Initialize the compressible flow equations, prepare for time integration
//! \param[in] L Block diagonal mass matrix
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] inbox List of elements at which box user ICs are set for
//! each IC box
//! \param[in] elemblkid Element ids associated with mesh block ids where
//! user ICs are set
//! \param[in,out] unk Array of unknowns
//! \param[in] t Physical time
//! \param[in] nielem Number of internal elements
void initialize( const tk::Fields& L,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::unordered_set< std::size_t > >& inbox,
const std::unordered_map< std::size_t, std::set< std::size_t > >&
elemblkid,
tk::Fields& unk,
tk::real t,
const std::size_t nielem ) const
{
tk::initialize( m_ncomp, m_mat_blk, L, inpoel, coord,
Problem::initialize, unk, t, nielem );
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto& ic = g_inputdeck.get< tag::ic >();
const auto& icbox = ic.get< tag::box >();
const auto& icmbk = ic.get< tag::meshblock >();
// Set initial conditions inside user-defined IC boxes and mesh blocks
std::vector< tk::real > s(m_ncomp, 0.0);
for (std::size_t e=0; e<nielem; ++e) {
// inside user-defined box
if (!icbox.empty()) {
std::size_t bcnt = 0;
for (const auto& b : icbox) { // for all boxes
if (inbox.size() > bcnt && inbox[bcnt].find(e) != inbox[bcnt].end())
{
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
s[c] = unk(e,mark);
// set high-order DOFs to zero
for (std::size_t i=1; i<rdof; ++i)
unk(e,mark+i) = 0.0;
}
initializeBox<ctr::boxList>( m_mat_blk, V_ex, t, b, s );
// store box-initialization in solution vector
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
unk(e,mark) = s[c];
}
}
++bcnt;
}
}
// inside user-specified mesh blocks
if (!icmbk.empty()) {
for (const auto& b : icmbk) { // for all blocks
auto blid = b.get< tag::blockid >();
auto V_ex = b.get< tag::volume >();
if (elemblkid.find(blid) != elemblkid.end()) {
const auto& elset = tk::cref_find(elemblkid, blid);
if (elset.find(e) != elset.end()) {
initializeBox<ctr::meshblockList>( m_mat_blk, V_ex, t, b, s );
// store initialization in solution vector
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
unk(e,mark) = s[c];
}
}
}
}
}
}
}
//! Compute density constraint for a given material. No-op
// //! \param[in] nelem Number of elements
// //! \param[in] unk Array of unknowns
//! \param[out] densityConstr Density Constraint: rho/(rho0*det(g))
void computeDensityConstr( std::size_t /*nelem*/,
tk::Fields& /*unk*/,
std::vector< tk::real >& densityConstr) const
{
densityConstr.resize(0);
}
//! Compute the left hand side block-diagonal mass matrix
//! \param[in] geoElem Element geometry array
//! \param[in,out] l Block diagonal mass matrix
void lhs( const tk::Fields& geoElem, tk::Fields& l ) const {
const auto ndof = g_inputdeck.get< tag::ndof >();
tk::mass( m_ncomp, ndof, geoElem, l );
}
//! Update the interface cells to first order dofs. No-op.
// //! \param[in] unk Array of unknowns
// //! \param[in] nielem Number of internal elements
// //! \param[in,out] ndofel Array of dofs
// //! \param[in,out] interface Vector of interface marker
void updateInterfaceCells( tk::Fields& /*unk*/,
std::size_t /*nielem*/,
std::vector< std::size_t >& /*ndofel*/,
std::vector< std::size_t >& /*interface*/ ) const {}
//! Update the primitives for this PDE system. No-op.
// //! \param[in] unk Array of unknowns
// //! \param[in] L The left hand side block-diagonal mass matrix
// //! \param[in] geoElem Element geometry array
// //! \param[in,out] prim Array of primitives
// //! \param[in] nielem Number of internal elements
// //! \param[in] ndofel Array of dofs
void updatePrimitives( const tk::Fields& /*unk*/,
const tk::Fields& /*L*/,
const tk::Fields& /*geoElem*/,
tk::Fields& /*prim*/,
std::size_t /*nielem*/,
std::vector< std::size_t >& /*ndofel*/ ) const {}
//! Clean up the state of trace materials for this PDE system. No-op.
// //! \param[in] t Physical time
// //! \param[in] geoElem Element geometry array
// //! \param[in,out] unk Array of unknowns
// //! \param[in,out] prim Array of primitives
// //! \param[in] nielem Number of internal elements
void cleanTraceMaterial( tk::real /*t*/,
const tk::Fields& /*geoElem*/,
tk::Fields& /*unk*/,
tk::Fields& /*prim*/,
std::size_t /*nielem*/ ) const {}
//! Reconstruct second-order solution from first-order
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] esup Elements-surrounding-nodes connectivity
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U Solution vector at recent time step
// //! \param[in,out] P Vector of primitives at recent time step
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] ndofel Vector of local number of degrees of freedome
void reconstruct( tk::real,
const tk::Fields&,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >&
esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
tk::Fields& U,
tk::Fields& /*P*/,
const bool pref,
const std::vector< std::size_t >& ndofel ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto ndof = g_inputdeck.get< tag::ndof >();
bool is_p0p1(false);<--- Variable 'is_p0p1' is assigned a value that is never used.
if (rdof == 4 && ndof == 1)
is_p0p1 = true;<--- Variable 'is_p0p1' is assigned a value that is never used.
const auto nelem = fd.Esuel().size()/4;<--- Variable 'nelem' is assigned a value that is never used.
Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
//----- reconstruction of conserved quantities -----
//--------------------------------------------------
for (std::size_t e=0; e<nelem; ++e)
{
std::vector< std::size_t > vars;
// check if element is marked as p0p1
if ( (pref && ndofel[e] == 1) || is_p0p1 ) {
// 1. specify how many variables need to be reconstructed
for (std::size_t c=0; c<m_ncomp; ++c) vars.push_back(c);
// 2. solve 3x3 least-squares system
// Reconstruct second-order dofs in Taylor space using nodal-stencils
tk::recoLeastSqExtStencil( rdof, e, esup, inpoel, geoElem, U, vars );
// 3. transform reconstructed derivatives to Dubiner dofs
tk::transform_P0P1( rdof, e, inpoel, coord, U, vars );
}
}
}
//! Limit second-order solution, and primitive quantities separately
// //! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] esup Elements-surrounding-nodes connectivity
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] ndofel Vector of local number of degrees of freedome
// //! \param[in] gid Local->global node id map
// //! \param[in] bid Local chare-boundary node ids (value) associated to
// //! global node ids (key)
// //! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
// //! variables
// //! \param[in] pNodalExtrm Chare-boundary nodal extrema for primitive
// //! variables
// //! \param[in] mtInv Inverse of Taylor mass matrix
//! \param[in,out] U Solution vector at recent time step
// //! \param[in,out] P Vector of primitives at recent time step
//! \param[in,out] shockmarker Vector of shock-marker values
void limit( [[maybe_unused]] tk::real,
const bool /*pref*/,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& ndofel,
const std::vector< std::size_t >& /*gid*/,
const std::unordered_map< std::size_t, std::size_t >& /*bid*/,
const std::vector< std::vector<tk::real> >& /*uNodalExtrm*/,
const std::vector< std::vector<tk::real> >& /*pNodalExtrm*/,
const std::vector< std::vector<tk::real> >& /*mtInv*/,
tk::Fields& U,
tk::Fields& /*P*/,
std::vector< std::size_t >& shockmarker ) const
{
const auto limiter = g_inputdeck.get< tag::limiter >();
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
const auto rdof = g_inputdeck.get< tag::rdof >();
// limit vectors of conserved and primitive quantities
if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 4)
{
VertexBasedMultiSpecies_P1( esup, inpoel, ndofel, fd.Esuel().size()/4,
m_mat_blk, fd, geoFace, geoElem, coord, flux, U, nspec, shockmarker );
}
//else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 10)
//{
// VertexBasedMultiSpecies_P2( pref, esup, inpoel, ndofel, fd.Esuel().size()/4,
// m_mat_blk, fd, geoFace, geoElem, coord, gid, bid,
// uNodalExtrm, pNodalExtrm, mtInv, flux, solidx, U, P, nmat,
// shockmarker );
//}
else if (limiter != ctr::LimiterType::NOLIMITER)
{
Throw("Limiter type not configured for multispecies.");
}
}
//! Apply CPL to the conservative variable solution for this PDE system
// //! \param[in] prim Array of primitive variables
// //! \param[in] geoElem Element geometry array
// //! \param[in] inpoel Element-node connectivity
// //! \param[in] coord Array of nodal coordinates
// //! \param[in,out] unk Array of conservative variables
// //! \param[in] nielem Number of internal elements
//! \details This function applies CPL to obtain consistent dofs for
//! conservative quantities based on the limited primitive quantities.
//! No-op for now, but might need in the future, see appendix of paper.
//! See Pandare et al. (2023). On the Design of Stable,
//! Consistent, and Conservative High-Order Methods for Multi-Material
//! Hydrodynamics. J Comp Phys, 112313.
void CPL( const tk::Fields& /*prim*/,
const tk::Fields& /*geoElem*/,
const std::vector< std::size_t >& /*inpoel*/,
const tk::UnsMesh::Coords& /*coord*/,
tk::Fields& /*unk*/,
std::size_t /*nielem*/ ) const {}
//! Return cell-average deformation gradient tensor. No-op.
std::array< std::vector< tk::real >, 9 > cellAvgDeformGrad(
const tk::Fields&,
std::size_t ) const
{ return {}; }
//! Reset the high order solution for p-adaptive scheme
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in,out] unk Solution vector at recent time step
//! \param[in,out] prim Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \details This function reset the high order coefficient for p-adaptive
//! solution polynomials. Unlike compflow class, the high order of fv
//! solution will not be reset since p0p1 is the base scheme for
//! multi-species p-adaptive DG method.
void resetAdapSol( const inciter::FaceData& fd,
tk::Fields& unk,
tk::Fields& prim,
const std::vector< std::size_t >& ndofel ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto ncomp = unk.nprop() / rdof;
const auto nprim = prim.nprop() / rdof;<--- Shadow variable
for(std::size_t e = 0; e < fd.Esuel().size()/4; e++)
{
if(ndofel[e] < 10)
{
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
unk(e, mark+4) = 0.0;
unk(e, mark+5) = 0.0;
unk(e, mark+6) = 0.0;
unk(e, mark+7) = 0.0;
unk(e, mark+8) = 0.0;
unk(e, mark+9) = 0.0;
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
prim(e, mark+4) = 0.0;
prim(e, mark+5) = 0.0;
prim(e, mark+6) = 0.0;
prim(e, mark+7) = 0.0;
prim(e, mark+8) = 0.0;
prim(e, mark+9) = 0.0;
}
}
}
}
//! Compute right hand side
//! \param[in] t Physical time
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Solution vector at recent time step
//! \param[in] P Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] dt Delta time
//! \param[in,out] R Right-hand side vector computed
void rhs( tk::real t,
const bool pref,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::vector< std::size_t >& inpoel,
const std::vector< std::unordered_set< std::size_t > >&,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& P,
const std::vector< std::size_t >& ndofel,
const tk::real dt,
tk::Fields& R ) const
{
const auto ndof = g_inputdeck.get< tag::ndof >();
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
const auto nelem = fd.Esuel().size()/4;
Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( U.nunk() == R.nunk(), "Number of unknowns in solution "
"vector and right-hand side at recent time step incorrect" );
Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( P.nprop() == rdof*m_nprim, "Number of components in primitive "
"vector must equal "+ std::to_string(rdof*m_nprim) );
Assert( R.nprop() == ndof*m_ncomp, "Number of components in right-hand "
"side vector must equal "+ std::to_string(ndof*m_ncomp) );
Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
"Mismatch in inpofa size" );
// set rhs to zero
R.fill(0.0);
// empty vector for non-conservative terms. This vector is unused for
// multi-species flow since, there are no non-conservative terms
// in the system of PDEs.
std::vector< std::vector< tk::real > > riemannDeriv;
std::vector< std::vector< tk::real > > vriem;
std::vector< std::vector< tk::real > > riemannLoc;
// configure a no-op lambda for prescribed velocity
auto velfn = []( ncomp_t, tk::real, tk::real, tk::real, tk::real ){
return tk::VelFn::result_type(); };
// compute internal surface flux integrals
tk::surfInt( pref, 1, m_mat_blk, t, ndof, rdof, inpoel, solidx,
coord, fd, geoFace, geoElem, m_riemann, velfn, U, P, ndofel,
dt, R, riemannDeriv );
// compute optional source term
tk::srcInt( m_mat_blk, t, ndof, fd.Esuel().size()/4, inpoel,
coord, geoElem, Problem::src, ndofel, R );
if(ndof > 1)
// compute volume integrals
tk::volInt( 1, t, m_mat_blk, ndof, rdof, nelem, inpoel, coord, geoElem,
flux, velfn, U, P, ndofel, R );
// compute boundary surface flux integrals
for (const auto& b : m_bc)
tk::bndSurfInt( pref, 1, m_mat_blk, ndof, rdof, std::get<0>(b), fd,
geoFace, geoElem, inpoel, coord, t, m_riemann, velfn,
std::get<1>(b), U, P, ndofel, R, riemannDeriv );
// compute external (energy) sources
//m_physics.physSrc(nspec, t, geoElem, {}, R, {});
}
//! Evaluate the adaptive indicator and mark the ndof for each element
//! \param[in] nunk Number of unknowns
//! \param[in] coord Array of nodal coordinates
//! \param[in] inpoel Element-node connectivity
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] unk Array of unknowns
// //! \param[in] prim Array of primitive quantities
//! \param[in] indicator p-refinement indicator type
//! \param[in] ndof Number of degrees of freedom in the solution
//! \param[in] ndofmax Max number of degrees of freedom for p-refinement
//! \param[in] tolref Tolerance for p-refinement
//! \param[in,out] ndofel Vector of local number of degrees of freedome
void eval_ndof( std::size_t nunk,
[[maybe_unused]] const tk::UnsMesh::Coords& coord,
[[maybe_unused]] const std::vector< std::size_t >& inpoel,
const inciter::FaceData& fd,
const tk::Fields& unk,
const tk::Fields& /*prim*/,
inciter::ctr::PrefIndicatorType indicator,
std::size_t ndof,
std::size_t ndofmax,
tk::real tolref,
std::vector< std::size_t >& ndofel ) const
{
const auto& esuel = fd.Esuel();
if(indicator == inciter::ctr::PrefIndicatorType::SPECTRAL_DECAY)
spectral_decay(1, nunk, esuel, unk, ndof, ndofmax, tolref, ndofel);
else
Throw( "No such adaptive indicator type" );
}
//! Compute the minimum time step size
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
// //! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] nielem Number of internal elements
//! \return Minimum time step size
//! \details The allowable dt is calculated by looking at the maximum
//! wave-speed in elements surrounding each face, times the area of that
//! face. Once the maximum of this quantity over the mesh is determined,
//! the volume of each cell is divided by this quantity. A minimum of this
//! ratio is found over the entire mesh, which gives the allowable dt.
tk::real dt( const std::array< std::vector< tk::real >, 3 >&,
const std::vector< std::size_t >&,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const std::vector< std::size_t >& /*ndofel*/,
const tk::Fields& U,
const tk::Fields& P,
const std::size_t nielem ) const
{
const auto ndof = g_inputdeck.get< tag::ndof >();
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
auto mindt = timeStepSizeMultiSpecies( m_mat_blk, fd.Esuf(), geoFace,
geoElem, nielem, nspec, U, P);
//if (viscous)
// mindt = std::min(mindt, timeStepSizeViscousFV(geoElem, nielem, nspec, U));
//mindt = std::min(mindt, m_physics.dtRestriction(geoElem, nielem, {}));
tk::real dgp = 0.0;
if (ndof == 4)
{
dgp = 1.0;
}
else if (ndof == 10)
{
dgp = 2.0;
}
// Scale smallest dt with CFL coefficient and the CFL is scaled by (2*p+1)
// where p is the order of the DG polynomial by linear stability theory.
mindt /= (2.0*dgp + 1.0);
return mindt;
}
//! Compute stiff terms for a single element. No-op until chem sources added
// //! \param[in] e Element number
// //! \param[in] geoElem Element geometry array
// //! \param[in] inpoel Element-node connectivity
// //! \param[in] coord Array of nodal coordinates
// //! \param[in] U Solution vector at recent time step
// //! \param[in] P Primitive vector at recent time step
// //! \param[in] ndofel Vector of local number of degrees of freedom
// //! \param[in,out] R Right-hand side vector computed
void stiff_rhs( std::size_t /*e*/,
const tk::Fields& /*geoElem*/,
const std::vector< std::size_t >& /*inpoel*/,
const tk::UnsMesh::Coords& /*coord*/,
const tk::Fields& /*U*/,
const tk::Fields& /*P*/,
const std::vector< std::size_t >& /*ndofel*/,
tk::Fields& /*R*/ ) const {}
//! Extract the velocity field at cell nodes. Currently unused.
// //! \param[in] U Solution vector at recent time step
// //! \param[in] N Element node indices
//! \return Array of the four values of the velocity field
std::array< std::array< tk::real, 4 >, 3 >
velocity( const tk::Fields& /*U*/,
const std::array< std::vector< tk::real >, 3 >&,
const std::array< std::size_t, 4 >& /*N*/ ) const
{
std::array< std::array< tk::real, 4 >, 3 > v;
return v;
}
//! Return a map that associates user-specified strings to functions
//! \return Map that associates user-specified strings to functions that
//! compute relevant quantities to be output to file
std::map< std::string, tk::GetVarFn > OutVarFn() const
{ return MultiSpeciesOutVarFn(); }
//! Return analytic field names to be output to file
//! \return Vector of strings labelling analytic fields output in file
std::vector< std::string > analyticFieldNames() const {
auto nspec = g_inputdeck.get< eq, tag::nspec >();
return MultiSpeciesFieldNames(nspec);
}
//! Return time history field names to be output to file
//! \return Vector of strings labelling time history fields output in file
std::vector< std::string > histNames() const {
return MultiSpeciesHistNames();
}
//! Return surface field output going to file
std::vector< std::vector< tk::real > >
surfOutput( const std::map< int, std::vector< std::size_t > >&,
tk::Fields& ) const
{
std::vector< std::vector< tk::real > > s; // punt for now
return s;
}
//! Return time history field output evaluated at time history points
//! \param[in] h History point data
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Array of unknowns
// //! \param[in] P Array of primitive quantities
//! \return Vector of time history output of bulk flow quantities (density,
//! velocity, total energy, and pressure) evaluated at time history points
std::vector< std::vector< tk::real > >
histOutput( const std::vector< HistData >& h,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& /*P*/ ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
std::vector< std::vector< tk::real > > Up(h.size());
std::size_t j = 0;
for (const auto& p : h) {
auto e = p.get< tag::elem >();
auto chp = p.get< tag::coord >();
// Evaluate inverse Jacobian
std::array< std::array< tk::real, 3>, 4 > cp{{
{{ x[inpoel[4*e ]], y[inpoel[4*e ]], z[inpoel[4*e ]] }},
{{ x[inpoel[4*e+1]], y[inpoel[4*e+1]], z[inpoel[4*e+1]] }},
{{ x[inpoel[4*e+2]], y[inpoel[4*e+2]], z[inpoel[4*e+2]] }},
{{ x[inpoel[4*e+3]], y[inpoel[4*e+3]], z[inpoel[4*e+3]] }} }};
auto J = tk::inverseJacobian( cp[0], cp[1], cp[2], cp[3] );
// evaluate solution at history-point
std::array< tk::real, 3 > dc{{chp[0]-cp[0][0], chp[1]-cp[0][1],
chp[2]-cp[0][2]}};
auto B = tk::eval_basis(rdof, tk::dot(J[0],dc), tk::dot(J[1],dc),
tk::dot(J[2],dc));
auto uhp = eval_state(m_ncomp, rdof, rdof, e, U, B);
// store solution in history output vector
Up[j].resize(6+nspec, 0.0);
for (std::size_t k=0; k<nspec; ++k) {
Up[j][0] += uhp[multispecies::densityIdx(nspec,k)];
}
Up[j][1] = uhp[multispecies::momentumIdx(nspec,0)]/Up[j][0];
Up[j][2] = uhp[multispecies::momentumIdx(nspec,1)]/Up[j][0];
Up[j][3] = uhp[multispecies::momentumIdx(nspec,2)]/Up[j][0];
Up[j][4] = uhp[multispecies::energyIdx(nspec,0)];
Up[j][5] = m_mat_blk[0].compute< EOS::pressure >( Up[j][0], Up[j][1],
Up[j][2], Up[j][3], Up[j][4]);
for (std::size_t k=0; k<nspec; ++k) {
Up[j][6+k] = uhp[multispecies::densityIdx(nspec,k)]/Up[j][0];
}
++j;
}
return Up;
}
//! Return names of integral variables to be output to diagnostics file
//! \return Vector of strings labelling integral variables output
std::vector< std::string > names() const
{
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
return MultiSpeciesDiagNames(nspec);
}
//! Return analytic solution (if defined by Problem) at xi, yi, zi, t
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
analyticSolution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::analyticSolution( m_ncomp, m_mat_blk, xi, yi, zi, t ); }
//! Return analytic solution for conserved variables
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::initialize( m_ncomp, m_mat_blk, xi, yi, zi, t ); }
//! Return cell-averaged specific total energy for an element
//! \param[in] e Element id for which total energy is required
//! \param[in] unk Vector of conserved quantities
//! \return Cell-averaged specific total energy for given element
tk::real sp_totalenergy(std::size_t e, const tk::Fields& unk) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
return unk(e, multispecies::energyDofIdx(nspec,0,rdof,0));
}
private:
//! Physics policy
const Physics m_physics;
//! Number of components in this PDE system
const ncomp_t m_ncomp;
//! Number of primitive quantities stored in this PDE system
const ncomp_t m_nprim;
//! Riemann solver
tk::RiemannFluxFn m_riemann;
//! BC configuration
BCStateFn m_bc;
//! EOS material block
std::vector< EOS > m_mat_blk;
//! Evaluate conservative part of physical flux function for this PDE system
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] ugp Numerical solution at the Gauss point at which to
//! evaluate the flux
//! \return Flux vectors for all components in this PDE system
//! \note The function signature must follow tk::FluxFn
static tk::FluxFn::result_type
flux( [[maybe_unused]] ncomp_t ncomp,
const std::vector< EOS >& mat_blk,
const std::vector< tk::real >& ugp,
const std::vector< std::array< tk::real, 3 > >& )
{
Assert( ugp.size() == ncomp, "Size mismatch" );
auto nspec = g_inputdeck.get< tag::multispecies, tag::nspec >();
std::vector< std::array< tk::real, 3 > > fl( ugp.size() );
tk::real rhob(0.0);
for (std::size_t k=0; k<nspec; ++k)
rhob += ugp[multispecies::densityIdx(nspec, k)];
std::array< tk::real, 3 > u{{
ugp[multispecies::momentumIdx(nspec,1)] / rhob,
ugp[multispecies::momentumIdx(nspec,2)] / rhob,
ugp[multispecies::momentumIdx(nspec,3)] / rhob }};
auto rhoE0 = ugp[multispecies::energyIdx(nspec,0)];
auto p = mat_blk[0].compute< EOS::pressure >( rhob, u[0], u[1], u[2],
rhoE0 );
// density flux
for (std::size_t k=0; k<nspec; ++k) {
auto idx = multispecies::densityIdx(nspec, k);
for (std::size_t j=0; j<3; ++j) {
fl[idx][j] = ugp[idx] * u[j];
}
}
// momentum flux
for (std::size_t i=0; i<3; ++i) {
auto idx = multispecies::momentumIdx(nspec,i);
for (std::size_t j=0; j<3; ++j) {
fl[idx][j] = ugp[idx] * u[j];
if (i == j) fl[idx][j] += p;
}
}
// energy flux
auto idx = multispecies::energyIdx(nspec,0);
for (std::size_t j=0; j<3; ++j) {
fl[idx][j] = u[j] * (ugp[idx] + p);
}
return fl;
}
//! \brief Boundary state function providing the left and right state of a
//! face at Dirichlet boundaries
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] ul Left (domain-internal) state
//! \param[in] x X-coordinate at which to compute the states
//! \param[in] y Y-coordinate at which to compute the states
//! \param[in] z Z-coordinate at which to compute the states
//! \param[in] t Physical time
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn.
static tk::StateFn::result_type
dirichlet( ncomp_t ncomp,
const std::vector< EOS >& mat_blk,
const std::vector< tk::real >& ul, tk::real x, tk::real y,
tk::real z, tk::real t, const std::array< tk::real, 3 >& )
{
return {{ ul, Problem::initialize( ncomp, mat_blk, x, y, z, t ) }};
}
// Other boundary condition types that do not depend on "Problem" should be
// added in BCFunctions.hpp
};
} // dg::
} // inciter::
#endif // DGMultiSpecies_h
|