1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250 | // *****************************************************************************
/*!
\file src/Inciter/Partitioner.hpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Charm++ chare partitioner nodegroup used to perform mesh
partitioning
\details Charm++ chare partitioner nodegroup used to perform mesh read and
partitioning, one worker per compute node.
*/
// *****************************************************************************
#ifndef Partitioner_h
#define Partitioner_h
#include <array>
#include <stddef.h>
#include "ContainerUtil.hpp"
#include "ZoltanInterOp.hpp"
#include "Options/PartitioningAlgorithm.hpp"
#include "DerivedData.hpp"
#include "UnsMesh.hpp"
#include "FaceData.hpp"
#include "Sorter.hpp"
#include "Refiner.hpp"
#include "Callback.hpp"
#include "NoWarning/partitioner.decl.h"
namespace inciter {
//! Partitioner Charm++ chare nodegroup class
//! \details Instantiations of Partitioner comprise a processor aware Charm++
//! chare node group. When instantiated, a new object is created on each
//! compute node and not more (as opposed to individual chares or chare array
//! object elements). See also the Charm++ interface file partitioner.ci.
class Partitioner : public CBase_Partitioner {
private:
//! \brief Mesh data used for categorizing mesh chunks assigned to chares
//! after mesh partitioning and before mesh distribution across chares
using MeshData =
std::tuple<
// Tetrahedron (domain element) connectivity
std::vector< std::size_t >,
// Boundary face connectivity for each side set
std::unordered_map< int, std::vector< std::size_t > >,
// Boundary node lists for each side set
std::unordered_map< int, std::vector< std::size_t > >,
// Mesh block ids (value) associated to local tet ids (index)
std::vector< std::size_t > >;
public:
//! Constructor
Partitioner( std::size_t meshid,
const std::string& filename,
const tk::PartitionerCallback& cbp,
const tk::RefinerCallback& cbr,
const tk::SorterCallback& cbs,
const CProxy_Transporter& host,
const CProxy_Refiner& refiner,
const CProxy_Sorter& sorter,
const tk::CProxy_MeshWriter& meshwriter,
const std::vector< Scheme >& scheme,
const std::map< int, std::vector< std::size_t > >& bface,
const std::map< int, std::vector< std::size_t > >& faces,
const std::map< int, std::vector< std::size_t > >& bnode );
//! Destructor
~Partitioner() override;
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundefined-func-template"
#endif
//! Migrate constructor
explicit Partitioner( CkMigrateMessage* m ) : CBase_Partitioner( m ) {}<--- Member variable 'Partitioner::m_meshid' is not initialized in the constructor.<--- Member variable 'Partitioner::m_ndist' is not initialized in the constructor.<--- Member variable 'Partitioner::m_nchare' is not initialized in the constructor.
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
//! Partition the computational mesh into a number of chares
void partition( int nchare );
//! Receive mesh associated to chares we own after refinement
void addMesh( int fromnode,
const std::unordered_map< int,
std::tuple<
std::vector< std::size_t >,
tk::UnsMesh::CoordMap,
std::unordered_map< int, std::vector< std::size_t > >,
std::unordered_map< int, std::vector< std::size_t > >,
std::vector< std::size_t >
> >& chmesh );
//! Acknowledge received mesh after initial mesh refinement
void recvMesh();
//! Optionally start refining the mesh
void refine();
/** @name Charm++ pack/unpack serializer member functions */
///@{
//! \brief Pack/Unpack serialize member function
//! \param[in,out] p Charm++'s PUP::er serializer object reference
//! \note This is a Charm++ nodegroup, pup() is thus only for
//! checkpoint/restart.
void pup( PUP::er &p ) override {
p | m_meshid;
p | m_cbp;
p | m_cbr;
p | m_cbs;
p | m_host;
p | m_refiner;
p | m_sorter;
p | m_meshwriter;
p | m_scheme;
p | m_ginpoel;
p | m_coord;
p | m_inpoel;
p | m_lid;
p | m_elemBlockId;
p | m_ndist;
p | m_nchare;
p | m_nface;
p | m_nodech;
p | m_linnodes;
p | m_chinpoel;
p | m_chcoordmap;
p | m_chbface;
p | m_chtriinpoel;
p | m_chbnode;
p | m_chelemblockid;
p | m_bnodechares;
p | m_bface;
p | m_triinpoel;
p | m_bnode;
}
//! \brief Pack/Unpack serialize operator|
//! \param[in,out] p Charm++'s PUP::er serializer object reference
//! \param[in,out] i Partitioner object reference
friend void operator|( PUP::er& p, Partitioner& i ) { i.pup(p); }
//@}
private:
//! Mesh ID
std::size_t m_meshid;
//! Charm++ callbacks associated to compile-time tags for partitioner
tk::PartitionerCallback m_cbp;
//! Charm++ callbacks associated to compile-time tags for refiner
tk::RefinerCallback m_cbr;
//! Charm++ callbacks associated to compile-time tags for sorter
tk::SorterCallback m_cbs;
//! Host proxy
CProxy_Transporter m_host;
//! Mesh refiner proxy
CProxy_Refiner m_refiner;
//! Mesh sorter proxy
CProxy_Sorter m_sorter;
//! Mesh writer proxy
tk::CProxy_MeshWriter m_meshwriter;
//! Discretization schemes (one per mesh)
std::vector< Scheme > m_scheme;
//! Element connectivity of this compute node's mesh chunk (global ids)
std::vector< std::size_t > m_ginpoel;
//! Coordinates of mesh nodes of this compute node's mesh chunk
tk::UnsMesh::Coords m_coord;
//! \brief Element connectivity with local node IDs of this compute node's
//! mesh chunk
std::vector< std::size_t > m_inpoel;
//! Global->local node IDs of elements of this compute node's mesh chunk
//! \details Key: global node id, value: local node id
std::unordered_map< std::size_t, std::size_t > m_lid;
//! List of elements for each block-id.
//! \details key: block id, value: set of elements in corresponding block
std::unordered_map< std::size_t, std::set< std::size_t > > m_elemBlockId;
//! Counter during mesh distribution
std::size_t m_ndist;
//! Total number of chares across all compute nodes
int m_nchare;
//! Counters (for each chare owned) for assigning face ids in parallel
std::unordered_map< int, std::size_t > m_nface;
//! Chare IDs (value) associated to global mesh node IDs (key)
//! \details Multiple chares can contribute to a single node, hence vector
//! for map value.
std::unordered_map< std::size_t, std::vector< int > > m_nodech;
//! \brief Map associating new node IDs (as in producing contiguous-row-id
//! linear system contributions) as map-values to old node IDs (as in
//! file) as map-keys
std::unordered_map< std::size_t, std::size_t > m_linnodes;
//! Mesh connectivity using global node IDs associated to chares owned
std::unordered_map< int, std::vector< std::size_t > > m_chinpoel;
//! Coordinates associated to global node IDs of our mesh chunk for chares
std::unordered_map< int, tk::UnsMesh::CoordMap > m_chcoordmap;
//! Side set id + boundary face id for each chare
std::unordered_map< int,
std::map< int, std::vector< std::size_t > > > m_chbface;
//! Boundary face connectivity for each chare
std::map< int, std::vector< std::size_t > > m_chtriinpoel;
//! Side set id + boundary nodes for each chare
std::unordered_map< int,
std::map< int, std::vector< std::size_t > > > m_chbnode;
//! Mesh block ids associated to local tet ids for each chare
//! \details outer key: chare id, vector index: tet id, value: block id of
//! corresponding tet.
std::unordered_map< int, std::vector< std::size_t > > m_chelemblockid;
//! \brief Map associating a list of chare IDs to old (as in file) global
//! mesh node IDs on the chare boundaries
//! \details Note that a single global mesh node ID can be associated to
//! multiple chare IDs as multiple chares can contribute to a single node.
std::unordered_map< std::size_t, std::vector< int > > m_bnodechares;
//! Boundary face IDs associated associated to side set IDs
std::map< int, std::vector< std::size_t > > m_bface;
//! Boundary face-node connectivity
std::vector< std::size_t > m_triinpoel;
//! List of boundary nodes associated to side-set IDs
std::map< int, std::vector< std::size_t > > m_bnode;
//! Compute element centroid coordinates
std::array< std::vector< tk::real >, 3 >
centroids( const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord );
//! Categorize mesh elements (given by their gobal node IDs) by target
std::unordered_map< int, MeshData >
categorize( const std::vector< std::size_t >& che ) const;
//! Extract coordinates associated to global nodes of a mesh chunk
tk::UnsMesh::CoordMap coordmap( const std::vector< std::size_t >& inpoel );
//! Distribute mesh to target compute nodes after mesh partitioning
void distribute( std::unordered_map< int, MeshData >&& mesh );
//! Compute chare (partition) distribution across compute nodes
std::array< int, 2 > distribution( int npart ) const;
//! Return nodegroup id for chare id
int node( int id ) const;
//! Keep only those nodes for side sets that reside on this compute node
void ownBndNodes(
const std::unordered_map< std::size_t, std::size_t >& lid,
std::map< int, std::vector< std::size_t > >& bnode );
};
} // inciter::
#endif // Partitioner_h
|