1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093 | // *****************************************************************************
/*!
\file src/Inciter/Ghosts.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Definitions file for generating ghost data structures
\details Definitions file for asynchronous distributed
ghost data structures using Charm++.
*/
// *****************************************************************************
#include "Ghosts.hpp"
#include "DerivedData.hpp"
#include "Reorder.hpp"
#include "Around.hpp"
#include "ChareStateCollector.hpp"
extern tk::CProxy_ChareStateCollector stateProxy;
using inciter::Ghosts;
Ghosts::Ghosts( const CProxy_Discretization& disc,
const std::map< int, std::vector< std::size_t > >& bface,
const std::vector< std::size_t >& triinpoel,
std::size_t nunk,
CkCallback cbDone ) :
m_disc( disc ),
m_nunk( nunk ),
m_inpoel( Disc()->Inpoel() ),
m_coord( Disc()->Coord() ),
m_fd( m_inpoel, bface, tk::remap(triinpoel,Disc()->Lid()) ),
m_geoFace( tk::genGeoFaceTri( m_fd.Nipfac(), m_fd.Inpofa(), m_coord) ),
m_geoElem( tk::genGeoElemTet( m_inpoel, m_coord ) ),
m_nfac( m_fd.Inpofa().size()/3 ),
m_bndFace(),
m_sendGhost(),
m_ghost(),
m_exptGhost(),
m_bid(),
m_esup(),
m_initial( 1 ),
m_ncomfac( 0 ),
m_nadj( 0 ),
m_ncomEsup( 0 ),
m_ipface(),
m_ghostData(),
m_ghostReq( 0 ),
m_expChBndFace(),
m_infaces(),
m_esupc(),
m_cbAfterDone( cbDone )
// *****************************************************************************
// Constructor
//! \param[in] disc Discretization proxy
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
//! \param[in] nunk Number of unknowns
//! \param[in] cbDone Function to continue with when Ghosts have been computed
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
"Ghosts" );
}
void
Ghosts::startCommSetup()
// *****************************************************************************
// Start setup of communication maps for cell-centered schemes
// *****************************************************************************
{
// Ensure that mesh partition is not leaky
Assert( !tk::leakyPartition(m_fd.Esuel(), m_inpoel, m_coord),
"Input mesh to Ghosts leaky" );
// Ensure mesh physical boundary for the entire problem not leaky,
// effectively checking if the user has specified boundary conditions on all
// physical boundary faces
bndIntegral();
}
void
Ghosts::bndIntegral()
// *****************************************************************************
// Compute partial boundary surface integral and sum across all chares
//! \details This function computes a partial surface integral over the boundary
//! of the faces of this mesh partition then sends its contribution to perform
//! the integral acorss the total problem boundary. After the global sum a
//! non-zero vector result indicates a leak, e.g., a hole in the boundary
//! which indicates an error in the boundary face data structures used to
//! compute the partial surface integrals.
// *****************************************************************************
{
// Storage for surface integral over our mesh chunk physical boundary
std::vector< tk::real > s{{ 0.0, 0.0, 0.0 }};
// Integrate over all physical boundary faces
for (std::size_t f=0; f<m_fd.Nbfac(); ++f) {
s[0] += m_geoFace(f,0) * m_geoFace(f,1);
s[1] += m_geoFace(f,0) * m_geoFace(f,2);
s[2] += m_geoFace(f,0) * m_geoFace(f,3);
}
s.push_back( 1.0 ); // positive: call-back to resizeComm() after reduction
s.push_back( static_cast< tk::real >( Disc()->MeshId() ) );
// Send contribution to host summing partial surface integrals
contribute( s, CkReduction::sum_double,
CkCallback(CkReductionTarget(Transporter,bndint), Disc()->Tr()) );
}
void
Ghosts::resizeComm()
// *****************************************************************************
// Start sizing communication buffers and setting up ghost data
// *****************************************************************************
{
// Enable SDAG wait for setting up chare boundary faces
thisProxy[ thisIndex ].wait4fac();
auto d = Disc();
const auto& gid = d->Gid();
const auto& inpofa = m_fd.Inpofa();
const auto& esuel = m_fd.Esuel();
// Perform leak test on mesh partition
Assert( !tk::leakyPartition( esuel, m_inpoel, m_coord ),
"Mesh partition leaky" );
// Activate SDAG waits for face adjacency map (ghost data) calculation
thisProxy[ thisIndex ].wait4ghost();
thisProxy[ thisIndex ].wait4esup();
// Invert inpofa to enable searching for faces based on (global) node triplets
Assert( inpofa.size() % 3 == 0, "Inpofa must contain triplets" );
for (std::size_t f=0; f<inpofa.size()/3; ++f)
m_ipface.insert( {{{ gid[ inpofa[f*3+0] ],
gid[ inpofa[f*3+1] ],
gid[ inpofa[f*3+2] ] }}} );
// At this point ipface has node-id-triplets (faces) on the internal
// chare-domain and on the physical boundary but not on chare boundaries,
// hence the name internal + physical boundary faces.
// Build a set of faces (each face given by 3 global node IDs) associated to
// chares we potentially share boundary faces with.
tk::UnsMesh::FaceSet potbndface;
for (std::size_t e=0; e<esuel.size()/4; ++e) { // for all our tets
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) // for all tet faces
if (esuel[mark+f] == -1) { // if face has no outside-neighbor tet
// if does not exist among the internal and physical boundary faces,
// store as a potential chare-boundary face
tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
if (m_ipface.find(t) == end(m_ipface)) {
Assert( m_expChBndFace.insert(t).second,
"Store expected chare-boundary face" );
potbndface.insert( t );
}
}
}
if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) d->Tr().chbndface();
// In the following we assume that the size of the (potential) boundary-face
// adjacency map above does not necessarily equal to that of the node
// adjacency map. This is because while a node can be shared at a single
// corner or along an edge, that does not necessarily share a face as well
// (in other words, shared nodes or edges can exist that are not part of a
// shared face). So the chares we communicate with across faces are not
// necessarily the same as the chares we would communicate nodes with.
//
// Since the sizes of the node and face adjacency maps are not the same, while
// sending the faces on chare boundaries would be okay, however, the receiver
// would not necessarily know how many chares it must receive from. To solve
// this problem we send to chares which we share at least a single node with,
// i.e., rely on the node-adjacency map. Note that to all chares we share at
// least a single node with we send all our potential chare-boundary faces.
// This is the same list of faces to all chares we send.
//
// Another underlying assumption here is, of course, that the size of the face
// adjacency map is always smaller than or equal to that of the node adjacency
// map, which is always true. Since the receive side already knows how many
// fellow chares it must receive shared node ids from, we use that to detect
// completion of the number of receives in comfac(). This simplifies the
// communication pattern and code.
// Send sets of faces adjacent to chare boundaries to fellow workers (if any)
if (d->NodeCommMap().empty()) // in serial, skip setting up ghosts altogether
faceAdj();
else
// for all chares we share nodes with
for (const auto& c : d->NodeCommMap()) {
thisProxy[ c.first ].comfac( thisIndex, potbndface );
}
ownfac_complete();
}
void
Ghosts::comfac( int fromch, const tk::UnsMesh::FaceSet& infaces )
// *****************************************************************************
// Receive unique set of faces we potentially share with/from another chare
//! \param[in] fromch Sender chare id
//! \param[in] infaces Unique set of faces we potentially share with fromch
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
"comfac" );
// Buffer up incoming data
m_infaces[ fromch ] = infaces;
// if we have heard from all fellow chares that we share at least a single
// node, edge, or face with
if (++m_ncomfac == Disc()->NodeCommMap().size()) {
m_ncomfac = 0;
comfac_complete();
}
}
void
Ghosts::bndFaces()
// *****************************************************************************
// Compute chare-boundary faces
//! \details This is called when both send and receives are completed on a
//! chare and thus we are ready to compute chare-boundary faces and ghost data.
// *****************************************************************************
{
auto d = Disc();
if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) d->Tr().chcomfac();
const auto& esuel = m_fd.Esuel();
const auto& gid = d->Gid();
for (const auto& in : m_infaces) {
// Find sender chare among chares we potentially share faces with. Note that
// it is feasible that a sender chare called us but we do not have a set of
// faces associated to that chare. This can happen if we only share a single
// node or an edge but not a face with that chare.
auto& bndface = m_bndFace[ in.first ]; // will associate to sender chare
// Try to find incoming faces on our chare boundary with other chares. If
// found, generate and assign new local face ID, associated to sender chare.
for (std::size_t e=0; e<esuel.size()/4; ++e) { // for all our tets
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) { // for all cell faces
if (esuel[mark+f] == -1) { // if face has no outside-neighbor tet
tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
// if found among the incoming faces and if not one of our internal
// nor physical boundary faces
if ( in.second.find(t) != end(in.second) &&
m_ipface.find(t) == end(m_ipface) ) {
bndface[t][0] = m_nfac++; // assign new local face ID
}
}
}
}
// If at this point if we have not found any face among our faces we
// potentially share with fromch, there is no need to keep an empty set of
// faces associated to fromch as we only share nodes or edges with it, but
// not faces.
if (bndface.empty()) m_bndFace.erase( in.first );
}
tk::destroy(m_ipface);
tk::destroy(m_infaces);
// Ensure all expected faces have been received
Assert( receivedChBndFaces(),
"Expected and received chare boundary faces mismatch" );
// Basic error checking on chare-boundary-face map
Assert( m_bndFace.find( thisIndex ) == m_bndFace.cend(),
"Face-communication map should not contain data for own chare ID" );
// Store (local) tet ID adjacent to our chare boundary from the inside
for (std::size_t e=0; e<esuel.size()/4; ++e) { // for all our tets
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) { // for all cell faces
if (esuel[mark+f] == -1) { // if face has no outside-neighbor tet
tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
auto c = findchare(t);
if (c > -1) {
auto& lbndface = tk::ref_find( m_bndFace, c );
auto& face = tk::ref_find( lbndface, t );
face[1] = e; // store (local) inner tet ID adjacent to face
}
}
}
}
// At this point m_bndFace is complete on this PE. This means that starting
// from the sets of faces we potentially share with fellow chares we now
// only have those faces we actually share faces with (through which we need
// to communicate later). Also, m_bndFace not only has the unique faces
// associated to fellow chares, but also a newly assigned local face ID as
// well as the local id of the inner tet adjacent to the face. Continue by
// starting setting up ghost data
setupGhost();
// Besides setting up our own ghost data, we also issue requests (for ghost
// data) to those chares which we share faces with. Note that similar to
// comfac() we are calling reqGhost() by going through the node communication
// map instead, which may send requests to those chare we do not share faces
// with. This is so that we can test for completing by querying the size of
// the already complete node commincation map in reqGhost. Requests in
// sendGhost will only be fullfilled based on m_ghostData.
for (const auto& c : d->NodeCommMap()) // for all chares we share nodes with
thisProxy[ c.first ].reqGhost();
}
void
Ghosts::setupGhost()
// *****************************************************************************
// Setup own ghost data on this chare
// *****************************************************************************
{
auto d = Disc();
const auto& gid = d->Gid();
// Enlarge elements surrounding faces data structure for ghosts
m_fd.Esuf().resize( 2*m_nfac, -2 );
m_fd.Inpofa().resize( 3*m_nfac, 0 );
// Enlarge face geometry data structure for ghosts
m_geoFace.resize( m_nfac, 0.0 );
const auto& esuel = m_fd.Esuel();
// Collect tet ids, their face connectivity (given by 3 global node IDs, each
// triplet for potentially multiple faces on the chare boundary), and their
// elem geometry data (see GhostData) associated to fellow chares adjacent to
// chare boundaries. Once received by fellow chares, these tets will become
// known as ghost elements and their data as ghost data.
for (std::size_t e=0; e<esuel.size()/4; ++e) { // for all our tets
auto mark = e*4;
for (std::size_t f=0; f<4; ++f) { // for all cell faces
if (esuel[mark+f] == -1) { // if face has no outside-neighbor tet
tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
auto c = findchare(t);
// It is possible that we do not find the chare for this face. We are
// looping through all of our tets and interrogating all faces that do
// not have neighboring tets but we only care about chare-boundary faces
// here as only those need ghost data. (esuel may also contain
// physical boundary faces)
if (c > -1) {
// Will store ghost data associated to neighbor chare
auto& ghost = m_ghostData[ c ];
// Store tet id adjacent to chare boundary as key for ghost data
auto& tuple = ghost[ e ];
// If tetid e has not yet been encountered, store geometry (only once)
auto& nodes = std::get< 0 >( tuple );
if (nodes.empty()) {
std::get< 1 >( tuple ) = m_geoElem[ e ];
auto& ncoord = std::get< 2 >( tuple );
ncoord[0] = m_coord[0][ m_inpoel[ mark+f ] ];
ncoord[1] = m_coord[1][ m_inpoel[ mark+f ] ];
ncoord[2] = m_coord[2][ m_inpoel[ mark+f ] ];
std::get< 3 >( tuple ) = f;
std::get< 4 >( tuple ) = {{ gid[ m_inpoel[ mark ] ],
gid[ m_inpoel[ mark+1 ] ],
gid[ m_inpoel[ mark+2 ] ],
gid[ m_inpoel[ mark+3 ] ] }};
}
// (Always) store face node IDs on chare boundary, even if tetid e has
// already been stored. Thus we store potentially multiple faces along
// the same chare-boundary. This happens, e.g., when the boundary
// between chares is zig-zaggy enough to have 2 or even 3 faces of the
// same tet.
nodes.push_back( t[0] );
nodes.push_back( t[1] );
nodes.push_back( t[2] );
Assert( nodes.size() <= 4*3, "Overflow of faces/tet to send" );
}
}
}
}
// Basic error checking on local ghost data
Assert( m_ghostData.find( thisIndex ) == m_ghostData.cend(),
"Chare-node adjacency map should not contain data for own chare ID" );
// More in-depth error checking on local ghost data
for (const auto& c : m_ghostData)
for ([[maybe_unused]] const auto& t : c.second) {
Assert( !std::get< 0 >( t.second ).empty(),
"Emtpy face vector in ghost data" );
Assert( std::get< 0 >( t.second ).size() % 3 == 0,
"Face node IDs must be triplets" );
Assert( std::get< 0 >( t.second ).size() <= 4*3, // <= 4*3 (4*numfaces)
"Max number of faces for a single ghost tet is 4" );
Assert( !std::get< 1 >( t.second ).empty(),
"No elem geometry data for ghost" );
Assert( std::get< 1 >( t.second ).size() == m_geoElem.nprop(),
"Elem geometry data for ghost must be for single tet" );
Assert( !std::get< 2 >( t.second ).empty(),
"No nodal coordinate data for ghost" );
}
ownghost_complete();
}
void
Ghosts::reqGhost()
// *****************************************************************************
// Receive requests for ghost data
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
"reqGhost" );
// If every chare we communicate with has requested ghost data from us, we may
// fulfill the requests, but only if we have already setup our ghost data.
if (++m_ghostReq == Disc()->NodeCommMap().size()) {
m_ghostReq = 0;
reqghost_complete();
}
}
void
Ghosts::sendGhost()
// *****************************************************************************
// Send all of our ghost data to fellow chares
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
"sendGhost" );
for (const auto& c : m_ghostData)
thisProxy[ c.first ].comGhost( thisIndex, c.second );
if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) Disc()->Tr().chghost();
}
void
Ghosts::comGhost( int fromch, const GhostData& ghost )
// *****************************************************************************
// Receive ghost data on chare boundaries from fellow chare
//! \param[in] fromch Caller chare ID
//! \param[in] ghost Ghost data, see Inciter/FaceData.h for the type
// *****************************************************************************
{
if (g_inputdeck.get< tag::cmd, tag::chare >() ||
g_inputdeck.get< tag::cmd, tag::quiescence >())
stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
"comGhost" );
auto d = Disc();
const auto& lid = d->Lid();
auto& inpofa = m_fd.Inpofa();
auto ncoord = m_coord[0].size();<--- Variable 'ncoord' is assigned a value that is never used.
// nodelist with fromch, currently only used for an assert
[[maybe_unused]] const auto& nl = tk::cref_find( d->NodeCommMap(), fromch );
auto& ghostelem = m_ghost[ fromch ]; // will associate to sender chare
// Store ghost data coming from chare
for (const auto& g : ghost) { // loop over incoming ghost data
auto e = g.first; // remote/ghost tet id outside of chare boundary<--- Variable 'e' is assigned a value that is never used.
const auto& nodes = std::get< 0 >( g.second ); // node IDs of face(s)
const auto& geo = std::get< 1 >( g.second ); // ghost elem geometry data
const auto& coordg = std::get< 2 >( g.second ); // coordinate of ghost node
const auto& inpoelg = std::get< 4 >( g.second ); // inpoel of ghost tet
Assert( nodes.size() % 3 == 0, "Face node IDs must be triplets" );
Assert( nodes.size() <= 4*3, "Overflow of faces/tet received" );
Assert( geo.size() % 5 == 0, "Ghost geometry size mismatch" );
Assert( geo.size() == m_geoElem.nprop(), "Ghost geometry number mismatch" );
Assert( coordg.size() == 3, "Incorrect ghost node coordinate size" );
Assert( inpoelg.size() == 4, "Incorrect ghost inpoel size" );
for (std::size_t n=0; n<nodes.size()/3; ++n) { // face(s) of ghost e
// node IDs of face on chare boundary
tk::UnsMesh::Face t{{ nodes[n*3+0], nodes[n*3+1], nodes[n*3+2] }};
// must find t in nodelist of chare-boundary adjacent to fromch
Assert( nl.find(t[0]) != end(nl) &&
nl.find(t[1]) != end(nl) &&
nl.find(t[2]) != end(nl),
"Ghost face not found in chare-node adjacency map on receiving end" );
// must find face in boundary-face adjacency map for fromch
Assert( tk::cref_find(m_bndFace,fromch).find( t ) !=
tk::cref_find(m_bndFace,fromch).cend(), "Ghost face not "
"found in boundary-face adjacency map on receiving end" );
// find local face & tet ids for t
auto id = tk::cref_find( tk::cref_find(m_bndFace,fromch), t );
// compute face geometry for chare-boundary face
addGeoFace(t, id);
// add node-triplet to node-face connectivity
inpofa[3*id[0]+0] = tk::cref_find( lid, t[2] );
inpofa[3*id[0]+1] = tk::cref_find( lid, t[1] );
inpofa[3*id[0]+2] = tk::cref_find( lid, t[0] );
// if ghost tet id not yet encountered on boundary with fromch
auto i = ghostelem.find( e );
if (i != end(ghostelem)) {
// fill in elements surrounding face
addEsuf(id, i->second);
// fill in elements surrounding element
addEsuel(id, i->second, t);
} else {
// fill in elements surrounding face
addEsuf(id, m_nunk);
// fill in elements surrounding element
addEsuel(id, m_nunk, t);
ghostelem[e] = m_nunk; // assign new local tet id to remote ghost id
m_geoElem.push_back( geo );// store ghost elem geometry
++m_nunk; // increase number of unknowns on this chare
std::size_t counter = 0;
for (std::size_t gp=0; gp<4; ++gp) {
auto it = lid.find( inpoelg[gp] );
std::size_t lp;
if (it != end(lid))
lp = it->second;
else {
Assert( nodes.size() == 3, "Expected node not found in lid" );
Assert( gp == std::get< 3 >( g.second ),
"Ghost node not matching correct entry in ghost inpoel" );
lp = ncoord;
++counter;
}
m_inpoel.push_back( lp ); // store ghost element connectivity
}
// only a single or no ghost node should be found
Assert( counter <= 1, "Incorrect number of ghost nodes detected. "
"Detected "+ std::to_string(counter) +" ghost nodes" );
if (counter == 1) {
m_coord[0].push_back( coordg[0] ); // store ghost node coordinate
m_coord[1].push_back( coordg[1] );
m_coord[2].push_back( coordg[2] );
Assert( m_inpoel[ 4*(m_nunk-1)+std::get< 3 >( g.second ) ] == ncoord,
"Mismatch in extended inpoel for ghost element" );
++ncoord; // increase number of nodes on this chare<--- Variable 'ncoord' is assigned a value that is never used.
}
}
// additional tests to ensure that entries in inpoel and t/inpofa match
Assert( nodetripletMatch(id, t) == 3,
"Mismatch/Overmatch in inpoel and inpofa at chare-boundary face" );
}
}
// Signal the runtime system that all workers have received their
// face-adjacency
if (++m_nadj == m_ghostData.size()) faceAdj();
}
void
Ghosts::faceAdj()
// *****************************************************************************
// Continue after face adjacency communication map completed on this chare
//! \details At this point the face communication map has been established
//! on this chare. Proceed to set up the nodal-comm map.
// *****************************************************************************
{
m_nadj = 0;
tk::destroy(m_bndFace);
// Ensure that all elements surrounding faces (are correct) including those at
// chare boundaries
for (std::size_t f=0; f<m_nfac; ++f) {
Assert( m_fd.Esuf()[2*f] > -1,
"Left element in esuf cannot be physical ghost" );
if (f >= m_fd.Nbfac())
Assert( m_fd.Esuf()[2*f+1] > -1,
"Right element in esuf for internal/chare faces cannot be a ghost" );
}
// Ensure that all elements surrounding elements are correct including those
// at chare boundaries
const auto& esuel = m_fd.Esuel();
std::size_t nbound = 0;
for (std::size_t e=0; e<esuel.size()/4; ++e) {
for (std::size_t f=0; f<4; ++f)
if (esuel[4*e+f] == -1) ++nbound;
}
Assert( nbound == m_fd.Nbfac(), "Incorrect number of ghost-element -1's in "
"updated esuel" );
// Error checking on ghost data
for(const auto& n : m_ghostData)
for([[maybe_unused]] const auto& i : n.second)
Assert( i.first < m_fd.Esuel().size()/4, "Sender contains ghost tet id " );
// Perform leak test on face geometry data structure enlarged by ghosts
Assert( !leakyAdjacency(), "Face adjacency leaky" );
Assert( faceMatch(), "Chare-boundary element-face "
"connectivity (esuf) does not match" );
// Create new map of elements along chare boundary which are ghosts for
// neighboring chare, associated with that chare ID
for (const auto& [cid, cgd] : m_ghostData)
{
auto& sg = m_sendGhost[cid];
for (const auto& e : cgd)
{
Assert(sg.find(e.first) == sg.end(), "Repeating element found in "
"ghost data");
sg.insert(e.first);
}
Assert(sg.size() == cgd.size(), "Incorrect size for sendGhost");
}
Assert(m_sendGhost.size() == m_ghostData.size(), "Incorrect number of "
"chares in sendGhost");
// Error checking on ghost data
for(const auto& n : m_sendGhost)
for([[maybe_unused]] const auto& i : n.second)
Assert( i < m_fd.Esuel().size()/4, "Sender contains ghost tet id. " );
// Generate and store Esup data-structure in a map
auto esup = tk::genEsup(m_inpoel, 4);
for (std::size_t p=0; p<Disc()->Gid().size(); ++p)
{
for (auto e : tk::Around(esup, p))
{
// since inpoel has been augmented with the face-ghost cell previously,
// esup also contains cells which are not on this mesh-chunk, hence the
// following test
if (e < m_fd.Esuel().size()/4) m_esup[p].push_back(e);
}
}
// Error checking on Esup map
for(const auto& p : m_esup)
for([[maybe_unused]] const auto& e : p.second)
Assert( e < m_fd.Esuel().size()/4, "Esup contains tet id greater than "
+ std::to_string(m_fd.Esuel().size()/4-1) +" : "+ std::to_string(e) );
auto meshid = Disc()->MeshId();
contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
CkCallback(CkReductionTarget(Transporter,startEsup), Disc()->Tr()) );
}
void
Ghosts::nodeNeighSetup()
// *****************************************************************************
// Setup node-neighborhood (esup)
//! \details At this point the face-ghost communication map has been established
//! on this chare. This function begins generating the node-ghost comm map.
// *****************************************************************************
{
if (Disc()->NodeCommMap().empty())
// in serial, skip setting up node-neighborhood
{ comesup_complete(); }
else
{
const auto& nodeCommMap = Disc()->NodeCommMap();
// send out node-neighborhood map
for (const auto& [cid, nlist] : nodeCommMap)
{
std::unordered_map< std::size_t, std::vector< std::size_t > > bndEsup;
std::unordered_map< std::size_t, std::vector< tk::real > > nodeBndCells;
for (const auto& p : nlist)
{
auto pl = tk::cref_find(Disc()->Lid(), p);
// fill in the esup for the chare-boundary
const auto& pesup = tk::cref_find(m_esup, pl);
bndEsup[p] = pesup;
// fill a map with the element ids from esup as keys and geoElem as
// values, and another map containing these elements associated with
// the chare id with which they are node-neighbors.
for (const auto& e : pesup)
{
nodeBndCells[e] = m_geoElem[e];
// add these esup-elements into map of elements along chare boundary
Assert( e < m_fd.Esuel().size()/4, "Sender contains ghost tet id." );
m_sendGhost[cid].insert(e);
}
}
thisProxy[cid].comEsup(thisIndex, bndEsup, nodeBndCells);
}
}
ownesup_complete();
}
void
Ghosts::comEsup( int fromch,
const std::unordered_map< std::size_t, std::vector< std::size_t > >& bndEsup,
const std::unordered_map< std::size_t, std::vector< tk::real > >&
nodeBndCells )
// *****************************************************************************
//! \brief Receive elements-surrounding-points data-structure for points on
// common boundary between receiving and sending neighbor chare, and the
// element geometries for these new elements
//! \param[in] fromch Sender chare id
//! \param[in] bndEsup Elements-surrounding-points data-structure from fromch
//! \param[in] nodeBndCells Map containing element geometries associated with
//! remote element IDs in the esup
// *****************************************************************************
{
auto& chghost = m_ghost[fromch];
// Extend remote-local element id map and element geometry array
for (const auto& e : nodeBndCells)
{
// need to check following, because 'e' could have been added previously in
// remote-local element id map as a part of face-communication, i.e. as a
// face-ghost element
if (chghost.find(e.first) == chghost.end())
{
chghost[e.first] = m_nunk;
m_geoElem.push_back(e.second);
++m_nunk;
}
}
// Store incoming data in comm-map buffer for Esup
for (const auto& [node, elist] : bndEsup)
{
auto pl = tk::cref_find(Disc()->Lid(), node);
auto& pesup = m_esupc[pl];
for (auto e : elist)
{
auto el = tk::cref_find(chghost, e);
pesup.push_back(el);
}
}
// if we have heard from all fellow chares that we share at least a single
// node, edge, or face with
if (++m_ncomEsup == Disc()->NodeCommMap().size()) {
m_ncomEsup = 0;
comesup_complete();
}
}
void
Ghosts::adj()
// *****************************************************************************
// Finish up with adjacency maps, and do a global-sync to begin problem setup
//! \details At this point, the nodal- and face-adjacency has been set up. This
// function does some error checking on the nodal-adjacency and prepares
// for problem setup.
// *****************************************************************************
{
// combine own and communicated contributions to elements surrounding points
for (auto& [p, elist] : m_esupc)
{
auto& pesup = tk::ref_find(m_esup, p);
for ([[maybe_unused]] auto e : elist)
{
Assert( e >= m_fd.Esuel().size()/4, "Non-ghost element received from "
"esup buffer." );
}
tk::concat< std::size_t >(std::move(elist), pesup);
}
tk::destroy(m_ghostData);
tk::destroy(m_esupc);
if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) Disc()->Tr().chadj();
// Error checking on ghost data
for(const auto& n : m_sendGhost)
for([[maybe_unused]] const auto& i : n.second)
Assert( i < m_fd.Esuel().size()/4, "Sender contains ghost tet id. ");
// Create a mapping between local ghost tet ids and zero-based boundary ids
std::vector< std::size_t > c( tk::sumvalsize( m_ghost ) );
std::size_t j = 0;
for (const auto& n : m_ghost) {
for(const auto& i : n.second) {
c[j++] = i.second;
}
}
m_bid = tk::assignLid( c );
// Basic error checking on ghost tet ID map
Assert( m_ghost.find( thisIndex ) == m_ghost.cend(),
"Ghost id map should not contain data for own chare ID" );
// Store expected ghost tet IDs
for (const auto& n : m_ghost)
for ([[maybe_unused]] const auto& g : n.second)
Assert( m_exptGhost.insert( g.second ).second,
"Failed to store local tetid as exptected ghost id" );
// Callback function from DG/FV after ghost-setup is done
m_cbAfterDone.send();
}
bool
Ghosts::leakyAdjacency()
// *****************************************************************************
// Perform leak-test on chare boundary faces
//! \details This function computes a surface integral over the boundary of the
//! faces after the face adjacency communication map is completed. A non-zero
//! vector result indicates a leak, e.g., a hole in the partition (covered by
//! the faces of the face adjacency communication map), which indicates an
//! error upstream in the code that sets up the face communication data
//! structures.
//! \note Compared to tk::leakyPartition() this function performs the leak-test
//! on the face geometry data structure enlarged by ghost faces on this
//! partition by computing a discrete surface integral considering the
//! physical and chare boundary faces, which should be equal to zero for a
//! closed domain.
//! \return True if our chare face adjacency leaks.
// *****************************************************************************
{
// Storage for surface integral over our chunk of the adjacency
std::array< tk::real, 3 > s{{ 0.0, 0.0, 0.0 }};
// physical boundary faces
for (std::size_t f=0; f<m_fd.Nbfac(); ++f) {
s[0] += m_geoFace(f,0) * m_geoFace(f,1);
s[1] += m_geoFace(f,0) * m_geoFace(f,2);
s[2] += m_geoFace(f,0) * m_geoFace(f,3);
}
// chare-boundary faces
for (std::size_t f=m_fd.Nipfac(); f<m_fd.Esuf().size()/2; ++f) {
s[0] += m_geoFace(f,0) * m_geoFace(f,1);
s[1] += m_geoFace(f,0) * m_geoFace(f,2);
s[2] += m_geoFace(f,0) * m_geoFace(f,3);
}
auto eps = std::numeric_limits< tk::real >::epsilon() * 100;
return std::abs(s[0]) > eps || std::abs(s[1]) > eps || std::abs(s[2]) > eps;
}
bool
Ghosts::faceMatch()
// *****************************************************************************
// Check if esuf of chare-boundary faces matches
//! \details This function checks each chare-boundary esuf entry for the left
//! and right elements. Then, it tries to match all vertices of these
//! elements. Exactly three of these vertices must match if the esuf entry
//! has been updated correctly at chare-boundaries.
//! \return True if chare-boundary faces match.
// *****************************************************************************
{
const auto& esuf = m_fd.Esuf();
bool match(true);
auto eps = std::numeric_limits< tk::real >::epsilon() * 100;
for (auto f=m_fd.Nipfac(); f<esuf.size()/2; ++f)
{
std::size_t el = static_cast< std::size_t >(esuf[2*f]);
std::size_t er = static_cast< std::size_t >(esuf[2*f+1]);
std::size_t count = 0;
for (std::size_t i=0; i<4; ++i)
{
auto ip = m_inpoel[4*el+i];
for (std::size_t j=0; j<4; ++j)
{
auto jp = m_inpoel[4*er+j];
auto xdiff = std::abs( m_coord[0][ip] - m_coord[0][jp] );
auto ydiff = std::abs( m_coord[1][ip] - m_coord[1][jp] );
auto zdiff = std::abs( m_coord[2][ip] - m_coord[2][jp] );
if ( xdiff<=eps && ydiff<=eps && zdiff<=eps ) ++count;
}
}
match = (match && count == 3);
}
return match;
}
bool
Ghosts::receivedChBndFaces()
// *****************************************************************************
// Verify that all chare-boundary faces have been received
//! \return True if all chare-boundary faces have been received
// *****************************************************************************
{
const auto& lid = Disc()->Lid();
tk::UnsMesh::FaceSet recvBndFace;
// Collect chare-boundary faces that have been received and expected
for (const auto& c : m_bndFace)
for (const auto& f : c.second)
if (m_expChBndFace.find(f.first) != end(m_expChBndFace))
recvBndFace.insert(f.first);
// Collect info on expected but not received faces
std::stringstream msg;
for (const auto& f : m_expChBndFace)
if (recvBndFace.find(f) == end(recvBndFace)) {
const auto& x = m_coord[0];
const auto& y = m_coord[1];
const auto& z = m_coord[2];
auto A = tk::cref_find( lid, f[0] );
auto B = tk::cref_find( lid, f[1] );
auto C = tk::cref_find( lid, f[2] );
msg << '{' << A << ',' << B << ',' << C << "}:("
<< x[A] << ',' << y[A] << ',' << z[A] << ' '
<< x[B] << ',' << y[B] << ',' << z[B] << ' '
<< x[C] << ',' << y[C] << ',' << z[C] << ") ";
}
tk::destroy( m_expChBndFace );
// Error out with info on missing faces
auto s = msg.str();
if (!s.empty()) {
Throw( "Ghosts chare " + std::to_string(thisIndex) +
" missing face(s) {local node ids} (node coords): " + s );
} else {
return true;
}
}
int
Ghosts::findchare( const tk::UnsMesh::Face& t )
// *****************************************************************************
// Find any chare for face (given by 3 global node IDs)
//! \param[in] t Face given by three global node IDs
//! \return Chare ID if found among any of the chares we communicate along
//! faces with, -1 if the face cannot be found.
// *****************************************************************************
{
for (const auto& cf : m_bndFace)
// cppcheck-suppress useStlAlgorithm
if (cf.second.find(t) != end(cf.second))<--- Unmatched suppression: useStlAlgorithm
return cf.first;
return -1;
}
std::size_t
Ghosts::nodetripletMatch(
const std::array< std::size_t, 2 >& id,
const tk::UnsMesh::Face& t )
// *****************************************************************************
// Check if entries in inpoel, inpofa and node-triplet are consistent
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] t node-triplet associated with the chare boundary face
//! \return number of nodes in inpoel that matched with t and inpofa
// *****************************************************************************
{
const auto& esuf = m_fd.Esuf();
const auto& inpofa = m_fd.Inpofa();
const auto& lid = Disc()->Lid();
std::size_t counter = 0;
for (std::size_t k=0; k<4; ++k)
{
auto el = esuf[ 2*id[0] ];
auto ip = m_inpoel[ 4*static_cast< std::size_t >( el )+k ];<--- Variable 'ip' is assigned a value that is never used.
Assert( el == static_cast< int >( id[1] ), "Mismatch in id and esuf" );
for (std::size_t j=0; j<3; ++j)
{
auto jp = tk::cref_find( lid, t[j] );
auto fp = inpofa[ 3*id[0]+(2-j) ];
if (ip == jp && ip == fp) ++counter;
}
}
return counter;
}
void
Ghosts::addEsuf(
const std::array< std::size_t, 2 >& id,
std::size_t ghostid )
// *****************************************************************************
// Fill elements surrounding a face along chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] ghostid Local ID for ghost tet
//! \details This function extends and fills in the elements surrounding faces
//! data structure (esuf) so that the left and right element id is filled
//! in correctly on chare boundaries to contain the correct inner tet id and
//! the local tet id for the outer (ghost) tet, both adjacent to the given
//! chare-face boundary. Prior to this function, this data structure does not
//! have yet face-element connectivity adjacent to chare-boundary faces, only
//! for physical boundaries and internal faces that are not on the chare
//! boundary (this latter purely as a result of mesh partitioning). The remote
//! element id of the ghost is stored in a location that is local to our own
//! esuf. The face numbering is such that esuf stores the element-face
//! connectivity first for the physical-boundary faces, followed by that of
//! the internal faces, followed by the chare-boundary faces. As a result,
//! esuf can be used by physics algorithms in exactly the same way as would be
//! used in serial. In serial, of course, this data structure is not extended
//! at the end by the chare-boundaries.
// *****************************************************************************
{
auto& esuf = m_fd.Esuf();
Assert( 2*id[0]+1 < esuf.size(), "Indexing out of esuf" );
// put in inner tet id
Assert( esuf[ 2*id[0] ] == -2 && esuf[ 2*id[0]+1 ] == -2, "Updating esuf at "
"wrong location instead of chare-boundary" );
esuf[ 2*id[0]+0 ] = static_cast< int >( id[1] );
// put in local id for outer/ghost tet
esuf[ 2*id[0]+1 ] = static_cast< int >( ghostid );
}
void
Ghosts::addEsuel(
const std::array< std::size_t, 2 >& id,
std::size_t ghostid,
const tk::UnsMesh::Face& t )
// *****************************************************************************
// Fill elements surrounding a element along chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] ghostid Local ID for ghost tet
//! \param[in] t node-triplet associated with the chare boundary face
//! \details This function updates the elements surrounding element (esuel) data
// structure for the (inner) tets adjacent to the chare-boundaries. It fills
// esuel of this inner tet with the local tet-id that has been assigned to
// the outer ghost tet in Ghosts::comGhost in place of the -1 before.
// *****************************************************************************
{
const auto& lid = Disc()->Lid();
[[maybe_unused]] const auto& esuf = m_fd.Esuf();
auto& esuel = m_fd.Esuel();
std::array< tk::UnsMesh::Face, 4 > face;
for (std::size_t f = 0; f<4; ++f)
for (std::size_t i = 0; i<3; ++i)
face[f][i] = m_inpoel[ id[1]*4 + tk::lpofa[f][i] ];
tk::UnsMesh::Face tl{{ tk::cref_find( lid, t[0] ),
tk::cref_find( lid, t[1] ),
tk::cref_find( lid, t[2] ) }};
std::size_t i(0), nmatch(0);
for (const auto& f : face) {
if (tk::UnsMesh::Eq< 3 >()( tl, f )) {
Assert( esuel[ id[1]*4 + i ] == -1, "Incorrect boundary element found in "
"esuel");
esuel[ id[1]*4 + i ] = static_cast<int>(ghostid);
++nmatch;<--- Variable 'nmatch' is assigned a value that is never used.
Assert( esuel[ id[1]*4 + i ] == esuf[ 2*id[0]+1 ], "Incorrect boundary "
"element entered in esuel" );
Assert( static_cast<int>(id[1]) == esuf[ 2*id[0]+0 ], "Boundary "
"element entered in incorrect esuel location" );
}
++i;
}
// ensure that exactly one face matched
Assert( nmatch == 1, "Incorrect number of node-triplets (faces) matched for "
"updating esuel; matching faces = "+ std::to_string(nmatch) );
}
void
Ghosts::addGeoFace(
const tk::UnsMesh::Face& t,
const std::array< std::size_t, 2 >& id )
// *****************************************************************************
// Fill face-geometry data along chare boundary
//! \param[in] t Face (given by 3 global node IDs) on the chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to face t
//! \details This function fills in the face geometry data along a chare
//! boundary.
// *****************************************************************************
{
const auto& lid = Disc()->Lid();
// get global node IDs reversing order to get outward-pointing normal
auto A = tk::cref_find( lid, t[2] );
auto B = tk::cref_find( lid, t[1] );
auto C = tk::cref_find( lid, t[0] );
auto geochf = tk::geoFaceTri( {{m_coord[0][A], m_coord[0][B], m_coord[0][C]}},
{{m_coord[1][A], m_coord[1][B], m_coord[1][C]}},
{{m_coord[2][A], m_coord[2][B], m_coord[2][C]}} );
for (std::size_t i=0; i<7; ++i)
m_geoFace(id[0],i) = geochf(0,i);
}
#include "NoWarning/ghosts.def.h"
|