1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132 | // *****************************************************************************
/*!
\file src/Inciter/FV.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief FV advances a system of PDEs with the finite volume scheme
\details FV advances a system of partial differential equations (PDEs) using
the finite volume (FV) (on tetrahedron elements).
\see The documentation in FV.h.
*/
// *****************************************************************************
#include <algorithm>
#include <numeric>
#include <sstream>
#include "FV.hpp"
#include "Discretization.hpp"
#include "FVPDE.hpp"
#include "DiagReducer.hpp"
#include "DerivedData.hpp"
#include "ElemDiagnostics.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Refiner.hpp"
#include "Limiter.hpp"
#include "PrefIndicator.hpp"
#include "Reorder.hpp"
#include "Vector.hpp"
#include "Around.hpp"
#include "Integrate/Basis.hpp"
#include "FieldOutput.hpp"
#include "ChareStateCollector.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
extern std::vector< FVPDE > g_fvpde;
} // inciter::
extern tk::CProxy_ChareStateCollector stateProxy;
using inciter::FV;
FV::FV( const CProxy_Discretization& disc,
const CProxy_Ghosts& ghostsproxy,
const std::map< int, std::vector< std::size_t > >& bface,
const std::map< int, std::vector< std::size_t > >& /* bnode */,
const std::vector< std::size_t >& triinpoel ) :
m_disc( disc ),
m_ghosts( ghostsproxy ),
m_nsol( 0 ),
m_ninitsol( 0 ),
m_nlim( 0 ),
m_nnod( 0 ),
m_u( Disc()->Inpoel().size()/4,
g_inputdeck.get< tag::rdof >()*
g_inputdeck.get< tag::ncomp >() ),
m_un( m_u.nunk(), m_u.nprop() ),
m_p( m_u.nunk(), g_inputdeck.get< tag::rdof >()*
g_fvpde[Disc()->MeshId()].nprim() ),
m_lhs( m_u.nunk(),
g_inputdeck.get< tag::ncomp >() ),
m_rhs( m_u.nunk(), m_lhs.nprop() ),
m_npoin( Disc()->Coord()[0].size() ),
m_diag(),
m_stage( 0 ),
m_uc(),
m_pc(),
m_initial( 1 ),
m_uElemfields( m_u.nunk(), m_lhs.nprop() ),
m_pElemfields(m_u.nunk(),
m_p.nprop()/g_inputdeck.get< tag::rdof >()),
m_uNodefields( m_npoin, m_lhs.nprop() ),
m_pNodefields(m_npoin,
m_p.nprop()/g_inputdeck.get< tag::rdof >()),
m_uNodefieldsc(),
m_pNodefieldsc(),
m_boxelems(),
m_srcFlag(m_u.nunk(), 0),
m_nrk(0),
m_dte(m_u.nunk(), 0.0),
m_finished(0)
// *****************************************************************************
// Constructor
//! \param[in] disc Discretization proxy
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
// *****************************************************************************
{
//! Runge-Kutta coefficients
m_nrk = 2;
m_rkcoef[0].resize(m_nrk);
m_rkcoef[1].resize(m_nrk);
if (m_nrk == 2) {
m_rkcoef = {{ {{ 0.0, 1.0/2.0 }}, {{ 1.0, 1.0/2.0 }} }};
}
else {
m_rkcoef = {{ {{ 0.0, 3.0/4.0, 1.0/3.0 }}, {{ 1.0, 1.0/4.0, 2.0/3.0 }} }};
}
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "FV", thisIndex, CkMyPe(), Disc()->It(),
"FV" );
usesAtSync = true; // enable migration at AtSync
// Enable SDAG wait for initially building the solution vector and limiting
if (m_initial) {
thisProxy[ thisIndex ].wait4sol();
thisProxy[ thisIndex ].wait4lim();
thisProxy[ thisIndex ].wait4nod();
}
m_ghosts[thisIndex].insert(m_disc, bface, triinpoel, m_u.nunk(),
CkCallback(CkIndex_FV::resizeSolVectors(), thisProxy[thisIndex]));
// global-sync to call doneInserting on m_ghosts
auto meshid = Disc()->MeshId();
contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
CkCallback(CkReductionTarget(Transporter,doneInsertingGhosts),
Disc()->Tr()) );
}
void
FV::registerReducers()
// *****************************************************************************
// Configure Charm++ reduction types
//! \details Since this is a [initnode] routine, the runtime system executes the
//! routine exactly once on every logical node early on in the Charm++ init
//! sequence. Must be static as it is called without an object. See also:
//! Section "Initializations at Program Startup" at in the Charm++ manual
//! http://charm.cs.illinois.edu/manuals/html/charm++/manual.html.
// *****************************************************************************
{
ElemDiagnostics::registerReducers();
}
void
FV::ResumeFromSync()
// *****************************************************************************
// Return from migration
//! \details This is called when load balancing (LB) completes. The presence of
//! this function does not affect whether or not we block on LB.
// *****************************************************************************
{
if (Disc()->It() == 0) Throw( "it = 0 in ResumeFromSync()" );
if (!g_inputdeck.get< tag::cmd, tag::nonblocking >()) next();
}
void
FV::resizeSolVectors()
// *****************************************************************************
// Resize solution vectors after extension due to Ghosts
// *****************************************************************************
{
// Resize solution vectors, lhs and rhs by the number of ghost tets
m_u.resize( myGhosts()->m_nunk );
m_un.resize( myGhosts()->m_nunk );
m_srcFlag.resize( myGhosts()->m_nunk );
m_p.resize( myGhosts()->m_nunk );
m_lhs.resize( myGhosts()->m_nunk );
m_rhs.resize( myGhosts()->m_nunk );
m_dte.resize( myGhosts()->m_nunk );
// Size communication buffer for solution
for (auto& u : m_uc) u.resize( myGhosts()->m_bid.size() );
for (auto& p : m_pc) p.resize( myGhosts()->m_bid.size() );
// Ensure that we also have all the geometry and connectivity data
// (including those of ghosts)
Assert( myGhosts()->m_geoElem.nunk() == m_u.nunk(),
"GeoElem unknowns size mismatch" );
// Signal the runtime system that all workers have received their adjacency
std::vector< std::size_t > meshdata{ myGhosts()->m_initial, Disc()->MeshId() };
contribute( meshdata, CkReduction::sum_ulong,
CkCallback(CkReductionTarget(Transporter,comfinal), Disc()->Tr()) );
}
void
FV::setup()
// *****************************************************************************
// Set initial conditions, generate lhs, output mesh
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "FV", thisIndex, CkMyPe(), Disc()->It(),
"setup" );
auto d = Disc();<--- Variable 'd' is assigned a value that is never used.
// Basic error checking on sizes of element geometry data and connectivity
Assert( myGhosts()->m_geoElem.nunk() == m_lhs.nunk(),
"Size mismatch in FV::setup()" );
// Compute left-hand side of discrete PDEs
lhs();
// Determine elements inside user-defined IC box
g_fvpde[d->MeshId()].IcBoxElems( myGhosts()->m_geoElem,
myGhosts()->m_fd.Esuel().size()/4, m_boxelems );
// Compute volume of user-defined box IC
d->boxvol( {}, {}, 0 ); // punt for now
// Query time history field output labels from all PDEs integrated
const auto& hist_points = g_inputdeck.get< tag::history_output, tag::point >();
if (!hist_points.empty()) {
std::vector< std::string > histnames;
auto n = g_fvpde[d->MeshId()].histNames();
histnames.insert( end(histnames), begin(n), end(n) );
d->histheader( std::move(histnames) );
}
}
void
FV::box( tk::real v, const std::vector< tk::real >& )
// *****************************************************************************
// Receive total box IC volume and set conditions in box
//! \param[in] v Total volume within user-specified box
// *****************************************************************************
{
auto d = Disc();
// Store user-defined box IC volume
d->Boxvol() = v;
// Set initial conditions for all PDEs
g_fvpde[d->MeshId()].initialize( m_lhs, myGhosts()->m_inpoel,
myGhosts()->m_coord, m_boxelems, d->ElemBlockId(), m_u, d->T(),
myGhosts()->m_fd.Esuel().size()/4 );
g_fvpde[d->MeshId()].updatePrimitives( m_u, m_p,
myGhosts()->m_fd.Esuel().size()/4 );
m_un = m_u;
// Output initial conditions to file (regardless of whether it was requested)
startFieldOutput( CkCallback(CkIndex_FV::start(), thisProxy[thisIndex]) );
}
void
FV::start()
// *****************************************************************************
// Start time stepping
// *****************************************************************************
{
// Start timer measuring time stepping wall clock time
Disc()->Timer().zero();
// Zero grind-timer
Disc()->grindZero();
// Start time stepping by computing the size of the next time step)
next();
}
void
FV::startFieldOutput( CkCallback c )
// *****************************************************************************
// Start preparing fields for output to file
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
// No field output in benchmark mode or if field output frequency not hit
if (g_inputdeck.get< tag::cmd, tag::benchmark >() || !fieldOutput()) {
c.send();
} else {
// Optionally refine mesh for field output
auto d = Disc();
if (refinedOutput()) {
const auto& tr = tk::remap( myGhosts()->m_fd.Triinpoel(), d->Gid() );
d->Ref()->outref( myGhosts()->m_fd.Bface(), {}, tr, c );
} else {
// cut off ghosts from mesh connectivity and coordinates
extractFieldOutput( {}, d->Chunk(), d->Coord(), {}, {}, d->NodeCommMap(),
{}, {}, {}, c );
}
}
}
void
FV::next()
// *****************************************************************************
// Advance equations to next time step
// *****************************************************************************
{
// communicate solution ghost data (if any)
if (myGhosts()->m_sendGhost.empty())
comsol_complete();
else
for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
std::vector< std::size_t > tetid( ghostdata.size() );
std::vector< std::vector< tk::real > > u( ghostdata.size() ),
prim( ghostdata.size() );
std::size_t j = 0;
for(const auto& i : ghostdata) {
Assert( i < myGhosts()->m_fd.Esuel().size()/4,
"Sending solution ghost data" );
tetid[j] = i;
u[j] = m_u[i];
prim[j] = m_p[i];
++j;
}
thisProxy[ cid ].comsol( thisIndex, tetid, u, prim );
}
ownsol_complete();
}
void
FV::comsol( int fromch,
const std::vector< std::size_t >& tetid,
const std::vector< std::vector< tk::real > >& u,
const std::vector< std::vector< tk::real > >& prim )
// *****************************************************************************
// Receive chare-boundary solution ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] u Solution ghost data
//! \param[in] prim Primitive variables in ghost cells
//! \details This function receives contributions to the unlimited solution
//! from fellow chares.
// *****************************************************************************
{
Assert( u.size() == tetid.size(), "Size mismatch in FV::comsol()" );
Assert( prim.size() == tetid.size(), "Size mismatch in FV::comsol()" );
// Find local-to-ghost tet id map for sender chare
const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );
for (std::size_t i=0; i<tetid.size(); ++i) {
auto j = tk::cref_find( n, tetid[i] );
Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
"Receiving solution non-ghost data" );
auto b = tk::cref_find( myGhosts()->m_bid, j );
Assert( b < m_uc[0].size(), "Indexing out of bounds" );
m_uc[0][b] = u[i];
m_pc[0][b] = prim[i];
}
// if we have received all solution ghost contributions from neighboring
// chares (chares we communicate along chare-boundary faces with), and
// contributed our solution to these neighbors, proceed to reconstructions
if (++m_nsol == myGhosts()->m_sendGhost.size()) {
m_nsol = 0;
comsol_complete();
}
}
void
FV::extractFieldOutput(
const std::vector< std::size_t >& /*ginpoel*/,
const tk::UnsMesh::Chunk& chunk,
const tk::UnsMesh::Coords& coord,
const std::unordered_map< std::size_t, tk::UnsMesh::Edge >& /*addedNodes*/,
const std::unordered_map< std::size_t, std::size_t >& addedTets,
const tk::NodeCommMap& nodeCommMap,
const std::map< int, std::vector< std::size_t > >& /* bface */,
const std::map< int, std::vector< std::size_t > >& /* bnode */,
const std::vector< std::size_t >& /* triinpoel */,
CkCallback c )
// *****************************************************************************
// Extract field output going to file
//! \param[in] chunk Field-output mesh chunk (connectivity and global<->local
//! id maps)
//! \param[in] coord Field-output mesh node coordinates
//! \param[in] addedTets Field-output mesh cells and their parents (local ids)
//! \param[in] nodeCommMap Field-output mesh node communication map
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
const auto& inpoel = std::get< 0 >( chunk );
// Evaluate element solution on incoming mesh
evalSolution( *Disc(), inpoel, coord, addedTets, std::vector< std::size_t>{},
m_u, m_p, m_uElemfields, m_pElemfields, m_uNodefields, m_pNodefields );
// Send node fields contributions to neighbor chares
if (nodeCommMap.empty())
comnodeout_complete();
else {
const auto& lid = std::get< 2 >( chunk );
auto esup = tk::genEsup( inpoel, 4 );
for(const auto& [ch,nodes] : nodeCommMap) {
// Pack node field data in chare boundary nodes
std::vector< std::vector< tk::real > >
lu( m_uNodefields.nprop(), std::vector< tk::real >( nodes.size() ) );
std::vector< std::vector< tk::real > >
lp( m_pNodefields.nprop(), std::vector< tk::real >( nodes.size() ) );
for (std::size_t f=0; f<m_uNodefields.nprop(); ++f) {
std::size_t j = 0;
for (auto g : nodes)
lu[f][j++] = m_uNodefields(tk::cref_find(lid,g),f);
}
for (std::size_t f=0; f<m_pNodefields.nprop(); ++f) {
std::size_t j = 0;
for (auto g : nodes)
lp[f][j++] = m_pNodefields(tk::cref_find(lid,g),f);
}
// Pack (partial) number of elements surrounding chare boundary nodes
std::vector< std::size_t > nesup( nodes.size() );
std::size_t j = 0;
for (auto g : nodes) {
auto i = tk::cref_find( lid, g );
nesup[j++] = esup.second[i+1] - esup.second[i];
}
thisProxy[ch].comnodeout(
std::vector<std::size_t>(begin(nodes),end(nodes)), nesup, lu, lp );
}
}
ownnod_complete( c );
}
void
FV::lhs()
// *****************************************************************************
// Compute left-hand side of discrete transport equations
// *****************************************************************************
{
g_fvpde[Disc()->MeshId()].lhs( myGhosts()->m_geoElem, m_lhs );
if (!m_initial) stage();
}
void
FV::reco()
// *****************************************************************************
// Compute reconstructions
// *****************************************************************************
{
const auto rdof = g_inputdeck.get< tag::rdof >();
// Combine own and communicated contributions of unreconstructed solution and
// degrees of freedom in cells (if p-adaptive)
for (const auto& b : myGhosts()->m_bid) {
Assert( m_uc[0][b.second].size() == m_u.nprop(), "ncomp size mismatch" );
Assert( m_pc[0][b.second].size() == m_p.nprop(), "ncomp size mismatch" );
for (std::size_t c=0; c<m_u.nprop(); ++c) {
m_u(b.first,c) = m_uc[0][b.second][c];
}
for (std::size_t c=0; c<m_p.nprop(); ++c) {
m_p(b.first,c) = m_pc[0][b.second][c];
}
}
if (rdof > 1) {
// Reconstruct second-order solution and primitive quantities
g_fvpde[Disc()->MeshId()].reconstruct( myGhosts()->m_geoElem, myGhosts()->m_fd,
myGhosts()->m_esup, myGhosts()->m_inpoel, myGhosts()->m_coord, m_u, m_p );
}
// start limiting
lim();
}
void
FV::lim()
// *****************************************************************************
// Compute limiter function
// *****************************************************************************
{
const auto rdof = g_inputdeck.get< tag::rdof >();
if (rdof > 1) {
g_fvpde[Disc()->MeshId()].limit( myGhosts()->m_geoFace, myGhosts()->m_fd,
myGhosts()->m_esup,
myGhosts()->m_inpoel, myGhosts()->m_coord, m_srcFlag, m_u, m_p );
}
// Send limited solution to neighboring chares
if (myGhosts()->m_sendGhost.empty())
comlim_complete();
else
for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
std::vector< std::size_t > tetid( ghostdata.size() );
std::vector< std::vector< tk::real > > u( ghostdata.size() ),
prim( ghostdata.size() );
std::size_t j = 0;
for(const auto& i : ghostdata) {
Assert( i < myGhosts()->m_fd.Esuel().size()/4,
"Sending limiter ghost data" );
tetid[j] = i;
u[j] = m_u[i];
prim[j] = m_p[i];
++j;
}
thisProxy[ cid ].comlim( thisIndex, tetid, u, prim );
}
ownlim_complete();
}
void
FV::comlim( int fromch,
const std::vector< std::size_t >& tetid,
const std::vector< std::vector< tk::real > >& u,
const std::vector< std::vector< tk::real > >& prim )
// *****************************************************************************
// Receive chare-boundary limiter ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] u Limited high-order solution
//! \param[in] prim Limited high-order primitive quantities
//! \details This function receives contributions to the limited solution from
//! fellow chares.
// *****************************************************************************
{
Assert( u.size() == tetid.size(), "Size mismatch in FV::comlim()" );
Assert( prim.size() == tetid.size(), "Size mismatch in FV::comlim()" );
// Find local-to-ghost tet id map for sender chare
const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );
for (std::size_t i=0; i<tetid.size(); ++i) {
auto j = tk::cref_find( n, tetid[i] );
Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
"Receiving solution non-ghost data" );
auto b = tk::cref_find( myGhosts()->m_bid, j );
Assert( b < m_uc[1].size(), "Indexing out of bounds" );
Assert( b < m_pc[1].size(), "Indexing out of bounds" );
m_uc[1][b] = u[i];
m_pc[1][b] = prim[i];
}
// if we have received all solution ghost contributions from neighboring
// chares (chares we communicate along chare-boundary faces with), and
// contributed our solution to these neighbors, proceed to limiting
if (++m_nlim == myGhosts()->m_sendGhost.size()) {
m_nlim = 0;
comlim_complete();
}
}
void
FV::dt()
// *****************************************************************************
// Compute time step size
// *****************************************************************************
{
auto d = Disc();
// Combine own and communicated contributions of limited solution and degrees
// of freedom in cells (if p-adaptive)
for (const auto& b : myGhosts()->m_bid) {
Assert( m_uc[1][b.second].size() == m_u.nprop(), "ncomp size mismatch" );
Assert( m_pc[1][b.second].size() == m_p.nprop(), "ncomp size mismatch" );
for (std::size_t c=0; c<m_u.nprop(); ++c) {
m_u(b.first,c) = m_uc[1][b.second][c];
}
for (std::size_t c=0; c<m_p.nprop(); ++c) {
m_p(b.first,c) = m_pc[1][b.second][c];
}
}
auto mindt = std::numeric_limits< tk::real >::max();
if (m_stage == 0)
{
auto const_dt = g_inputdeck.get< tag::dt >();
auto eps = std::numeric_limits< tk::real >::epsilon();
// use constant dt if configured
if (std::abs(const_dt) > eps) {
mindt = const_dt;
} else { // compute dt based on CFL
// find the minimum dt across all PDEs integrated
auto eqdt =
g_fvpde[d->MeshId()].dt( myGhosts()->m_fd, myGhosts()->m_geoFace,
myGhosts()->m_geoElem, m_u, m_p, myGhosts()->m_fd.Esuel().size()/4,
m_srcFlag, m_dte );
if (eqdt < mindt) mindt = eqdt;
// time-step suppression for unsteady problems
tk::real coeff(1.0);
if (!g_inputdeck.get< tag::steady_state >()) {
if (d->It() < 100) coeff = 0.01 * static_cast< tk::real >(d->It());
}
else {
for (auto& edt : m_dte) edt *= g_inputdeck.get< tag::cfl >();<--- Consider using std::transform algorithm instead of a raw loop.
}
mindt *= coeff * g_inputdeck.get< tag::cfl >();
}
}
else
{
mindt = d->Dt();
}
// Contribute to minimum dt across all chares then advance to next step
contribute( sizeof(tk::real), &mindt, CkReduction::min_double,
CkCallback(CkReductionTarget(FV,solve), thisProxy) );
}
void
FV::solve( tk::real newdt )
// *****************************************************************************
// Compute right-hand side of discrete transport equations
//! \param[in] newdt Size of this new time step
// *****************************************************************************
{
// Enable SDAG wait for building the solution vector during the next stage
thisProxy[ thisIndex ].wait4sol();
thisProxy[ thisIndex ].wait4lim();
thisProxy[ thisIndex ].wait4nod();
auto d = Disc();
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto neq = m_u.nprop()/rdof;
// Set new time step size
if (m_stage == 0) d->setdt( newdt );
// Update Un
if (m_stage == 0) m_un = m_u;
// physical time at time-stage for computing exact source terms for
// unsteady problems
tk::real physT(d->T());
// 2-stage RK
if (m_nrk == 2) {
if (m_stage == 1) {
physT += d->Dt();
}
}
// 3-stage RK
else {
if (m_stage == 1) {
physT += d->Dt();
}
else if (m_stage == 2) {
physT += 0.5*d->Dt();
}
}
// Compute rhs
g_fvpde[d->MeshId()].rhs( physT, myGhosts()->m_geoFace, myGhosts()->m_geoElem,
myGhosts()->m_fd, myGhosts()->m_inpoel, myGhosts()->m_coord,
d->ElemBlockId(), m_u, m_p, m_rhs, m_srcFlag );
// Explicit time-stepping using RK3 to discretize time-derivative
const auto steady = g_inputdeck.get< tag::steady_state >();
for (std::size_t e=0; e<myGhosts()->m_nunk; ++e)
for (std::size_t c=0; c<neq; ++c)
{
auto dte = d->Dt();
if (steady) dte = m_dte[e];
auto rmark = c*rdof;
m_u(e, rmark) = m_rkcoef[0][m_stage] * m_un(e, rmark)
+ m_rkcoef[1][m_stage] * ( m_u(e, rmark)
+ dte * m_rhs(e, c)/m_lhs(e, c) );
// zero out reconstructed dofs of equations using reduced dofs
if (rdof > 1) {
for (std::size_t k=1; k<rdof; ++k)
{
rmark = c*rdof+k;
m_u(e, rmark) = 0.0;
}
}
}
// Update primitives based on the evolved solution
g_fvpde[d->MeshId()].updatePrimitives( m_u, m_p,
myGhosts()->m_fd.Esuel().size()/4 );
if (!g_inputdeck.get< tag::accuracy_test >()) {
g_fvpde[d->MeshId()].cleanTraceMaterial( physT, myGhosts()->m_geoElem, m_u,
m_p, myGhosts()->m_fd.Esuel().size()/4 );
}
if (m_stage < m_nrk-1) {
// continue with next time step stage
stage();
} else {
// Increase number of iterations and physical time
d->next();
// Compute diagnostics, e.g., residuals
auto diag_computed = m_diag.compute( *d,
m_u.nunk()-myGhosts()->m_fd.Esuel().size()/4, myGhosts()->m_geoElem,
std::vector< std::size_t>{}, m_u, m_un );
// Continue to mesh refinement (if configured)
if (!diag_computed) refine( std::vector< tk::real >( m_u.nprop(), 1.0 ) );
}
}
void
FV::refine( const std::vector< tk::real >& l2res )
// *****************************************************************************
// Optionally refine/derefine mesh
//! \param[in] l2res L2-norms of the residual for each scalar component
//! computed across the whole problem
// *****************************************************************************
{
auto d = Disc();
// Assess convergence for steady state
const auto steady = g_inputdeck.get< tag::steady_state >();
const auto residual = g_inputdeck.get< tag::residual >();
const auto rc = g_inputdeck.get< tag::rescomp >() - 1;
bool converged(false);
if (steady) converged = l2res[rc] < residual;
// this is the last time step if max time of max number of time steps
// reached or the residual has reached its convergence criterion
if (d->finished() or converged) m_finished = 1;
auto dtref = g_inputdeck.get< tag::amr, tag::dtref >();
auto dtfreq = g_inputdeck.get< tag::amr, tag::dtfreq >();
// if t>0 refinement enabled and we hit the dtref frequency
if (dtref && !(d->It() % dtfreq)) { // refine
d->startvol();
d->Ref()->dtref( myGhosts()->m_fd.Bface(), {},
tk::remap(myGhosts()->m_fd.Triinpoel(),d->Gid()) );
d->refined() = 1;
} else { // do not refine
d->refined() = 0;
stage();
}
}
void
FV::resizePostAMR(
const std::vector< std::size_t >& /*ginpoel*/,
const tk::UnsMesh::Chunk& chunk,
const tk::UnsMesh::Coords& coord,
const std::unordered_map< std::size_t, tk::UnsMesh::Edge >& /*addedNodes*/,
const std::unordered_map< std::size_t, std::size_t >& addedTets,
const std::set< std::size_t >& removedNodes,
const std::unordered_map< std::size_t, std::size_t >& amrNodeMap,
const tk::NodeCommMap& nodeCommMap,
const std::map< int, std::vector< std::size_t > >& bface,
const std::map< int, std::vector< std::size_t > >& /* bnode */,
const std::vector< std::size_t >& triinpoel,
const std::unordered_map< std::size_t, std::set< std::size_t > >& elemblockid )
// *****************************************************************************
// Receive new mesh from Refiner
//! \param[in] chunk New mesh chunk (connectivity and global<->local id maps)
//! \param[in] coord New mesh node coordinates
//! \param[in] addedTets Newly added mesh cells and their parents (local ids)
//! \param[in] removedNodes Newly removed mesh node local ids
//! \param[in] amrNodeMap Node id map after amr (local ids)
//! \param[in] nodeCommMap New node communication map
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
//! \param[in] elemblockid Local tet ids associated with mesh block ids
// *****************************************************************************
{
auto d = Disc();
// Set flag that indicates that we are during time stepping
m_initial = 0;
myGhosts()->m_initial = 0;
// Zero field output iteration count between two mesh refinement steps
d->Itf() = 0;
// Increase number of iterations with mesh refinement
++d->Itr();
// Save old number of elements
[[maybe_unused]] auto old_nelem = myGhosts()->m_inpoel.size()/4;
// Resize mesh data structures
d->resizePostAMR( chunk, coord, amrNodeMap, nodeCommMap, removedNodes,
elemblockid );
// Update state
myGhosts()->m_inpoel = d->Inpoel();
myGhosts()->m_coord = d->Coord();
auto nelem = myGhosts()->m_inpoel.size()/4;
m_p.resize( nelem );
m_u.resize( nelem );
m_srcFlag.resize( nelem );
m_un.resize( nelem );
m_lhs.resize( nelem );
m_rhs.resize( nelem );
myGhosts()->m_fd = FaceData( myGhosts()->m_inpoel, bface,
tk::remap(triinpoel,d->Lid()) );
myGhosts()->m_geoFace =
tk::Fields( tk::genGeoFaceTri( myGhosts()->m_fd.Nipfac(),
myGhosts()->m_fd.Inpofa(), coord ) );
myGhosts()->m_geoElem = tk::Fields( tk::genGeoElemTet( myGhosts()->m_inpoel,
coord ) );
myGhosts()->m_nfac = myGhosts()->m_fd.Inpofa().size()/3;
myGhosts()->m_nunk = nelem;
m_npoin = coord[0].size();
myGhosts()->m_bndFace.clear();
myGhosts()->m_exptGhost.clear();
myGhosts()->m_sendGhost.clear();
myGhosts()->m_ghost.clear();
myGhosts()->m_esup.clear();
// Update solution on new mesh, P0 (cell center value) only for now
m_un = m_u;
auto pn = m_p;<--- Variable 'pn' is assigned a value that is never used.
auto unprop = m_u.nprop();<--- Variable 'unprop' is assigned a value that is never used.
auto pnprop = m_p.nprop();<--- Variable 'pnprop' is assigned a value that is never used.
for (const auto& [child,parent] : addedTets) {
Assert( child < nelem, "Indexing out of new solution vector" );
Assert( parent < old_nelem, "Indexing out of old solution vector" );
for (std::size_t i=0; i<unprop; ++i) m_u(child,i) = m_un(parent,i);
for (std::size_t i=0; i<pnprop; ++i) m_p(child,i) = pn(parent,i);
}
m_un = m_u;
// Resize communication buffers
m_ghosts[thisIndex].resizeComm();
}
bool
FV::fieldOutput() const
// *****************************************************************************
// Decide wether to output field data
//! \return True if field data is output in this step
// *****************************************************************************
{
auto d = Disc();
// Output field data
return d->fielditer() or d->fieldtime() or d->fieldrange() or m_finished;
}
bool
FV::refinedOutput() const
// *****************************************************************************
// Decide if we write field output using a refined mesh
//! \return True if field output will use a refined mesh
// *****************************************************************************
{
return g_inputdeck.get< tag::field_output, tag::refined >() &&
g_inputdeck.get< tag::scheme >() != ctr::SchemeType::FV;
}
void
FV::writeFields( CkCallback c )
// *****************************************************************************
// Output mesh field data
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
auto d = Disc();
const auto& inpoel = std::get< 0 >( d->Chunk() );
auto esup = tk::genEsup( inpoel, 4 );
auto nelem = inpoel.size() / 4;
// Combine own and communicated contributions and finish averaging of node
// field output in chare boundary nodes
const auto& lid = std::get< 2 >( d->Chunk() );
for (const auto& [g,f] : m_uNodefieldsc) {
Assert( m_uNodefields.nprop() == f.first.size(), "Size mismatch" );
auto p = tk::cref_find( lid, g );
for (std::size_t i=0; i<f.first.size(); ++i) {
m_uNodefields(p,i) += f.first[i];
m_uNodefields(p,i) /= static_cast< tk::real >(
esup.second[p+1] - esup.second[p] + f.second );
}
}
tk::destroy( m_uNodefieldsc );
for (const auto& [g,f] : m_pNodefieldsc) {
Assert( m_pNodefields.nprop() == f.first.size(), "Size mismatch" );
auto p = tk::cref_find( lid, g );
for (std::size_t i=0; i<f.first.size(); ++i) {
m_pNodefields(p,i) += f.first[i];
m_pNodefields(p,i) /= static_cast< tk::real >(
esup.second[p+1] - esup.second[p] + f.second );
}
}
tk::destroy( m_pNodefieldsc );
// Lambda to decide if a node (global id) is on a chare boundary of the field
// output mesh. p - global node id, return true if node is on the chare
// boundary.
auto chbnd = [ this ]( std::size_t p ) {
return
std::any_of( Disc()->NodeCommMap().cbegin(), Disc()->NodeCommMap().cend(),
[&](const auto& s) { return s.second.find(p) != s.second.cend(); } );
};
// Finish computing node field output averages in internal nodes
auto npoin = d->Coord()[0].size();
auto& gid = std::get< 1 >( d->Chunk() );
for (std::size_t p=0; p<npoin; ++p) {
if (!chbnd(gid[p])) {
auto n = static_cast< tk::real >( esup.second[p+1] - esup.second[p] );
for (std::size_t i=0; i<m_uNodefields.nprop(); ++i)
m_uNodefields(p,i) /= n;
for (std::size_t i=0; i<m_pNodefields.nprop(); ++i)
m_pNodefields(p,i) /= n;
}
}
// Collect field output from numerical solution requested by user
auto elemfields = numericFieldOutput( m_uElemfields, tk::Centering::ELEM,
g_fvpde[Disc()->MeshId()].OutVarFn(), m_pElemfields );
auto nodefields = numericFieldOutput( m_uNodefields, tk::Centering::NODE,
g_fvpde[Disc()->MeshId()].OutVarFn(), m_pNodefields );
// Collect field output from analytical solutions (if exist)
const auto& coord = d->Coord();
auto geoElem = tk::genGeoElemTet( inpoel, coord );
auto t = Disc()->T();
analyticFieldOutput( g_fvpde[d->MeshId()], tk::Centering::ELEM,
geoElem.extract_comp(1), geoElem.extract_comp(2), geoElem.extract_comp(3),
t, elemfields );
analyticFieldOutput( g_fvpde[d->MeshId()], tk::Centering::NODE, coord[0],
coord[1], coord[2], t, nodefields );
// Add sound speed vector
std::vector< tk::real > soundspd(nelem, 0.0);
g_fvpde[d->MeshId()].soundspeed(nelem, m_u, m_p, soundspd);
elemfields.push_back(soundspd);
// Add source flag array to element-centered field output
std::vector< tk::real > srcFlag( begin(m_srcFlag), end(m_srcFlag) );
// Here m_srcFlag has a size of m_u.nunk() which is the number of the
// elements within this partition (nelem) plus the ghost partition cells.
// For the purpose of output, we only need the solution data within this
// partition. Therefore, resizing it to nelem removes the extra partition
// boundary allocations in the srcFlag vector. Since the code assumes that
// the boundary elements are on the top, the resize operation keeps the lower
// portion.
srcFlag.resize( nelem );
elemfields.push_back( srcFlag );
// Query fields names requested by user
auto elemfieldnames = numericFieldNames( tk::Centering::ELEM );
auto nodefieldnames = numericFieldNames( tk::Centering::NODE );
// Collect field output names for analytical solutions
analyticFieldNames( g_fvpde[d->MeshId()], tk::Centering::ELEM, elemfieldnames );
analyticFieldNames( g_fvpde[d->MeshId()], tk::Centering::NODE, nodefieldnames );
elemfieldnames.push_back( "sound speed" );
elemfieldnames.push_back( "src_flag" );
Assert( elemfieldnames.size() == elemfields.size(), "Size mismatch" );
Assert( nodefieldnames.size() == nodefields.size(), "Size mismatch" );
// Collect surface output names
auto surfnames = g_fvpde[d->MeshId()].surfNames();
// Collect surface field solution
const auto& fd = myGhosts()->m_fd;
auto elemsurfs = g_fvpde[d->MeshId()].surfOutput(fd, m_u, m_p);
// Output chare mesh and fields metadata to file
const auto& triinpoel = tk::remap( fd.Triinpoel(), d->Gid() );
d->write( inpoel, d->Coord(), fd.Bface(), {},
tk::remap( triinpoel, lid ), elemfieldnames, nodefieldnames,
surfnames, {}, elemfields, nodefields, elemsurfs, {}, c );
}
void
FV::comnodeout( const std::vector< std::size_t >& gid,
const std::vector< std::size_t >& nesup,
const std::vector< std::vector< tk::real > >& Lu,
const std::vector< std::vector< tk::real > >& Lp )
// *****************************************************************************
// Receive chare-boundary nodal solution (for field output) contributions from
// neighboring chares
//! \param[in] gid Global mesh node IDs at which we receive contributions
//! \param[in] nesup Number of elements surrounding points
//! \param[in] Lu Partial contributions of solution nodal fields to
//! chare-boundary nodes
//! \param[in] Lp Partial contributions of primitive quantity nodal fields to
//! chare-boundary nodes
// *****************************************************************************
{
Assert( gid.size() == nesup.size(), "Size mismatch" );
Assert(Lu.size() == m_uNodefields.nprop(), "Fields size mismatch");
Assert(Lp.size() == m_pNodefields.nprop(), "Fields size mismatch");
for (std::size_t f=0; f<Lu.size(); ++f)
Assert( gid.size() == Lu[f].size(), "Size mismatch" );
for (std::size_t f=0; f<Lp.size(); ++f)
Assert( gid.size() == Lp[f].size(), "Size mismatch" );
for (std::size_t i=0; i<gid.size(); ++i) {
auto& nfu = m_uNodefieldsc[ gid[i] ];
nfu.first.resize( Lu.size() );
for (std::size_t f=0; f<Lu.size(); ++f) nfu.first[f] += Lu[f][i];
nfu.second += nesup[i];
auto& nfp = m_pNodefieldsc[ gid[i] ];
nfp.first.resize( Lp.size() );
for (std::size_t f=0; f<Lp.size(); ++f) nfp.first[f] += Lp[f][i];
nfp.second += nesup[i];
}
// When we have heard from all chares we communicate with, this chare is done
if (++m_nnod == Disc()->NodeCommMap().size()) {
m_nnod = 0;
comnodeout_complete();
}
}
void
FV::stage()
// *****************************************************************************
// Evaluate whether to continue with next time step stage
// *****************************************************************************
{
// Increment Runge-Kutta stage counter
++m_stage;
// if not all Runge-Kutta stages complete, continue to next time stage,
// otherwise prepare for nodal field output
if (m_stage < m_nrk)
next();
else
startFieldOutput( CkCallback(CkIndex_FV::step(), thisProxy[thisIndex]) );
}
void
FV::evalLB( int nrestart )
// *****************************************************************************
// Evaluate whether to do load balancing
//! \param[in] nrestart Number of times restarted
// *****************************************************************************
{
auto d = Disc();
// Detect if just returned from a checkpoint and if so, zero timers and flag
if (d->restarted( nrestart )) m_finished = 0;
const auto lbfreq = g_inputdeck.get< tag::cmd, tag::lbfreq >();
const auto nonblocking = g_inputdeck.get< tag::cmd, tag::nonblocking >();
// Load balancing if user frequency is reached or after the second time-step
if ( (d->It()) % lbfreq == 0 || d->It() == 2 ) {
AtSync();
if (nonblocking) next();
} else {
next();
}
}
void
FV::evalRestart()
// *****************************************************************************
// Evaluate whether to save checkpoint/restart
// *****************************************************************************
{
auto d = Disc();
const auto rsfreq = g_inputdeck.get< tag::cmd, tag::rsfreq >();
const auto benchmark = g_inputdeck.get< tag::cmd, tag::benchmark >();
if ( !benchmark && (d->It()) % rsfreq == 0 ) {
std::vector< std::size_t > meshdata{ /* finished = */ 0, d->MeshId() };
contribute( meshdata, CkReduction::nop,
CkCallback(CkReductionTarget(Transporter,checkpoint), d->Tr()) );
} else {
evalLB( /* nrestart = */ -1 );
}
}
void
FV::step()
// *****************************************************************************
// Evaluate wether to continue with next time step
// *****************************************************************************
{
auto d = Disc();
// Output time history
if (d->histiter() or d->histtime() or d->histrange()) {
std::vector< std::vector< tk::real > > hist;
auto h = g_fvpde[d->MeshId()].histOutput( d->Hist(), myGhosts()->m_inpoel,
myGhosts()->m_coord, m_u, m_p );
hist.insert( end(hist), begin(h), end(h) );
d->history( std::move(hist) );
}
// Output one-liner status report to screen
d->status();
// Reset Runge-Kutta stage counter
m_stage = 0;
// If neither max iterations nor max time reached, continue, otherwise finish
if (not m_finished) {
evalRestart();
} else {
auto meshid = d->MeshId();
d->contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
CkCallback(CkReductionTarget(Transporter,finish), d->Tr()) );
}
}
#include "NoWarning/fv.def.h"
|