1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
// *****************************************************************************
/*!
  \file      src/PDE/MultiMat/DGMultiMat.hpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Compressible multi-material flow using discontinuous Galerkin
    finite elements
  \details   This file implements calls to the physics operators governing
    compressible multi-material flow (with velocity equilibrium) using
    discontinuous Galerkin discretizations.
*/
// *****************************************************************************
#ifndef DGMultiMat_h
#define DGMultiMat_h

#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <map>
#include <array>

#include "Macro.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "ContainerUtil.hpp"
#include "UnsMesh.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Integrate/Basis.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Initialize.hpp"
#include "Integrate/Mass.hpp"
#include "Integrate/Surface.hpp"
#include "Integrate/Boundary.hpp"
#include "Integrate/Volume.hpp"
#include "Integrate/MultiMatTerms.hpp"
#include "Integrate/Source.hpp"
#include "Integrate/SolidTerms.hpp"
#include "RiemannChoice.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
#include "Reconstruction.hpp"
#include "Limiter.hpp"
#include "Problem/FieldOutput.hpp"
#include "Problem/BoxInitialization.hpp"
#include "PrefIndicator.hpp"
#include "MultiMat/BCFunctions.hpp"
#include "MultiMat/MiscMultiMatFns.hpp"
#include "EoS/GetMatProp.hpp"

namespace inciter {

extern ctr::InputDeck g_inputdeck;

namespace dg {

//! \brief MultiMat used polymorphically with tk::DGPDE
//! \details The template arguments specify policies and are used to configure
//!   the behavior of the class. The policies are:
//!   - Physics - physics configuration, see PDE/MultiMat/Physics.h
//!   - Problem - problem configuration, see PDE/MultiMat/Problem.h
//! \note The default physics is Euler, set in inciter::deck::check_multimat()
template< class Physics, class Problem >
class MultiMat {

  private:
    using eq = tag::multimat;

  public:
    //! Constructor
    explicit MultiMat() :
      m_ncomp( g_inputdeck.get< tag::ncomp >() ),
      m_nprim(nprim()),
      m_riemann( multimatRiemannSolver(
        g_inputdeck.get< tag::flux >() ) )
    {
      // associate boundary condition configurations with state functions
      brigand::for_each< ctr::bclist::Keys >( ConfigBC( m_bc,
        // BC State functions
        { dirichlet
        , symmetry
        , invalidBC         // Inlet BC not implemented
        , invalidBC         // Outlet BC not implemented
        , farfield
        , extrapolate
        , noslipwall },
        // BC Gradient functions
        { noOpGrad
        , symmetryGrad
        , noOpGrad
        , noOpGrad
        , noOpGrad
        , noOpGrad
        , noOpGrad }
        ) );

      // EoS initialization
      initializeMaterialEoS( m_mat_blk );
    }

    //! Find the number of primitive quantities required for this PDE system
    //! \return The number of primitive quantities required to be stored for
    //!   this PDE system
    std::size_t nprim() const<--- Shadowed declaration<--- Shadowed declaration
    {
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto& solidx = inciter::g_inputdeck.get<
        tag::matidxmap, tag::solidx >();

      // individual material pressures and three velocity components
      std::size_t np(nmat+3);

      for (std::size_t k=0; k<nmat; ++k) {
        if (solidx[k] > 0) {
          // individual material Cauchy stress tensor components
          np += 6;
        }
      }

      return np;
    }

    //! Find the number of materials set up for this PDE system
    //! \return The number of materials set up for this PDE system
    std::size_t nmat() const<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration
    {
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();
      return nmat;
    }

    //! Assign number of DOFs per equation in the PDE system
    //! \param[in,out] numEqDof Array storing number of Dofs for each PDE
    //!   equation
    void numEquationDofs(std::vector< std::size_t >& numEqDof) const
    {
      // all equation-dofs initialized to ndofs first
      for (std::size_t i=0; i<m_ncomp; ++i) {
        numEqDof.push_back(g_inputdeck.get< tag::ndof >());
      }

      // volume fractions are P0Pm (ndof = 1) for multi-material simulations
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      if(nmat > 1)
        for (std::size_t k=0; k<nmat; ++k)
          numEqDof[volfracIdx(nmat, k)] = 1;
    }

    //! Determine elements that lie inside the user-defined IC box
    //! \param[in] geoElem Element geometry array
    //! \param[in] nielem Number of internal elements
    //! \param[in,out] inbox List of nodes at which box user ICs are set for
    //!    each IC box
    void IcBoxElems( const tk::Fields& geoElem,
      std::size_t nielem,
      std::vector< std::unordered_set< std::size_t > >& inbox ) const
    {
      tk::BoxElems< eq >(geoElem, nielem, inbox);
    }

    //! Find how many 'stiff equations', which are the inverse
    //! deformation equations because of plasticity
    //! \return number of stiff equations
    std::size_t nstiffeq() const
    {
      const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
      std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      return 9*numSolids(nmat, solidx);
    }

    //! Find how many 'non-stiff equations', which are the inverse
    //! deformation equations because of plasticity
    //! \return number of stiff equations
    std::size_t nnonstiffeq() const
    {
      return m_ncomp-nstiffeq();
    }

    //! Locate the stiff equations.
    //! \param[out] stiffEqIdx list with pointers to stiff equations
    void setStiffEqIdx( std::vector< std::size_t >& stiffEqIdx ) const
    {
      stiffEqIdx.resize(nstiffeq(), 0);
      const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
      std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      std::size_t icnt = 0;
      for (std::size_t k=0; k<nmat; ++k)
        if (solidx[k] > 0)
          for (std::size_t i=0; i<3; ++i)
            for (std::size_t j=0; j<3; ++j)
            {
              stiffEqIdx[icnt] =
                inciter::deformIdx(nmat, solidx[k], i, j);
              icnt++;
            }
    }

    //! Locate the nonstiff equations.
    //! \param[out] nonStiffEqIdx list with pointers to nonstiff equations
    void setNonStiffEqIdx( std::vector< std::size_t >& nonStiffEqIdx ) const
    {
      nonStiffEqIdx.resize(nnonstiffeq(), 0);
      for (std::size_t icomp=0; icomp<nnonstiffeq(); icomp++)
        nonStiffEqIdx[icomp] = icomp;
    }

    //! Initialize the compressible flow equations, prepare for time integration
    //! \param[in] L Block diagonal mass matrix
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] inbox List of elements at which box user ICs are set for
    //!   each IC box
    //! \param[in] elemblkid Element ids associated with mesh block ids where
    //!   user ICs are set
    //! \param[in,out] unk Array of unknowns
    //! \param[in] t Physical time
    //! \param[in] nielem Number of internal elements
    void initialize( const tk::Fields& L,
      const std::vector< std::size_t >& inpoel,
      const tk::UnsMesh::Coords& coord,
      const std::vector< std::unordered_set< std::size_t > >& inbox,
      const std::unordered_map< std::size_t, std::set< std::size_t > >&
        elemblkid,
      tk::Fields& unk,
      tk::real t,
      const std::size_t nielem ) const
    {
      tk::initialize( m_ncomp, m_mat_blk, L, inpoel, coord,
                      Problem::initialize, unk, t, nielem );

      const auto rdof = g_inputdeck.get< tag::rdof >();
      const auto& ic = g_inputdeck.get< tag::ic >();
      const auto& icbox = ic.get< tag::box >();
      const auto& icmbk = ic.get< tag::meshblock >();

      const auto& bgpre = ic.get< tag::pressure >();
      const auto& bgtemp = ic.get< tag::temperature >();

      // Set initial conditions inside user-defined IC boxes and mesh blocks
      std::vector< tk::real > s(m_ncomp, 0.0);
      for (std::size_t e=0; e<nielem; ++e) {
        // inside user-defined box
        if (!icbox.empty()) {
          std::size_t bcnt = 0;
          for (const auto& b : icbox) {   // for all boxes
            if (inbox.size() > bcnt && inbox[bcnt].find(e) != inbox[bcnt].end())
            {
              std::vector< tk::real > box
                { b.template get< tag::xmin >(), b.template get< tag::xmax >(),
                  b.template get< tag::ymin >(), b.template get< tag::ymax >(),
                  b.template get< tag::zmin >(), b.template get< tag::zmax >() };
              auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
              for (std::size_t c=0; c<m_ncomp; ++c) {
                auto mark = c*rdof;
                s[c] = unk(e,mark);
                // set high-order DOFs to zero
                for (std::size_t i=1; i<rdof; ++i)
                  unk(e,mark+i) = 0.0;
              }
              initializeBox<ctr::boxList>( m_mat_blk, V_ex, t, b, bgpre,
                bgtemp, s );
              // store box-initialization in solution vector
              for (std::size_t c=0; c<m_ncomp; ++c) {
                auto mark = c*rdof;
                unk(e,mark) = s[c];
              }
            }
            ++bcnt;
          }
        }

        // inside user-specified mesh blocks
        if (!icmbk.empty()) {
          for (const auto& b : icmbk) { // for all blocks
            auto blid = b.get< tag::blockid >();
            auto V_ex = b.get< tag::volume >();
            if (elemblkid.find(blid) != elemblkid.end()) {
              const auto& elset = tk::cref_find(elemblkid, blid);
              if (elset.find(e) != elset.end()) {
                initializeBox<ctr::meshblockList>( m_mat_blk, V_ex, t, b,
                  bgpre, bgtemp, s );
                // store initialization in solution vector
                for (std::size_t c=0; c<m_ncomp; ++c) {
                  auto mark = c*rdof;
                  unk(e,mark) = s[c];
                }
              }
            }
          }
        }
      }
    }

    //! Compute density constraint for a given material
    //! \param[in] nelem Number of elements
    //! \param[in] unk Array of unknowns
    //! \param[out] densityConstr Density Constraint: rho/(rho0*det(g))
    void computeDensityConstr( std::size_t nelem,
                               tk::Fields& unk,<--- Parameter 'unk' can be declared with const
                               std::vector< tk::real >& densityConstr) const
    {
      const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
      std::size_t rdof = g_inputdeck.get< tag::rdof >();
      std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      for (std::size_t e=0; e<nelem; ++e)
        densityConstr[e] = 0.0;
      for (std::size_t imat=0; imat<nmat; ++imat)
        if (solidx[imat] > 0)
        {
          for (std::size_t e=0; e<nelem; ++e)
          {
            // Retrieve unknowns
            tk::real arho = unk(e, densityDofIdx(nmat, imat, rdof, 0));
            std::array< std::array< tk::real, 3 >, 3 > g;
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                g[i][j] = unk(e, deformDofIdx(nmat, solidx[imat], i, j, rdof, 0));
            // Compute determinant of g
            tk::real detg = tk::determinant(g);
            // Compute constraint measure
            densityConstr[e] += arho/(m_mat_blk[imat].compute< EOS::rho0 >()*detg);
          }
        }
        else
        {
          for (std::size_t e=0; e<nelem; ++e)
          {
            // Retrieve alpha and add it to the constraint measure
            tk::real alpha = unk(e, volfracDofIdx(nmat, imat, rdof, 0));
            densityConstr[e] += alpha;
          }
        }
    }

    //! Compute the left hand side block-diagonal mass matrix
    //! \param[in] geoElem Element geometry array
    //! \param[in,out] l Block diagonal mass matrix
    void lhs( const tk::Fields& geoElem, tk::Fields& l ) const {
      const auto ndof = g_inputdeck.get< tag::ndof >();
      // Unlike Compflow and Transport, there is a weak reconstruction about
      // conservative variable after limiting function which will require the
      // size of left hand side vector to be rdof
      tk::mass( m_ncomp, ndof, geoElem, l );
    }

    //! Update the interface cells to first order dofs
    //! \param[in] unk Array of unknowns
    //! \param[in] nielem Number of internal elements
    //! \param[in,out] ndofel Array of dofs
    //! \param[in,out] interface Vector of interface marker
    //! \details This function resets the high-order terms in interface cells.
    void updateInterfaceCells( tk::Fields& unk,<--- Parameter 'unk' can be declared with const
      std::size_t nielem,
      std::vector< std::size_t >& ndofel,
      std::vector< std::size_t >& interface ) const
    {
      auto intsharp =
        g_inputdeck.get< tag::multimat, tag::intsharp >();
      // If this cell is not material interface, return this function
      if(not intsharp)  return;

      auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto& solidx = g_inputdeck.get<
        tag::matidxmap, tag::solidx >();

      for (std::size_t e=0; e<nielem; ++e) {
        std::vector< std::size_t > matInt(nmat, 0);
        std::vector< tk::real > alAvg(nmat, 0.0);
        for (std::size_t k=0; k<nmat; ++k)
          alAvg[k] = unk(e, volfracDofIdx(nmat,k,rdof,0));
        auto intInd = interfaceIndicator(nmat, alAvg, matInt);

        // interface cells cannot be high-order
        if (intInd) {
          interface[e] = 1;
          for (std::size_t k=0; k<nmat; ++k) {
            if (matInt[k]) {
              for (std::size_t i=1; i<rdof; ++i) {
                unk(e, densityDofIdx(nmat,k,rdof,i)) = 0.0;
                unk(e, energyDofIdx(nmat,k,rdof,i)) = 0.0;
              }
              if (solidx[k] > 0) {
                for (std::size_t i=0; i<3; ++i)
                  for (std::size_t j=0; j<3; ++j)
                    for (std::size_t idof=1; idof<rdof; ++idof) {
                      unk(e, deformDofIdx(nmat,solidx[k],i,j,rdof,idof)) = 0.0;
                    }
              }
            }
          }
          for (std::size_t idir=0; idir<3; ++idir) {
            for (std::size_t i=1; i<rdof; ++i) {
              unk(e, momentumDofIdx(nmat,idir,rdof,i)) = 0.0;
            }
          }
        } else {
          // If the cell is marked as interface cell in the previous timestep
          // and does not marked as interface for the current timestep, DGP2
          // will be applied for the current timestep in p-adaptive process
          // Please note this block is added since the spectral decay indicator
          // does not applied to P0 cells.
          if (interface[e] == 1) {
            if(ndofel[e] < 10 && rdof == 10) {
              ndofel[e] = 10;
              for (std::size_t k=0; k<nmat; ++k) {
                for (std::size_t i=1; i<rdof; ++i) {
                  unk(e, densityDofIdx(nmat,k,rdof,i)) = 0.0;
                  unk(e, energyDofIdx(nmat,k,rdof,i)) = 0.0;
                }
              }
              for (std::size_t idir=0; idir<3; ++idir) {
                for (std::size_t i=1; i<rdof; ++i) {
                  unk(e, momentumDofIdx(nmat,idir,rdof,i)) = 0.0;
                }
              }
            }
          }
          interface[e] = 0;
        }
      }
    }

    //! Update the primitives for this PDE system
    //! \param[in] unk Array of unknowns
    //! \param[in] L The left hand side block-diagonal mass matrix
    //! \param[in] geoElem Element geometry array
    //! \param[in,out] prim Array of primitives
    //! \param[in] nielem Number of internal elements
    //! \param[in] ndofel Array of dofs
    //! \details This function computes and stores the dofs for primitive
    //!   quantities, which are required for obtaining reconstructed states used
    //!   in the Riemann solver. See /PDE/Riemann/AUSM.hpp, where the
    //!   normal velocity for advection is calculated from independently
    //!   reconstructed velocities.
    void updatePrimitives( const tk::Fields& unk,
                           const tk::Fields& L,
                           const tk::Fields& geoElem,
                           tk::Fields& prim,<--- Parameter 'prim' can be declared with const
                           std::size_t nielem,
                           std::vector< std::size_t >& ndofel ) const<--- Parameter 'ndofel' can be declared with const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();<--- Variable 'rdof' is assigned a value that is never used.
      const auto ndof = g_inputdeck.get< tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
      const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();

      Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );
      Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
              "primitive quantities must equal "+ std::to_string(rdof*m_nprim) );

      for (std::size_t e=0; e<nielem; ++e)
      {
        std::vector< tk::real > R(m_nprim*ndof, 0.0);

        auto ng = tk::NGvol(ndof);

        // arrays for quadrature points
        std::array< std::vector< tk::real >, 3 > coordgp;
        std::vector< tk::real > wgp;

        coordgp[0].resize( ng );
        coordgp[1].resize( ng );
        coordgp[2].resize( ng );
        wgp.resize( ng );

        tk::GaussQuadratureTet( ng, coordgp, wgp );

        // Local degree of freedom
        auto dof_el = ndofel[e];

        // Loop over quadrature points in element e
        for (std::size_t igp=0; igp<ng; ++igp)
        {
          // Compute the basis function
          auto B =
            tk::eval_basis( dof_el, coordgp[0][igp], coordgp[1][igp], coordgp[2][igp] );

          auto w = wgp[igp] * geoElem(e, 0);

          auto state = tk::eval_state( m_ncomp, rdof, dof_el, e, unk, B );

          // bulk density at quadrature point
          tk::real rhob(0.0);
          for (std::size_t k=0; k<nmat; ++k)
            rhob += state[densityIdx(nmat, k)];

          // velocity vector at quadrature point
          std::array< tk::real, 3 >
            vel{ state[momentumIdx(nmat, 0)]/rhob,
                 state[momentumIdx(nmat, 1)]/rhob,
                 state[momentumIdx(nmat, 2)]/rhob };

          std::vector< tk::real > pri(m_nprim, 0.0);

          // Evaluate material pressure at quadrature point
          for(std::size_t imat = 0; imat < nmat; imat++)
          {
            auto alphamat = state[volfracIdx(nmat, imat)];
            auto arhomat = state[densityIdx(nmat, imat)];
            auto arhoemat = state[energyIdx(nmat, imat)];
            auto gmat = getDeformGrad(nmat, imat, state);
            pri[pressureIdx(nmat,imat)] = m_mat_blk[imat].compute<
              EOS::pressure >( arhomat, vel[0], vel[1], vel[2], arhoemat,
              alphamat, imat, gmat );

            pri[pressureIdx(nmat,imat)] = constrain_pressure( m_mat_blk,
              pri[pressureIdx(nmat,imat)], arhomat, alphamat, imat);

            if (solidx[imat] > 0) {
              auto asigmat = m_mat_blk[imat].computeTensor< EOS::CauchyStress >(
              arhomat, vel[0], vel[1], vel[2], arhoemat,
              alphamat, imat, gmat );

              pri[stressIdx(nmat,solidx[imat],0)] = asigmat[0][0];
              pri[stressIdx(nmat,solidx[imat],1)] = asigmat[1][1];
              pri[stressIdx(nmat,solidx[imat],2)] = asigmat[2][2];
              pri[stressIdx(nmat,solidx[imat],3)] = asigmat[0][1];
              pri[stressIdx(nmat,solidx[imat],4)] = asigmat[0][2];
              pri[stressIdx(nmat,solidx[imat],5)] = asigmat[1][2];
            }
          }

          // Evaluate bulk velocity at quadrature point
          for (std::size_t idir=0; idir<3; ++idir) {
            pri[velocityIdx(nmat,idir)] = vel[idir];
          }

          for(std::size_t k = 0; k < m_nprim; k++)
          {
            auto mark = k * ndof;
            for(std::size_t idof = 0; idof < dof_el; idof++)
              R[mark+idof] += w * pri[k] * B[idof];
          }
        }

        // Update the DG solution of primitive variables
        for(std::size_t k = 0; k < m_nprim; k++)
        {
          auto mark = k * ndof;
          auto rmark = k * rdof;
          for(std::size_t idof = 0; idof < dof_el; idof++)
          {
            prim(e, rmark+idof) = R[mark+idof] / L(e, mark+idof);
            if(fabs(prim(e, rmark+idof)) < 1e-16)
              prim(e, rmark+idof) = 0;
          }
        }
      }
    }

    //! Clean up the state of trace materials for this PDE system
    //! \param[in] t Physical time
    //! \param[in] geoElem Element geometry array
    //! \param[in,out] unk Array of unknowns
    //! \param[in,out] prim Array of primitives
    //! \param[in] nielem Number of internal elements
    //! \details This function cleans up the state of materials present in trace
    //!   quantities in each cell. Specifically, the state of materials with
    //!   very low volume-fractions in a cell is replaced by the state of the
    //!   material which is present in the largest quantity in that cell. This
    //!   becomes necessary when shocks pass through cells which contain a very
    //!   small amount of material. The state of that tiny material might
    //!   become unphysical and cause solution to diverge; thus requiring such
    //!   a "reset".
    void cleanTraceMaterial( tk::real t,
                             const tk::Fields& geoElem,
                             tk::Fields& unk,
                             tk::Fields& prim,
                             std::size_t nielem ) const
    {
      [[maybe_unused]] const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.

      Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );
      Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
              "primitive quantities must equal "+ std::to_string(rdof*m_nprim) );

      auto neg_density = cleanTraceMultiMat(t, nielem, m_mat_blk, geoElem, nmat,
        unk, prim);

      if (neg_density) Throw("Negative partial density.");
    }

    //! Reconstruct second-order solution from first-order
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] esup Elements-surrounding-nodes connectivity
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in,out] U Solution vector at recent time step
    //! \param[in,out] P Vector of primitives at recent time step
    //! \param[in] pref Indicator for p-adaptive algorithm
    //! \param[in] ndofel Vector of local number of degrees of freedome
    void reconstruct( tk::real,
                      const tk::Fields&,
                      const tk::Fields& geoElem,
                      const inciter::FaceData& fd,
                      const std::map< std::size_t, std::vector< std::size_t > >&
                        esup,
                      const std::vector< std::size_t >& inpoel,
                      const tk::UnsMesh::Coords& coord,
                      tk::Fields& U,
                      tk::Fields& P,
                      const bool pref,
                      const std::vector< std::size_t >& ndofel ) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      const auto ndof = g_inputdeck.get< tag::ndof >();

      bool is_p0p1(false);<--- Variable 'is_p0p1' is assigned a value that is never used.
      if (rdof == 4 && ndof == 1)
        is_p0p1 = true;<--- Variable 'is_p0p1' is assigned a value that is never used.

      const auto nelem = fd.Esuel().size()/4;<--- Variable 'nelem' is assigned a value that is never used.
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.

      Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );

      //----- reconstruction of conserved quantities -----
      //--------------------------------------------------

      for (std::size_t e=0; e<nelem; ++e)
      {
        // 1. specify how many variables need to be reconstructed
        std::vector< std::size_t > vars;
        // for p-adaptive DG
        if (pref) {
          // If DG is applied, reconstruct only volume fractions
          if(ndofel[e] > 1) {
            for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat, k));
          }
          else  // If P0P1 is applied for this element
            for (std::size_t c=0; c<m_ncomp; ++c) vars.push_back(c);
        }
        else {
          // for P0P1, reconstruct all variables
          if (is_p0p1)
            for (std::size_t c=0; c<m_ncomp; ++c) vars.push_back(c);
          // for high-order DG, reconstruct only volume fractions
          else if (ndof > 1)
            for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat, k));
        }

        // 2. solve 3x3 least-squares system
        // Reconstruct second-order dofs of volume-fractions in Taylor space
        // using nodal-stencils, for a good interface-normal estimate
        tk::recoLeastSqExtStencil( rdof, e, esup, inpoel, geoElem, U, vars );

        // 3. transform reconstructed derivatives to Dubiner dofs
        tk::transform_P0P1( rdof, e, inpoel, coord, U, vars );
      }

      //----- reconstruction of primitive quantities -----
      //--------------------------------------------------
      // For multimat, conserved and primitive quantities are reconstructed
      // separately.

      for (std::size_t e=0; e<nelem; ++e)
      {
        // There are two conditions that requires the reconstruction of the
        // primitive variables:
        //   1. p-adaptive is triggered and P0P1 scheme is applied to specific
        //      elements
        //   2. p-adaptive is not triggered and P0P1 scheme is applied to the
        //      whole computation domain
        if ((pref && ndofel[e] == 1) || (!pref && is_p0p1)) {
          std::vector< std::size_t > vars;
          for (std::size_t c=0; c<m_nprim; ++c) vars.push_back(c);

          // 1.
          // Reconstruct second-order dofs of volume-fractions in Taylor space
          // using nodal-stencils, for a good interface-normal estimate
          tk::recoLeastSqExtStencil( rdof, e, esup, inpoel, geoElem, P, vars );

          // 2.
          tk::transform_P0P1(rdof, e, inpoel, coord, P, vars);
        }
      }

    }

    //! Limit second-order solution, and primitive quantities separately
    //! \param[in] t Physical time
    //! \param[in] pref Indicator for p-adaptive algorithm
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] esup Elements-surrounding-nodes connectivity
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] ndofel Vector of local number of degrees of freedome
    //! \param[in] gid Local->global node id map
    //! \param[in] bid Local chare-boundary node ids (value) associated to
    //!   global node ids (key)
    //! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
    //!   variables
    //! \param[in] pNodalExtrm Chare-boundary nodal extrema for primitive
    //!   variables
    //! \param[in] mtInv Inverse of Taylor mass matrix
    //! \param[in,out] U Solution vector at recent time step
    //! \param[in,out] P Vector of primitives at recent time step
    //! \param[in,out] shockmarker Vector of shock-marker values
    void limit( [[maybe_unused]] tk::real t,
                const bool pref,
                const tk::Fields& geoFace,
                const tk::Fields& geoElem,
                const inciter::FaceData& fd,
                const std::map< std::size_t, std::vector< std::size_t > >& esup,
                const std::vector< std::size_t >& inpoel,
                const tk::UnsMesh::Coords& coord,
                const std::vector< std::size_t >& ndofel,
                const std::vector< std::size_t >& gid,
                const std::unordered_map< std::size_t, std::size_t >& bid,
                const std::vector< std::vector<tk::real> >& uNodalExtrm,
                const std::vector< std::vector<tk::real> >& pNodalExtrm,
                const std::vector< std::vector<tk::real> >& mtInv,
                tk::Fields& U,
                tk::Fields& P,
                std::vector< std::size_t >& shockmarker ) const
    {
      Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );

      const auto limiter = g_inputdeck.get< tag::limiter >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto rdof = g_inputdeck.get< tag::rdof >();
      const auto& solidx = g_inputdeck.get<
        tag::matidxmap, tag::solidx >();

      // limit vectors of conserved and primitive quantities
      if (limiter == ctr::LimiterType::SUPERBEEP1)
      {
        SuperbeeMultiMat_P1( fd.Esuel(), inpoel, ndofel,
          coord, solidx, U, P, nmat );
      }
      else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 4)
      {
        VertexBasedMultiMat_P1( esup, inpoel, ndofel, fd.Esuel().size()/4,
          m_mat_blk, fd, geoFace, geoElem, coord, flux, solidx, U, P,
          nmat, shockmarker );
      }
      else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 10)
      {
        VertexBasedMultiMat_P2( pref, esup, inpoel, ndofel, fd.Esuel().size()/4,
          m_mat_blk, fd, geoFace, geoElem, coord, gid, bid,
          uNodalExtrm, pNodalExtrm, mtInv, flux, solidx, U, P, nmat,
          shockmarker );
      }
      else if (limiter != ctr::LimiterType::NOLIMITER)
      {
        Throw("Limiter type not configured for multimat.");
      }
    }

    //! Apply CPL to the conservative variable solution for this PDE system
    //! \param[in] prim Array of primitive variables
    //! \param[in] geoElem Element geometry array
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in,out] unk Array of conservative variables
    //! \param[in] nielem Number of internal elements
    //! \details This function applies CPL to obtain consistent dofs for
    //!   conservative quantities based on the limited primitive quantities.
    //!   See Pandare et al. (2023). On the Design of Stable,
    //!   Consistent, and Conservative High-Order Methods for Multi-Material
    //!   Hydrodynamics. J Comp Phys, 112313.
    void CPL( const tk::Fields& prim,
      const tk::Fields& geoElem,
      const std::vector< std::size_t >& inpoel,
      const tk::UnsMesh::Coords& coord,
      tk::Fields& unk,
      std::size_t nielem ) const
    {
      [[maybe_unused]] const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.

      Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );
      Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
              "primitive quantities must equal "+ std::to_string(rdof*m_nprim) );

      correctLimConservMultiMat(nielem, m_mat_blk, nmat, inpoel,
        coord, geoElem, prim, unk);
    }

    //! Return cell-average deformation gradient tensor
    //! \param[in] unk Solution vector at recent time step
    //! \param[in] nielem Number of internal elements
    //! \details This function returns the bulk cell-average inverse
    //!   deformation gradient tensor
    std::array< std::vector< tk::real >, 9 > cellAvgDeformGrad(
      const tk::Fields& unk,
      std::size_t nielem ) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();

      std::array< std::vector< tk::real >, 9 > gb;
      if (inciter::haveSolid(nmat, solidx)) {
        for (auto& gij : gb)
          gij.resize(nielem, 0.0);
        for (std::size_t e=0; e<nielem; ++e) {
          for (std::size_t k=0; k<nmat; ++k) {
            if (solidx[k] > 0) {
              for (std::size_t i=0; i<3; ++i)
                for (std::size_t j=0; j<3; ++j)
                  gb[3*i+j][e] += unk(e, volfracDofIdx(nmat,k,rdof,0)) *
                    unk(e,deformDofIdx(nmat,solidx[k],i,j,rdof,0));
            }
          }
        }
      }

      return gb;
    }


    //! Reset the high order solution for p-adaptive scheme
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in,out] unk Solution vector at recent time step
    //! \param[in,out] prim Primitive vector at recent time step
    //! \param[in] ndofel Vector of local number of degrees of freedome
    //! \details This function reset the high order coefficient for p-adaptive
    //!   solution polynomials. Unlike compflow class, the high order of fv
    //!   solution will not be reset since p0p1 is the base scheme for
    //!   multi-material p-adaptive DG method.
    void resetAdapSol( const inciter::FaceData& fd,
                       tk::Fields& unk,
                       tk::Fields& prim,
                       const std::vector< std::size_t >& ndofel ) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      const auto ncomp = unk.nprop() / rdof;
      const auto nprim = prim.nprop() / rdof;<--- Shadow variable

      for(std::size_t e = 0; e < fd.Esuel().size()/4; e++)
      {
        if(ndofel[e] < 10)
        {
          for (std::size_t c=0; c<ncomp; ++c)
          {
            auto mark = c*rdof;
            unk(e, mark+4) = 0.0;
            unk(e, mark+5) = 0.0;
            unk(e, mark+6) = 0.0;
            unk(e, mark+7) = 0.0;
            unk(e, mark+8) = 0.0;
            unk(e, mark+9) = 0.0;
          }
          for (std::size_t c=0; c<nprim; ++c)
          {
            auto mark = c*rdof;
            prim(e, mark+4) = 0.0;
            prim(e, mark+5) = 0.0;
            prim(e, mark+6) = 0.0;
            prim(e, mark+7) = 0.0;
            prim(e, mark+8) = 0.0;
            prim(e, mark+9) = 0.0;
          }
        }
      }
    }

    //! Compute right hand side
    //! \param[in] t Physical time
    //! \param[in] pref Indicator for p-adaptive algorithm
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] U Solution vector at recent time step
    //! \param[in] P Primitive vector at recent time step
    //! \param[in] ndofel Vector of local number of degrees of freedom
    //! \param[in] dt Delta time
    //! \param[in,out] R Right-hand side vector computed
    void rhs( tk::real t,
              const bool pref,
              const tk::Fields& geoFace,
              const tk::Fields& geoElem,
              const inciter::FaceData& fd,
              const std::vector< std::size_t >& inpoel,
              const std::vector< std::unordered_set< std::size_t > >&,
              const tk::UnsMesh::Coords& coord,
              const tk::Fields& U,
              const tk::Fields& P,
              const std::vector< std::size_t >& ndofel,
              const tk::real dt,
              tk::Fields& R ) const
    {
      const auto ndof = g_inputdeck.get< tag::ndof >();
      const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto intsharp =
        g_inputdeck.get< tag::multimat, tag::intsharp >();
      const auto& solidx = inciter::g_inputdeck.get<
        tag::matidxmap, tag::solidx >();
      auto nsld = numSolids(nmat, solidx);

      const auto nelem = fd.Esuel().size()/4;

      Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( U.nunk() == R.nunk(), "Number of unknowns in solution "
              "vector and right-hand side at recent time step incorrect" );
      Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );
      Assert( P.nprop() == rdof*m_nprim, "Number of components in primitive "
              "vector must equal "+ std::to_string(rdof*m_nprim) );
      Assert( R.nprop() == ndof*m_ncomp, "Number of components in right-hand "
              "side vector must equal "+ std::to_string(ndof*m_ncomp) );
      Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
              "Mismatch in inpofa size" );

      // set rhs to zero
      R.fill(0.0);

      // Allocate space for Riemann derivatives used in non-conservative terms.
      // The following Riemann derivatives are stored, in order:
      // 1) 3*nmat terms: derivatives of partial pressure of each material,
      //    for the energy equations.
      // 2) ndof terms: derivatives of Riemann velocity times the basis
      //    function, for the volume fraction equations.
      // 3) nmat*3*3*9 terms: 3 derivatives of u_l*g_ij for each material, for
      //    the deformation gradient equations.
      // 4) 3*nsld terms: 3 derivatives of \alpha \sigma_ij for each solid
      //    material, for the energy equations.
      std::vector< std::vector< tk::real > >
        riemannDeriv(3*nmat+ndof+3*nsld, std::vector<tk::real>(U.nunk(),0.0));

      // configure a no-op lambda for prescribed velocity
      auto velfn = []( ncomp_t, tk::real, tk::real, tk::real, tk::real ){
        return tk::VelFn::result_type(); };

      // compute internal surface flux integrals
      tk::surfInt( pref, nmat, m_mat_blk, t, ndof, rdof, inpoel, solidx,
                   coord, fd, geoFace, geoElem, m_riemann, velfn, U, P, ndofel,
                   dt, R, riemannDeriv, intsharp );

      // compute optional source term
      tk::srcInt( m_mat_blk, t, ndof, fd.Esuel().size()/4, inpoel,
                  coord, geoElem, Problem::src, ndofel, R, nmat );

      if(ndof > 1)
        // compute volume integrals
        tk::volInt( nmat, t, m_mat_blk, ndof, rdof, nelem,
                    inpoel, coord, geoElem, flux, velfn, U, P, ndofel, R,
                    intsharp );

      // compute boundary surface flux integrals
      for (const auto& b : m_bc)
        tk::bndSurfInt( pref, nmat, m_mat_blk, ndof, rdof,
                        std::get<0>(b), fd, geoFace, geoElem, inpoel, coord, t,
                        m_riemann, velfn, std::get<1>(b), U, P, ndofel, R,
                        riemannDeriv, intsharp );

      Assert( riemannDeriv.size() == 3*nmat+ndof+3*nsld, "Size of "
              "Riemann derivative vector incorrect" );

      // get derivatives from riemannDeriv
      for (std::size_t k=0; k<riemannDeriv.size(); ++k)
      {
        Assert( riemannDeriv[k].size() == U.nunk(), "Riemann derivative vector "
                "for non-conservative terms has incorrect size" );
        for (std::size_t e=0; e<U.nunk(); ++e)
          riemannDeriv[k][e] /= geoElem(e, 0);
      }

      // compute volume integrals of non-conservative terms
      tk::nonConservativeInt( pref, nmat, m_mat_blk, ndof, rdof, nelem,
                              inpoel, coord, geoElem, U, P, riemannDeriv,
                              ndofel, R, intsharp );

      // Compute integrals for inverse deformation correction in solid materials
      if (inciter::haveSolid(nmat, solidx) &&
        g_inputdeck.get< tag::multimat, tag::rho0constraint >())
        tk::solidTermsVolInt( nmat, m_mat_blk, ndof, rdof, nelem,
                              inpoel, coord, geoElem, U, P, ndofel,
                              dt, R);

      // compute finite pressure relaxation terms
      if (g_inputdeck.get< tag::multimat, tag::prelax >())
      {
        const auto ct = g_inputdeck.get< tag::multimat,
                                         tag::prelax_timescale >();
        tk::pressureRelaxationInt( pref, nmat, m_mat_blk, ndof,
                                   rdof, nelem, inpoel, coord, geoElem, U, P,
                                   ndofel, ct, R, intsharp );
      }
    }

    //! Evaluate the adaptive indicator and mark the ndof for each element
    //! \param[in] nunk Number of unknowns
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] unk Array of unknowns
    //! \param[in] prim Array of primitive quantities
    //! \param[in] indicator p-refinement indicator type
    //! \param[in] ndof Number of degrees of freedom in the solution
    //! \param[in] ndofmax Max number of degrees of freedom for p-refinement
    //! \param[in] tolref Tolerance for p-refinement
    //! \param[in,out] ndofel Vector of local number of degrees of freedome
    void eval_ndof( std::size_t nunk,
                    [[maybe_unused]] const tk::UnsMesh::Coords& coord,
                    [[maybe_unused]] const std::vector< std::size_t >& inpoel,
                    const inciter::FaceData& fd,
                    const tk::Fields& unk,
                    [[maybe_unused]] const tk::Fields& prim,
                    inciter::ctr::PrefIndicatorType indicator,
                    std::size_t ndof,
                    std::size_t ndofmax,
                    tk::real tolref,
                    std::vector< std::size_t >& ndofel ) const
    {
      const auto& esuel = fd.Esuel();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      if(indicator == inciter::ctr::PrefIndicatorType::SPECTRAL_DECAY)
        spectral_decay(nmat, nunk, esuel, unk, ndof, ndofmax, tolref, ndofel);
      else
        Throw( "No such adaptive indicator type" );
    }

    //! Compute the minimum time step size
    //! \param[in] fd Face connectivity and boundary conditions object
    //! \param[in] geoFace Face geometry array
    //! \param[in] geoElem Element geometry array
//    //! \param[in] ndofel Vector of local number of degrees of freedom
    //! \param[in] U Solution vector at recent time step
    //! \param[in] P Vector of primitive quantities at recent time step
    //! \param[in] nielem Number of internal elements
    //! \return Minimum time step size
    //! \details The allowable dt is calculated by looking at the maximum
    //!   wave-speed in elements surrounding each face, times the area of that
    //!   face. Once the maximum of this quantity over the mesh is determined,
    //!   the volume of each cell is divided by this quantity. A minimum of this
    //!   ratio is found over the entire mesh, which gives the allowable dt.
    tk::real dt( const std::array< std::vector< tk::real >, 3 >&,
                 const std::vector< std::size_t >&,
                 const inciter::FaceData& fd,
                 const tk::Fields& geoFace,
                 const tk::Fields& geoElem,
                 const std::vector< std::size_t >& /*ndofel*/,
                 const tk::Fields& U,
                 const tk::Fields& P,
                 const std::size_t nielem ) const
    {
      const auto ndof = g_inputdeck.get< tag::ndof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      auto mindt = timeStepSizeMultiMat( m_mat_blk, fd.Esuf(), geoFace, geoElem,
        nielem, nmat, U, P);

      tk::real dgp = 0.0;
      if (ndof == 4)
      {
        dgp = 1.0;
      }
      else if (ndof == 10)
      {
        dgp = 2.0;
      }

      // Scale smallest dt with CFL coefficient and the CFL is scaled by (2*p+1)
      // where p is the order of the DG polynomial by linear stability theory.
      mindt /= (2.0*dgp + 1.0);
      return mindt;
    }

    //! Compute stiff terms for a single element
    //! \param[in] e Element number
    //! \param[in] geoElem Element geometry array
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] U Solution vector at recent time step
    //! \param[in] P Primitive vector at recent time step
    //! \param[in] ndofel Vector of local number of degrees of freedom
    //! \param[in,out] R Right-hand side vector computed
    void stiff_rhs( std::size_t e,
                    const tk::Fields& geoElem,
                    const std::vector< std::size_t >& inpoel,
                    const tk::UnsMesh::Coords& coord,
                    const tk::Fields& U,
                    const tk::Fields& P,
                    const std::vector< std::size_t >& ndofel,
                    tk::Fields& R ) const<--- Parameter 'R' can be declared with const
    {
      const auto ndof = g_inputdeck.get< tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
      const auto rdof = g_inputdeck.get< tag::rdof >();<--- Variable 'rdof' is assigned a value that is never used.
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
      const auto intsharp =<--- Variable 'intsharp' is assigned a value that is never used.
        g_inputdeck.get< tag::multimat, tag::intsharp >();
      const auto& solidx = inciter::g_inputdeck.get<
        tag::matidxmap, tag::solidx >();

      Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
              "vector and primitive vector at recent time step incorrect" );
      Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
              "vector must equal "+ std::to_string(rdof*m_ncomp) );
      Assert( P.nprop() == rdof*m_nprim, "Number of components in primitive "
              "vector must equal "+ std::to_string(rdof*m_nprim) );
      Assert( R.nprop() == ndof*nstiffeq(), "Number of components in "
              "right-hand side must equal "+ std::to_string(ndof*nstiffeq()) );

      // set rhs to zero for element e
      for (std::size_t i=0; i<ndof*nstiffeq(); ++i)
        R(e, i) = 0.0;

      const auto& cx = coord[0];
      const auto& cy = coord[1];
      const auto& cz = coord[2];

      auto ncomp = U.nprop()/rdof;
      auto nprim = P.nprop()/rdof;<--- Shadow variable

      auto ng = tk::NGvol(ndofel[e]);

      // arrays for quadrature points
      std::array< std::vector< tk::real >, 3 > coordgp;
      std::vector< tk::real > wgp;

      coordgp[0].resize( ng );
      coordgp[1].resize( ng );
      coordgp[2].resize( ng );
      wgp.resize( ng );

      tk::GaussQuadratureTet( ng, coordgp, wgp );

      // Extract the element coordinates
      std::array< std::array< tk::real, 3>, 4 > coordel {{
        {{ cx[ inpoel[4*e  ] ], cy[ inpoel[4*e  ] ], cz[ inpoel[4*e  ] ] }},
        {{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
        {{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
        {{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }}
      }};

      // Gaussian quadrature
      for (std::size_t igp=0; igp<ng; ++igp)
      {
        // Compute the coordinates of quadrature point at physical domain
        auto gp = tk::eval_gp( igp, coordel, coordgp );

        // Compute the basis function
        auto B = tk::eval_basis( ndofel[e], coordgp[0][igp], coordgp[1][igp],
                             coordgp[2][igp] );

        auto state = tk::evalPolynomialSol(m_mat_blk, intsharp, ncomp, nprim,
          rdof, nmat, e, ndofel[e], inpoel, coord, geoElem, gp, B, U, P);

        // compute source
        // Loop through materials
        std::size_t ksld = 0;
        for (std::size_t k=0; k<nmat; ++k)
        {
          if (solidx[k] > 0)
          {
            tk::real alpha = state[inciter::volfracIdx(nmat, k)];
            std::array< std::array< tk::real, 3 >, 3 > g;
            // Compute the source terms
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                g[i][j] = state[inciter::deformIdx(nmat,solidx[k],i,j)];

            // Compute Lp
            // Reference: Ortega, A. L., Lombardini, M., Pullin, D. I., &
            // Meiron, D. I. (2014). Numerical simulation of elastic–plastic
            // solid mechanics using an Eulerian stretch tensor approach and
            // HLLD Riemann solver. Journal of Computational Physics, 257,
            // 414-441
            std::array< std::array< tk::real, 3 >, 3 > Lp;

            // 1. Compute dev(sigma)
            auto sigma_dev = m_mat_blk[k].computeTensor< EOS::CauchyStress >(
              0.0, 0.0, 0.0, 0.0, 0.0, alpha, k, g );
            tk::real apr = state[ncomp+inciter::pressureIdx(nmat, k)];
            for (std::size_t i=0; i<3; ++i) sigma_dev[i][i] -= apr;
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                sigma_dev[i][j] /= alpha;
            tk::real sigma_trace =
              sigma_dev[0][0]+sigma_dev[1][1]+sigma_dev[2][2];
            for (std::size_t i=0; i<3; ++i)
              sigma_dev[i][i] -= sigma_trace/3.0;

            // 2. Compute inv(g)
            double ginv[9];
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                ginv[3*i+j] = g[i][j];
            lapack_int ipiv[3];
            #ifndef NDEBUG
            lapack_int ierr =
            #endif
              LAPACKE_dgetrf(LAPACK_ROW_MAJOR, 3, 3, ginv, 3, ipiv);
            Assert(ierr==0, "Lapack error in LU factorization of g");
            #ifndef NDEBUG
            lapack_int jerr =
            #endif
              LAPACKE_dgetri(LAPACK_ROW_MAJOR, 3, ginv, 3, ipiv);
            Assert(jerr==0, "Lapack error in inverting g");

            // 3. Compute dev(sigma)*inv(g)
            std::array< std::array< tk::real, 3 >, 3 > aux_mat;
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
              {
                tk::real sum = 0.0;
                for (std::size_t l=0; l<3; ++l)
                  sum += sigma_dev[i][l]*ginv[3*l+j];
                aux_mat[i][j] = sum;
              }

            // 4. Compute g*(dev(sigma)*inv(g))
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
              {
                tk::real sum = 0.0;
                for (std::size_t l=0; l<3; ++l)
                  sum += g[i][l]*aux_mat[l][j];
                Lp[i][j] = sum;
              }

            // 5. Divide by 2*mu*tau
            // 'Perfect' plasticity
            tk::real yield_stress = getmatprop< tag::yield_stress >(k);
            tk::real equiv_stress = 0.0;
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                equiv_stress += sigma_dev[i][j]*sigma_dev[i][j];
            equiv_stress = std::sqrt(3.0*equiv_stress/2.0);
            // rel_factor = 1/tau <- Perfect plasticity for now.
            tk::real rel_factor = 0.0;
            if (equiv_stress >= yield_stress)
              rel_factor = 1.0e07;
            tk::real mu = getmatprop< tag::mu >(k);
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                Lp[i][j] *= rel_factor/(2.0*mu);

            // Compute the source terms
            std::vector< tk::real > s(9*ndof, 0.0);
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                for (std::size_t idof=0; idof<ndof; ++idof)
                {
                  s[(i*3+j)*ndof+idof] = B[idof] * (Lp[i][0]*g[0][j]
                                                   +Lp[i][1]*g[1][j]
                                                   +Lp[i][2]*g[2][j]);
                }

            auto wt = wgp[igp] * geoElem(e, 0);

            // Contribute to the right-hand-side
            for (std::size_t i=0; i<3; ++i)
              for (std::size_t j=0; j<3; ++j)
                for (std::size_t idof=0; idof<ndof; ++idof)
                {
                  std::size_t srcId = (i*3+j)*ndof+idof;
                  std::size_t dofId = solidTensorIdx(ksld,i,j)*ndof+idof;
                  R(e, dofId) += wt * s[srcId];
                }

            ksld++;
          }
        }

        }
    }

    //! Extract the velocity field at cell nodes. Currently unused.
    //! \param[in] U Solution vector at recent time step
    //! \param[in] N Element node indices
    //! \return Array of the four values of the velocity field
    std::array< std::array< tk::real, 4 >, 3 >
    velocity( const tk::Fields& U,
              const std::array< std::vector< tk::real >, 3 >&,
              const std::array< std::size_t, 4 >& N ) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      std::array< std::array< tk::real, 4 >, 3 > v;
      v[0] = U.extract( momentumDofIdx(nmat, 0, rdof, 0), N );
      v[1] = U.extract( momentumDofIdx(nmat, 1, rdof, 0), N );
      v[2] = U.extract( momentumDofIdx(nmat, 2, rdof, 0), N );

      std::vector< std::array< tk::real, 4 > > ar;
      ar.resize(nmat);
      for (std::size_t k=0; k<nmat; ++k)
        ar[k] = U.extract( densityDofIdx(nmat, k, rdof, 0), N );

      std::array< tk::real, 4 > r{{ 0.0, 0.0, 0.0, 0.0 }};
      for (std::size_t i=0; i<r.size(); ++i) {
        for (std::size_t k=0; k<nmat; ++k)
          r[i] += ar[k][i];
      }

      std::transform( r.begin(), r.end(), v[0].begin(), v[0].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      std::transform( r.begin(), r.end(), v[1].begin(), v[1].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      std::transform( r.begin(), r.end(), v[2].begin(), v[2].begin(),
                      []( tk::real s, tk::real& d ){ return d /= s; } );
      return v;
    }

    //! Return a map that associates user-specified strings to functions
    //! \return Map that associates user-specified strings to functions that
    //!   compute relevant quantities to be output to file
    std::map< std::string, tk::GetVarFn > OutVarFn() const
    { return MultiMatOutVarFn(); }

    //! Return analytic field names to be output to file
    //! \return Vector of strings labelling analytic fields output in file
    std::vector< std::string > analyticFieldNames() const {
      auto nmat = g_inputdeck.get< eq, tag::nmat >();<--- Shadow variable

      return MultiMatFieldNames(nmat);
    }

    //! Return time history field names to be output to file
    //! \return Vector of strings labelling time history fields output in file
    std::vector< std::string > histNames() const {
      return MultiMatHistNames();
    }

    //! Return surface field output going to file
    std::vector< std::vector< tk::real > >
    surfOutput( const std::map< int, std::vector< std::size_t > >&,
                tk::Fields& ) const
    {
      std::vector< std::vector< tk::real > > s; // punt for now
      return s;
    }

    //! Return time history field output evaluated at time history points
    //! \param[in] h History point data
    //! \param[in] inpoel Element-node connectivity
    //! \param[in] coord Array of nodal coordinates
    //! \param[in] U Array of unknowns
    //! \param[in] P Array of primitive quantities
    //! \return Vector of time history output of bulk flow quantities (density,
    //!   velocity, total energy, and pressure) evaluated at time history points
    std::vector< std::vector< tk::real > >
    histOutput( const std::vector< HistData >& h,
                const std::vector< std::size_t >& inpoel,
                const tk::UnsMesh::Coords& coord,
                const tk::Fields& U,
                const tk::Fields& P ) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      const auto& x = coord[0];
      const auto& y = coord[1];
      const auto& z = coord[2];

      std::vector< std::vector< tk::real > > Up(h.size());

      std::size_t j = 0;
      for (const auto& p : h) {
        auto e = p.get< tag::elem >();
        auto chp = p.get< tag::coord >();

        // Evaluate inverse Jacobian
        std::array< std::array< tk::real, 3>, 4 > cp{{
          {{ x[inpoel[4*e  ]], y[inpoel[4*e  ]], z[inpoel[4*e  ]] }},
          {{ x[inpoel[4*e+1]], y[inpoel[4*e+1]], z[inpoel[4*e+1]] }},
          {{ x[inpoel[4*e+2]], y[inpoel[4*e+2]], z[inpoel[4*e+2]] }},
          {{ x[inpoel[4*e+3]], y[inpoel[4*e+3]], z[inpoel[4*e+3]] }} }};
        auto J = tk::inverseJacobian( cp[0], cp[1], cp[2], cp[3] );

        // evaluate solution at history-point
        std::array< tk::real, 3 > dc{{chp[0]-cp[0][0], chp[1]-cp[0][1],
          chp[2]-cp[0][2]}};
        auto B = tk::eval_basis(rdof, tk::dot(J[0],dc), tk::dot(J[1],dc),
          tk::dot(J[2],dc));
        auto uhp = eval_state(m_ncomp, rdof, rdof, e, U, B);
        auto php = eval_state(m_nprim, rdof, rdof, e, P, B);

        // store solution in history output vector
        Up[j].resize(6, 0.0);
        for (std::size_t k=0; k<nmat; ++k) {
          Up[j][0] += uhp[densityIdx(nmat,k)];
          Up[j][4] += uhp[energyIdx(nmat,k)];
          Up[j][5] += php[pressureIdx(nmat,k)];
        }
        Up[j][1] = php[velocityIdx(nmat,0)];
        Up[j][2] = php[velocityIdx(nmat,1)];
        Up[j][3] = php[velocityIdx(nmat,2)];
        ++j;
      }

      return Up;
    }

    //! Return names of integral variables to be output to diagnostics file
    //! \return Vector of strings labelling integral variables output
    std::vector< std::string > names() const
    {
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      return MultiMatDiagNames(nmat);
    }

    //! Return analytic solution (if defined by Problem) at xi, yi, zi, t
    //! \param[in] xi X-coordinate at which to evaluate the analytic solution
    //! \param[in] yi Y-coordinate at which to evaluate the analytic solution
    //! \param[in] zi Z-coordinate at which to evaluate the analytic solution
    //! \param[in] t Physical time at which to evaluate the analytic solution
    //! \return Vector of analytic solution at given location and time
    std::vector< tk::real >
    analyticSolution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
    { return Problem::analyticSolution( m_ncomp, m_mat_blk, xi, yi, zi, t ); }

    //! Return analytic solution for conserved variables
    //! \param[in] xi X-coordinate at which to evaluate the analytic solution
    //! \param[in] yi Y-coordinate at which to evaluate the analytic solution
    //! \param[in] zi Z-coordinate at which to evaluate the analytic solution
    //! \param[in] t Physical time at which to evaluate the analytic solution
    //! \return Vector of analytic solution at given location and time
    std::vector< tk::real >
    solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
    { return Problem::initialize( m_ncomp, m_mat_blk, xi, yi, zi, t ); }

    //! Return cell-averaged specific total energy for an element
    //! \param[in] e Element id for which total energy is required
    //! \param[in] unk Vector of conserved quantities
    //! \return Cell-averaged specific total energy for given element
    tk::real sp_totalenergy(std::size_t e, const tk::Fields& unk) const
    {
      const auto rdof = g_inputdeck.get< tag::rdof >();
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      tk::real sp_te(0.0);
      // sum each material total energy
      for (std::size_t k=0; k<nmat; ++k) {
        sp_te += unk(e, energyDofIdx(nmat,k,rdof,0));
      }
      return sp_te;
    }

  private:
    //! Number of components in this PDE system
    const ncomp_t m_ncomp;
    //! Number of primitive quantities stored in this PDE system
    const ncomp_t m_nprim;
    //! Riemann solver
    tk::RiemannFluxFn m_riemann;
    //! BC configuration
    BCStateFn m_bc;
    //! EOS material block
    std::vector< EOS > m_mat_blk;

    //! Evaluate conservative part of physical flux function for this PDE system
    //! \param[in] ncomp Number of scalar components in this PDE system
    //! \param[in] ugp Numerical solution at the Gauss point at which to
    //!   evaluate the flux
    //! \return Flux vectors for all components in this PDE system
    //! \note The function signature must follow tk::FluxFn
    static tk::FluxFn::result_type
    flux( ncomp_t ncomp,
          const std::vector< EOS >& mat_blk,
          const std::vector< tk::real >& ugp,
          const std::vector< std::array< tk::real, 3 > >& )
    {
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable

      return tk::fluxTerms(ncomp, nmat, mat_blk, ugp);
    }

    //! \brief Boundary state function providing the left and right state of a
    //!   face at Dirichlet boundaries
    //! \param[in] ncomp Number of scalar components in this PDE system
    //! \param[in] mat_blk EOS material block
    //! \param[in] ul Left (domain-internal) state
    //! \param[in] x X-coordinate at which to compute the states
    //! \param[in] y Y-coordinate at which to compute the states
    //! \param[in] z Z-coordinate at which to compute the states
    //! \param[in] t Physical time
    //! \return Left and right states for all scalar components in this PDE
    //!   system
    //! \note The function signature must follow tk::StateFn. For multimat, the
    //!   left or right state is the vector of conserved quantities, followed by
    //!   the vector of primitive quantities appended to it.
    static tk::StateFn::result_type
    dirichlet( ncomp_t ncomp,
               const std::vector< EOS >& mat_blk,
               const std::vector< tk::real >& ul, tk::real x, tk::real y,
               tk::real z, tk::real t, const std::array< tk::real, 3 >& )
    {
      auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
      const auto& solidx = g_inputdeck.get<
        tag::matidxmap, tag::solidx >();

      [[maybe_unused]] auto nsld = numSolids(nmat, solidx);

      auto ur = Problem::initialize( ncomp, mat_blk, x, y, z, t );
      Assert( ur.size() == ncomp, "Incorrect size for boundary state vector" );

      ur.resize(ul.size());

      tk::real rho(0.0);
      for (std::size_t k=0; k<nmat; ++k)
        rho += ur[densityIdx(nmat, k)];

      // get primitives in boundary state

      // velocity
      ur[ncomp+velocityIdx(nmat, 0)] = ur[momentumIdx(nmat, 0)] / rho;
      ur[ncomp+velocityIdx(nmat, 1)] = ur[momentumIdx(nmat, 1)] / rho;
      ur[ncomp+velocityIdx(nmat, 2)] = ur[momentumIdx(nmat, 2)] / rho;

      // material pressures
      for (std::size_t k=0; k<nmat; ++k)
      {
        auto gk = getDeformGrad(nmat, k, ur);
        ur[ncomp+pressureIdx(nmat, k)] = mat_blk[k].compute< EOS::pressure >(
          ur[densityIdx(nmat, k)], ur[ncomp+velocityIdx(nmat, 0)],
          ur[ncomp+velocityIdx(nmat, 1)], ur[ncomp+velocityIdx(nmat, 2)],
          ur[energyIdx(nmat, k)], ur[volfracIdx(nmat, k)], k, gk );
      }

      Assert( ur.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
              "boundary state vector" );

      return {{ std::move(ul), std::move(ur) }};
    }

    // Other boundary condition types that do not depend on "Problem" should be
    // added in BCFunctions.hpp
};

} // dg::

} // inciter::

#endif // DGMultiMat_h