1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
// *****************************************************************************
/*!
  \file      src/Inciter/Ghosts.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Definitions file for generating ghost data structures
  \details   Definitions file for asynchronous distributed
             ghost data structures using Charm++.
*/
// *****************************************************************************

#include "Ghosts.hpp"
#include "DerivedData.hpp"
#include "Reorder.hpp"
#include "Around.hpp"
#include "ChareStateCollector.hpp"

extern tk::CProxy_ChareStateCollector stateProxy;

using inciter::Ghosts;

Ghosts::Ghosts( const CProxy_Discretization& disc,
  const std::map< int, std::vector< std::size_t > >& bface,
  const std::vector< std::size_t >& triinpoel,
  std::size_t nunk,
  CkCallback cbDone ) :
  m_disc( disc ),
  m_nunk( nunk ),
  m_inpoel( Disc()->Inpoel() ),
  m_coord( Disc()->Coord() ),
  m_fd( m_inpoel, bface, tk::remap(triinpoel,Disc()->Lid()) ),
  m_geoFace( tk::genGeoFaceTri( m_fd.Nipfac(), m_fd.Inpofa(), m_coord) ),
  m_geoElem( tk::genGeoElemTet( m_inpoel, m_coord ) ),
  m_nfac( m_fd.Inpofa().size()/3 ),
  m_bndFace(),
  m_sendGhost(),
  m_ghost(),
  m_exptGhost(),
  m_bid(),
  m_esup(),
  m_initial( 1 ),
  m_ncomfac( 0 ),
  m_nadj( 0 ),
  m_ncomEsup( 0 ),
  m_ipface(),
  m_ghostData(),
  m_ghostReq( 0 ),
  m_expChBndFace(),
  m_infaces(),
  m_esupc(),
  m_cbAfterDone( cbDone )
// *****************************************************************************
//  Constructor
//! \param[in] disc Discretization proxy
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
//! \param[in] nunk Number of unknowns
//! \param[in] cbDone Function to continue with when Ghosts have been computed
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
                                        "Ghosts" );
}

void
Ghosts::startCommSetup()
// *****************************************************************************
//  Start setup of communication maps for cell-centered schemes
// *****************************************************************************
{
  // Ensure that mesh partition is not leaky
  Assert( !tk::leakyPartition(m_fd.Esuel(), m_inpoel, m_coord),
    "Input mesh to Ghosts leaky" );

  // Ensure mesh physical boundary for the entire problem not leaky,
  // effectively checking if the user has specified boundary conditions on all
  // physical boundary faces
  bndIntegral();
}

void
Ghosts::bndIntegral()
// *****************************************************************************
//  Compute partial boundary surface integral and sum across all chares
//! \details This function computes a partial surface integral over the boundary
//!   of the faces of this mesh partition then sends its contribution to perform
//!   the integral acorss the total problem boundary. After the global sum a
//!   non-zero vector result indicates a leak, e.g., a hole in the boundary
//!   which indicates an error in the boundary face data structures used to
//!   compute the partial surface integrals.
// *****************************************************************************
{
  // Storage for surface integral over our mesh chunk physical boundary
  std::vector< tk::real > s{{ 0.0, 0.0, 0.0 }};

  // Integrate over all physical boundary faces
  for (std::size_t f=0; f<m_fd.Nbfac(); ++f) {
    s[0] += m_geoFace(f,0) * m_geoFace(f,1);
    s[1] += m_geoFace(f,0) * m_geoFace(f,2);
    s[2] += m_geoFace(f,0) * m_geoFace(f,3);
  }

  s.push_back( 1.0 );  // positive: call-back to resizeComm() after reduction
  s.push_back( static_cast< tk::real >( Disc()->MeshId() ) );

  // Send contribution to host summing partial surface integrals
  contribute( s, CkReduction::sum_double,
    CkCallback(CkReductionTarget(Transporter,bndint), Disc()->Tr()) );
}

void
Ghosts::resizeComm()
// *****************************************************************************
//  Start sizing communication buffers and setting up ghost data
// *****************************************************************************
{
  // Enable SDAG wait for setting up chare boundary faces
  thisProxy[ thisIndex ].wait4fac();

  auto d = Disc();

  const auto& gid = d->Gid();
  const auto& inpofa = m_fd.Inpofa();
  const auto& esuel = m_fd.Esuel();

  // Perform leak test on mesh partition
  Assert( !tk::leakyPartition( esuel, m_inpoel, m_coord ),
          "Mesh partition leaky" );

  // Activate SDAG waits for face adjacency map (ghost data) calculation
  thisProxy[ thisIndex ].wait4ghost();
  thisProxy[ thisIndex ].wait4esup();

  // Invert inpofa to enable searching for faces based on (global) node triplets
  Assert( inpofa.size() % 3 == 0, "Inpofa must contain triplets" );
  for (std::size_t f=0; f<inpofa.size()/3; ++f)
    m_ipface.insert( {{{ gid[ inpofa[f*3+0] ],
                         gid[ inpofa[f*3+1] ],
                         gid[ inpofa[f*3+2] ] }}} );

  // At this point ipface has node-id-triplets (faces) on the internal
  // chare-domain and on the physical boundary but not on chare boundaries,
  // hence the name internal + physical boundary faces.

  // Build a set of faces (each face given by 3 global node IDs) associated to
  // chares we potentially share boundary faces with.
  tk::UnsMesh::FaceSet potbndface;
  for (std::size_t e=0; e<esuel.size()/4; ++e) {   // for all our tets
    auto mark = e*4;
    for (std::size_t f=0; f<4; ++f)     // for all tet faces
      if (esuel[mark+f] == -1) {        // if face has no outside-neighbor tet
        // if does not exist among the internal and physical boundary faces,
        // store as a potential chare-boundary face
        tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
        if (m_ipface.find(t) == end(m_ipface)) {
          Assert( m_expChBndFace.insert(t).second,
                  "Store expected chare-boundary face" );
          potbndface.insert( t );
        }
      }
  }

  if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) d->Tr().chbndface();

  // In the following we assume that the size of the (potential) boundary-face
  // adjacency map above does not necessarily equal to that of the node
  // adjacency map. This is because while a node can be shared at a single
  // corner or along an edge, that does not necessarily share a face as well
  // (in other words, shared nodes or edges can exist that are not part of a
  // shared face). So the chares we communicate with across faces are not
  // necessarily the same as the chares we would communicate nodes with.
  //
  // Since the sizes of the node and face adjacency maps are not the same, while
  // sending the faces on chare boundaries would be okay, however, the receiver
  // would not necessarily know how many chares it must receive from. To solve
  // this problem we send to chares which we share at least a single node with,
  // i.e., rely on the node-adjacency map. Note that to all chares we share at
  // least a single node with we send all our potential chare-boundary faces.
  // This is the same list of faces to all chares we send.
  //
  // Another underlying assumption here is, of course, that the size of the face
  // adjacency map is always smaller than or equal to that of the node adjacency
  // map, which is always true. Since the receive side already knows how many
  // fellow chares it must receive shared node ids from, we use that to detect
  // completion of the number of receives in comfac(). This simplifies the
  // communication pattern and code.

  // Send sets of faces adjacent to chare boundaries to fellow workers (if any)
  if (d->NodeCommMap().empty())  // in serial, skip setting up ghosts altogether
    faceAdj();
  else
    // for all chares we share nodes with
    for (const auto& c : d->NodeCommMap()) {
      thisProxy[ c.first ].comfac( thisIndex, potbndface );
    }

  ownfac_complete();
}

void
Ghosts::comfac( int fromch, const tk::UnsMesh::FaceSet& infaces )
// *****************************************************************************
//  Receive unique set of faces we potentially share with/from another chare
//! \param[in] fromch Sender chare id
//! \param[in] infaces Unique set of faces we potentially share with fromch
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
                                        "comfac" );

  // Buffer up incoming data
  m_infaces[ fromch ] = infaces;

  // if we have heard from all fellow chares that we share at least a single
  // node, edge, or face with
  if (++m_ncomfac == Disc()->NodeCommMap().size()) {
    m_ncomfac = 0;
    comfac_complete();
  }
}

void
Ghosts::bndFaces()
// *****************************************************************************
// Compute chare-boundary faces
//! \details This is called when both send and receives are completed on a
//!  chare and thus we are ready to compute chare-boundary faces and ghost data.
// *****************************************************************************
{
  auto d = Disc();
  if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) d->Tr().chcomfac();
  const auto& esuel = m_fd.Esuel();
  const auto& gid = d->Gid();

  for (const auto& in : m_infaces) {
    // Find sender chare among chares we potentially share faces with. Note that
    // it is feasible that a sender chare called us but we do not have a set of
    // faces associated to that chare. This can happen if we only share a single
    // node or an edge but not a face with that chare.
    auto& bndface = m_bndFace[ in.first ];  // will associate to sender chare
    // Try to find incoming faces on our chare boundary with other chares. If
    // found, generate and assign new local face ID, associated to sender chare.
    for (std::size_t e=0; e<esuel.size()/4; ++e) {  // for all our tets
      auto mark = e*4;
      for (std::size_t f=0; f<4; ++f) {  // for all cell faces
        if (esuel[mark+f] == -1) {  // if face has no outside-neighbor tet
          tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
                                gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
                                gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
          // if found among the incoming faces and if not one of our internal
          // nor physical boundary faces
          if ( in.second.find(t) != end(in.second) &&
               m_ipface.find(t) == end(m_ipface) ) {
            bndface[t][0] = m_nfac++;    // assign new local face ID
          }
        }
      }
    }
    // If at this point if we have not found any face among our faces we
    // potentially share with fromch, there is no need to keep an empty set of
    // faces associated to fromch as we only share nodes or edges with it, but
    // not faces.
    if (bndface.empty()) m_bndFace.erase( in.first );
  }

  tk::destroy(m_ipface);
  tk::destroy(m_infaces);

  // Ensure all expected faces have been received
  Assert( receivedChBndFaces(),
    "Expected and received chare boundary faces mismatch" );

  // Basic error checking on chare-boundary-face map
  Assert( m_bndFace.find( thisIndex ) == m_bndFace.cend(),
          "Face-communication map should not contain data for own chare ID" );

  // Store (local) tet ID adjacent to our chare boundary from the inside
  for (std::size_t e=0; e<esuel.size()/4; ++e) {  // for all our tets
    auto mark = e*4;
    for (std::size_t f=0; f<4; ++f) {  // for all cell faces
      if (esuel[mark+f] == -1) {  // if face has no outside-neighbor tet
        tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
        auto c = findchare(t);
        if (c > -1) {
          auto& lbndface = tk::ref_find( m_bndFace, c );
          auto& face = tk::ref_find( lbndface, t );
          face[1] = e;  // store (local) inner tet ID adjacent to face
        }
      }
    }
  }

  // At this point m_bndFace is complete on this PE. This means that starting
  // from the sets of faces we potentially share with fellow chares we now
  // only have those faces we actually share faces with (through which we need
  // to communicate later). Also, m_bndFace not only has the unique faces
  // associated to fellow chares, but also a newly assigned local face ID as
  // well as the local id of the inner tet adjacent to the face. Continue by
  // starting setting up ghost data
  setupGhost();
  // Besides setting up our own ghost data, we also issue requests (for ghost
  // data) to those chares which we share faces with. Note that similar to
  // comfac() we are calling reqGhost() by going through the node communication
  // map instead, which may send requests to those chare we do not share faces
  // with. This is so that we can test for completing by querying the size of
  // the already complete node commincation map in reqGhost. Requests in
  // sendGhost will only be fullfilled based on m_ghostData.
  for (const auto& c : d->NodeCommMap())  // for all chares we share nodes with
    thisProxy[ c.first ].reqGhost();
}

void
Ghosts::setupGhost()
// *****************************************************************************
// Setup own ghost data on this chare
// *****************************************************************************
{
  auto d = Disc();
  const auto& gid = d->Gid();

  // Enlarge elements surrounding faces data structure for ghosts
  m_fd.Esuf().resize( 2*m_nfac, -2 );
  m_fd.Inpofa().resize( 3*m_nfac, 0 );
  // Enlarge face geometry data structure for ghosts
  m_geoFace.resize( m_nfac, 0.0 );

  const auto& esuel = m_fd.Esuel();

  // Collect tet ids, their face connectivity (given by 3 global node IDs, each
  // triplet for potentially multiple faces on the chare boundary), and their
  // elem geometry data (see GhostData) associated to fellow chares adjacent to
  // chare boundaries. Once received by fellow chares, these tets will become
  // known as ghost elements and their data as ghost data.
  for (std::size_t e=0; e<esuel.size()/4; ++e) {  // for all our tets
    auto mark = e*4;
    for (std::size_t f=0; f<4; ++f) {  // for all cell faces
      if (esuel[mark+f] == -1) {  // if face has no outside-neighbor tet
        tk::UnsMesh::Face t{{ gid[ m_inpoel[ mark + tk::lpofa[f][0] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][1] ] ],
                              gid[ m_inpoel[ mark + tk::lpofa[f][2] ] ] }};
        auto c = findchare(t);
        // It is possible that we do not find the chare for this face. We are
        // looping through all of our tets and interrogating all faces that do
        // not have neighboring tets but we only care about chare-boundary faces
        // here as only those need ghost data. (esuel may also contain
        // physical boundary faces)
        if (c > -1) {
          // Will store ghost data associated to neighbor chare
          auto& ghost = m_ghostData[ c ];
          // Store tet id adjacent to chare boundary as key for ghost data
          auto& tuple = ghost[ e ];
          // If tetid e has not yet been encountered, store geometry (only once)
          auto& nodes = std::get< 0 >( tuple );
          if (nodes.empty()) {
            std::get< 1 >( tuple ) = m_geoElem[ e ];

            auto& ncoord = std::get< 2 >( tuple );
            ncoord[0] = m_coord[0][ m_inpoel[ mark+f ] ];
            ncoord[1] = m_coord[1][ m_inpoel[ mark+f ] ];
            ncoord[2] = m_coord[2][ m_inpoel[ mark+f ] ];

            std::get< 3 >( tuple ) = f;

            std::get< 4 >( tuple ) = {{ gid[ m_inpoel[ mark ] ],
                                        gid[ m_inpoel[ mark+1 ] ],
                                        gid[ m_inpoel[ mark+2 ] ],
                                        gid[ m_inpoel[ mark+3 ] ] }};
          }
          // (Always) store face node IDs on chare boundary, even if tetid e has
          // already been stored. Thus we store potentially multiple faces along
          // the same chare-boundary. This happens, e.g., when the boundary
          // between chares is zig-zaggy enough to have 2 or even 3 faces of the
          // same tet.
          nodes.push_back( t[0] );
          nodes.push_back( t[1] );
          nodes.push_back( t[2] );
          Assert( nodes.size() <= 4*3, "Overflow of faces/tet to send" );
        }
      }
    }
  }

  // Basic error checking on local ghost data
  Assert( m_ghostData.find( thisIndex ) == m_ghostData.cend(),
          "Chare-node adjacency map should not contain data for own chare ID" );

  // More in-depth error checking on local ghost data
  for (const auto& c : m_ghostData)
    for ([[maybe_unused]] const auto& t : c.second) {
      Assert( !std::get< 0 >( t.second ).empty(),
              "Emtpy face vector in ghost data" );
      Assert( std::get< 0 >( t.second ).size() % 3 == 0,
              "Face node IDs must be triplets" );
      Assert( std::get< 0 >( t.second ).size() <= 4*3,    // <= 4*3 (4*numfaces)
              "Max number of faces for a single ghost tet is 4" );
      Assert( !std::get< 1 >( t.second ).empty(),
              "No elem geometry data for ghost" );
      Assert( std::get< 1 >( t.second ).size() == m_geoElem.nprop(),
              "Elem geometry data for ghost must be for single tet" );
      Assert( !std::get< 2 >( t.second ).empty(),
              "No nodal coordinate data for ghost" );
    }

  ownghost_complete();
}

void
Ghosts::reqGhost()
// *****************************************************************************
// Receive requests for ghost data
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
                                        "reqGhost" );

  // If every chare we communicate with has requested ghost data from us, we may
  // fulfill the requests, but only if we have already setup our ghost data.
  if (++m_ghostReq == Disc()->NodeCommMap().size()) {
    m_ghostReq = 0;
    reqghost_complete();
  }
}

void
Ghosts::sendGhost()
// *****************************************************************************
// Send all of our ghost data to fellow chares
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
                                        "sendGhost" );

  for (const auto& c : m_ghostData)
    thisProxy[ c.first ].comGhost( thisIndex, c.second );

  if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) Disc()->Tr().chghost();
}

void
Ghosts::comGhost( int fromch, const GhostData& ghost )
// *****************************************************************************
// Receive ghost data on chare boundaries from fellow chare
//! \param[in] fromch Caller chare ID
//! \param[in] ghost Ghost data, see Inciter/FaceData.h for the type
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "Ghosts", thisIndex, CkMyPe(), Disc()->It(),
                                        "comGhost" );

  auto d = Disc();
  const auto& lid = d->Lid();
  auto& inpofa = m_fd.Inpofa();
  auto ncoord = m_coord[0].size();<--- Variable 'ncoord' is assigned a value that is never used.

  // nodelist with fromch, currently only used for an assert
  [[maybe_unused]] const auto& nl = tk::cref_find( d->NodeCommMap(), fromch );

  auto& ghostelem = m_ghost[ fromch ];  // will associate to sender chare

  // Store ghost data coming from chare
  for (const auto& g : ghost) {  // loop over incoming ghost data
    auto e = g.first;  // remote/ghost tet id outside of chare boundary<--- Variable 'e' is assigned a value that is never used.
    const auto& nodes = std::get< 0 >( g.second );  // node IDs of face(s)
    const auto& geo = std::get< 1 >( g.second );    // ghost elem geometry data
    const auto& coordg = std::get< 2 >( g.second );  // coordinate of ghost node
    const auto& inpoelg = std::get< 4 >( g.second ); // inpoel of ghost tet

    Assert( nodes.size() % 3 == 0, "Face node IDs must be triplets" );
    Assert( nodes.size() <= 4*3, "Overflow of faces/tet received" );
    Assert( geo.size() % 5 == 0, "Ghost geometry size mismatch" );
    Assert( geo.size() == m_geoElem.nprop(), "Ghost geometry number mismatch" );
    Assert( coordg.size() == 3, "Incorrect ghost node coordinate size" );
    Assert( inpoelg.size() == 4, "Incorrect ghost inpoel size" );

    for (std::size_t n=0; n<nodes.size()/3; ++n) {  // face(s) of ghost e
      // node IDs of face on chare boundary
      tk::UnsMesh::Face t{{ nodes[n*3+0], nodes[n*3+1], nodes[n*3+2] }};
      // must find t in nodelist of chare-boundary adjacent to fromch
      Assert( nl.find(t[0]) != end(nl) &&
              nl.find(t[1]) != end(nl) &&
              nl.find(t[2]) != end(nl),
           "Ghost face not found in chare-node adjacency map on receiving end" );
      // must find face in boundary-face adjacency map for fromch
      Assert( tk::cref_find(m_bndFace,fromch).find( t ) !=
              tk::cref_find(m_bndFace,fromch).cend(), "Ghost face not "
              "found in boundary-face adjacency map on receiving end" );
      // find local face & tet ids for t
      auto id = tk::cref_find( tk::cref_find(m_bndFace,fromch), t );
      // compute face geometry for chare-boundary face
      addGeoFace(t, id);
      // add node-triplet to node-face connectivity
      inpofa[3*id[0]+0] = tk::cref_find( lid, t[2] );
      inpofa[3*id[0]+1] = tk::cref_find( lid, t[1] );
      inpofa[3*id[0]+2] = tk::cref_find( lid, t[0] );

      // if ghost tet id not yet encountered on boundary with fromch
      auto i = ghostelem.find( e );
      if (i != end(ghostelem)) {
        // fill in elements surrounding face
        addEsuf(id, i->second);
        // fill in elements surrounding element
        addEsuel(id, i->second, t);
      } else {
        // fill in elements surrounding face
        addEsuf(id, m_nunk);
        // fill in elements surrounding element
        addEsuel(id, m_nunk, t);
        ghostelem[e] = m_nunk;     // assign new local tet id to remote ghost id
        m_geoElem.push_back( geo );// store ghost elem geometry
        ++m_nunk;                  // increase number of unknowns on this chare
        std::size_t counter = 0;
        for (std::size_t gp=0; gp<4; ++gp) {
          auto it = lid.find( inpoelg[gp] );
          std::size_t lp;
          if (it != end(lid))
            lp = it->second;
          else {
            Assert( nodes.size() == 3, "Expected node not found in lid" );
            Assert( gp == std::get< 3 >( g.second ),
                    "Ghost node not matching correct entry in ghost inpoel" );
            lp = ncoord;
            ++counter;
          }
          m_inpoel.push_back( lp );       // store ghost element connectivity
        }
        // only a single or no ghost node should be found
        Assert( counter <= 1, "Incorrect number of ghost nodes detected. "
                "Detected "+ std::to_string(counter) +" ghost nodes" );
        if (counter == 1) {
          m_coord[0].push_back( coordg[0] ); // store ghost node coordinate
          m_coord[1].push_back( coordg[1] );
          m_coord[2].push_back( coordg[2] );
          Assert( m_inpoel[ 4*(m_nunk-1)+std::get< 3 >( g.second ) ] == ncoord,
                  "Mismatch in extended inpoel for ghost element" );
          ++ncoord;                // increase number of nodes on this chare<--- Variable 'ncoord' is assigned a value that is never used.
        }
      }

      // additional tests to ensure that entries in inpoel and t/inpofa match
      Assert( nodetripletMatch(id, t) == 3,
        "Mismatch/Overmatch in inpoel and inpofa at chare-boundary face" );
    }
  }

  // Signal the runtime system that all workers have received their
  // face-adjacency
  if (++m_nadj == m_ghostData.size()) faceAdj();
}

void
Ghosts::faceAdj()
// *****************************************************************************
// Continue after face adjacency communication map completed on this chare
//! \details At this point the face communication map has been established
//!    on this chare. Proceed to set up the nodal-comm map.
// *****************************************************************************
{
  m_nadj = 0;

  tk::destroy(m_bndFace);

  // Ensure that all elements surrounding faces (are correct) including those at
  // chare boundaries
  for (std::size_t f=0; f<m_nfac; ++f) {
    Assert( m_fd.Esuf()[2*f] > -1,
            "Left element in esuf cannot be physical ghost" );
    if (f >= m_fd.Nbfac())
      Assert( m_fd.Esuf()[2*f+1] > -1,
           "Right element in esuf for internal/chare faces cannot be a ghost" );
  }

  // Ensure that all elements surrounding elements are correct including those
  // at chare boundaries
  const auto& esuel = m_fd.Esuel();
  std::size_t nbound = 0;
  for (std::size_t e=0; e<esuel.size()/4; ++e) {
    for (std::size_t f=0; f<4; ++f)
      if (esuel[4*e+f] == -1) ++nbound;
  }
  Assert( nbound == m_fd.Nbfac(), "Incorrect number of ghost-element -1's in "
         "updated esuel" );

  // Error checking on ghost data
  for(const auto& n : m_ghostData)
    for([[maybe_unused]] const auto& i : n.second)
      Assert( i.first < m_fd.Esuel().size()/4, "Sender contains ghost tet id " );

  // Perform leak test on face geometry data structure enlarged by ghosts
  Assert( !leakyAdjacency(), "Face adjacency leaky" );
  Assert( faceMatch(), "Chare-boundary element-face "
    "connectivity (esuf) does not match" );

  // Create new map of elements along chare boundary which are ghosts for
  // neighboring chare, associated with that chare ID
  for (const auto& [cid, cgd] : m_ghostData)
  {
    auto& sg = m_sendGhost[cid];
    for (const auto& e : cgd)
    {
      Assert(sg.find(e.first) == sg.end(), "Repeating element found in "
        "ghost data");
      sg.insert(e.first);
    }
    Assert(sg.size() == cgd.size(), "Incorrect size for sendGhost");
  }
  Assert(m_sendGhost.size() == m_ghostData.size(), "Incorrect number of "
    "chares in sendGhost");

  // Error checking on ghost data
  for(const auto& n : m_sendGhost)
    for([[maybe_unused]] const auto& i : n.second)
      Assert( i < m_fd.Esuel().size()/4, "Sender contains ghost tet id. " );

  // Generate and store Esup data-structure in a map
  auto esup = tk::genEsup(m_inpoel, 4);
  for (std::size_t p=0; p<Disc()->Gid().size(); ++p)
  {
    for (auto e : tk::Around(esup, p))
    {
      // since inpoel has been augmented with the face-ghost cell previously,
      // esup also contains cells which are not on this mesh-chunk, hence the
      // following test
      if (e < m_fd.Esuel().size()/4) m_esup[p].push_back(e);
    }
  }

  // Error checking on Esup map
  for(const auto& p : m_esup)
    for([[maybe_unused]] const auto& e : p.second)
      Assert( e < m_fd.Esuel().size()/4, "Esup contains tet id greater than "
      + std::to_string(m_fd.Esuel().size()/4-1) +" : "+ std::to_string(e) );

  auto meshid = Disc()->MeshId();
  contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
    CkCallback(CkReductionTarget(Transporter,startEsup), Disc()->Tr()) );
}

void
Ghosts::nodeNeighSetup()
// *****************************************************************************
// Setup node-neighborhood (esup)
//! \details At this point the face-ghost communication map has been established
//!    on this chare. This function begins generating the node-ghost comm map.
// *****************************************************************************
{
  if (Disc()->NodeCommMap().empty())
  // in serial, skip setting up node-neighborhood
  { comesup_complete(); }
  else
  {
    const auto& nodeCommMap = Disc()->NodeCommMap();

    // send out node-neighborhood map
    for (const auto& [cid, nlist] : nodeCommMap)
    {
      std::unordered_map< std::size_t, std::vector< std::size_t > > bndEsup;
      std::unordered_map< std::size_t, std::vector< tk::real > > nodeBndCells;
      for (const auto& p : nlist)
      {
        auto pl = tk::cref_find(Disc()->Lid(), p);
        // fill in the esup for the chare-boundary
        const auto& pesup = tk::cref_find(m_esup, pl);
        bndEsup[p] = pesup;

        // fill a map with the element ids from esup as keys and geoElem as
        // values, and another map containing these elements associated with
        // the chare id with which they are node-neighbors.
        for (const auto& e : pesup)
        {
          nodeBndCells[e] = m_geoElem[e];

          // add these esup-elements into map of elements along chare boundary
          Assert( e < m_fd.Esuel().size()/4, "Sender contains ghost tet id." );
          m_sendGhost[cid].insert(e);
        }
      }

      thisProxy[cid].comEsup(thisIndex, bndEsup, nodeBndCells);
    }
  }

  ownesup_complete();
}

void
Ghosts::comEsup( int fromch,
  const std::unordered_map< std::size_t, std::vector< std::size_t > >& bndEsup,
  const std::unordered_map< std::size_t, std::vector< tk::real > >&
    nodeBndCells )
// *****************************************************************************
//! \brief Receive elements-surrounding-points data-structure for points on
//    common boundary between receiving and sending neighbor chare, and the
//    element geometries for these new elements
//! \param[in] fromch Sender chare id
//! \param[in] bndEsup Elements-surrounding-points data-structure from fromch
//! \param[in] nodeBndCells Map containing element geometries associated with
//!   remote element IDs in the esup
// *****************************************************************************
{
  auto& chghost = m_ghost[fromch];

  // Extend remote-local element id map and element geometry array
  for (const auto& e : nodeBndCells)
  {
    // need to check following, because 'e' could have been added previously in
    // remote-local element id map as a part of face-communication, i.e. as a
    // face-ghost element
    if (chghost.find(e.first) == chghost.end())
    {
      chghost[e.first] = m_nunk;
      m_geoElem.push_back(e.second);
      ++m_nunk;
    }
  }

  // Store incoming data in comm-map buffer for Esup
  for (const auto& [node, elist] : bndEsup)
  {
    auto pl = tk::cref_find(Disc()->Lid(), node);
    auto& pesup = m_esupc[pl];
    for (auto e : elist)
    {
      auto el = tk::cref_find(chghost, e);
      pesup.push_back(el);
    }
  }

  // if we have heard from all fellow chares that we share at least a single
  // node, edge, or face with
  if (++m_ncomEsup == Disc()->NodeCommMap().size()) {
    m_ncomEsup = 0;
    comesup_complete();
  }
}

void
Ghosts::adj()
// *****************************************************************************
// Finish up with adjacency maps, and do a global-sync to begin problem setup
//! \details At this point, the nodal- and face-adjacency has been set up. This
//    function does some error checking on the nodal-adjacency and prepares
//    for problem setup.
// *****************************************************************************
{
  // combine own and communicated contributions to elements surrounding points
  for (auto& [p, elist] : m_esupc)
  {
    auto& pesup = tk::ref_find(m_esup, p);
    for ([[maybe_unused]] auto e : elist)
    {
      Assert( e >= m_fd.Esuel().size()/4, "Non-ghost element received from "
        "esup buffer." );
    }
    tk::concat< std::size_t >(std::move(elist), pesup);
  }

  tk::destroy(m_ghostData);
  tk::destroy(m_esupc);

  if ( g_inputdeck.get< tag::cmd, tag::feedback >() ) Disc()->Tr().chadj();

  // Error checking on ghost data
  for(const auto& n : m_sendGhost)
    for([[maybe_unused]] const auto& i : n.second)
      Assert( i < m_fd.Esuel().size()/4, "Sender contains ghost tet id. ");

  // Create a mapping between local ghost tet ids and zero-based boundary ids
  std::vector< std::size_t > c( tk::sumvalsize( m_ghost ) );
  std::size_t j = 0;
  for (const auto& n : m_ghost) {
    for(const auto& i : n.second) {
      c[j++] = i.second;
    }
  }
  m_bid = tk::assignLid( c );

  // Basic error checking on ghost tet ID map
  Assert( m_ghost.find( thisIndex ) == m_ghost.cend(),
          "Ghost id map should not contain data for own chare ID" );

  // Store expected ghost tet IDs
  for (const auto& n : m_ghost)
    for ([[maybe_unused]] const auto& g : n.second)
      Assert( m_exptGhost.insert( g.second ).second,
              "Failed to store local tetid as exptected ghost id" );

  // Callback function from DG/FV after ghost-setup is done
  m_cbAfterDone.send();
}

bool
Ghosts::leakyAdjacency()
// *****************************************************************************
// Perform leak-test on chare boundary faces
//! \details This function computes a surface integral over the boundary of the
//!   faces after the face adjacency communication map is completed. A non-zero
//!   vector result indicates a leak, e.g., a hole in the partition (covered by
//!   the faces of the face adjacency communication map), which indicates an
//!   error upstream in the code that sets up the face communication data
//!   structures.
//! \note Compared to tk::leakyPartition() this function performs the leak-test
//!   on the face geometry data structure enlarged by ghost faces on this
//!   partition by computing a discrete surface integral considering the
//!   physical and chare boundary faces, which should be equal to zero for a
//!   closed domain.
//! \return True if our chare face adjacency leaks.
// *****************************************************************************
{
  // Storage for surface integral over our chunk of the adjacency
  std::array< tk::real, 3 > s{{ 0.0, 0.0, 0.0 }};

  // physical boundary faces
  for (std::size_t f=0; f<m_fd.Nbfac(); ++f) {
    s[0] += m_geoFace(f,0) * m_geoFace(f,1);
    s[1] += m_geoFace(f,0) * m_geoFace(f,2);
    s[2] += m_geoFace(f,0) * m_geoFace(f,3);
  }

  // chare-boundary faces
  for (std::size_t f=m_fd.Nipfac(); f<m_fd.Esuf().size()/2; ++f) {
    s[0] += m_geoFace(f,0) * m_geoFace(f,1);
    s[1] += m_geoFace(f,0) * m_geoFace(f,2);
    s[2] += m_geoFace(f,0) * m_geoFace(f,3);
  }

  auto eps = std::numeric_limits< tk::real >::epsilon() * 100;
  return std::abs(s[0]) > eps || std::abs(s[1]) > eps || std::abs(s[2]) > eps;
}

bool
Ghosts::faceMatch()
// *****************************************************************************
// Check if esuf of chare-boundary faces matches
//! \details This function checks each chare-boundary esuf entry for the left
//!   and right elements. Then, it tries to match all vertices of these
//!   elements. Exactly three of these vertices must match if the esuf entry
//!   has been updated correctly at chare-boundaries.
//! \return True if chare-boundary faces match.
// *****************************************************************************
{
  const auto& esuf = m_fd.Esuf();
  bool match(true);

  auto eps = std::numeric_limits< tk::real >::epsilon() * 100;

  for (auto f=m_fd.Nipfac(); f<esuf.size()/2; ++f)
  {
    std::size_t el = static_cast< std::size_t >(esuf[2*f]);
    std::size_t er = static_cast< std::size_t >(esuf[2*f+1]);

    std::size_t count = 0;

    for (std::size_t i=0; i<4; ++i)
    {
      auto ip = m_inpoel[4*el+i];
      for (std::size_t j=0; j<4; ++j)
      {
        auto jp = m_inpoel[4*er+j];
        auto xdiff = std::abs( m_coord[0][ip] - m_coord[0][jp] );
        auto ydiff = std::abs( m_coord[1][ip] - m_coord[1][jp] );
        auto zdiff = std::abs( m_coord[2][ip] - m_coord[2][jp] );

        if ( xdiff<=eps && ydiff<=eps && zdiff<=eps ) ++count;
      }
    }

    match = (match && count == 3);
  }

  return match;
}

bool
Ghosts::receivedChBndFaces()
// *****************************************************************************
// Verify that all chare-boundary faces have been received
//! \return True if all chare-boundary faces have been received
// *****************************************************************************
{
  const auto& lid = Disc()->Lid();
  tk::UnsMesh::FaceSet recvBndFace;

  // Collect chare-boundary faces that have been received and expected
  for (const auto& c : m_bndFace)
    for (const auto& f : c.second)
      if (m_expChBndFace.find(f.first) != end(m_expChBndFace))
        recvBndFace.insert(f.first);

   // Collect info on expected but not received faces
   std::stringstream msg;
   for (const auto& f : m_expChBndFace)
     if (recvBndFace.find(f) == end(recvBndFace)) {
       const auto& x = m_coord[0];
       const auto& y = m_coord[1];
       const auto& z = m_coord[2];
       auto A = tk::cref_find( lid, f[0] );
       auto B = tk::cref_find( lid, f[1] );
       auto C = tk::cref_find( lid, f[2] );
       msg << '{' << A << ',' << B << ',' << C << "}:("
           << x[A] << ',' << y[A] << ',' << z[A] << ' '
           << x[B] << ',' << y[B] << ',' << z[B] << ' '
           << x[C] << ',' << y[C] << ',' << z[C] << ") ";
     }

  tk::destroy( m_expChBndFace );

  // Error out with info on missing faces
  auto s = msg.str();
  if (!s.empty()) {
    Throw( "Ghosts chare " + std::to_string(thisIndex) +
           " missing face(s) {local node ids} (node coords): " + s );
  } else {
    return true;
  }
}

int
Ghosts::findchare( const tk::UnsMesh::Face& t )
// *****************************************************************************
// Find any chare for face (given by 3 global node IDs)
//! \param[in] t Face given by three global node IDs
//! \return Chare ID if found among any of the chares we communicate along
//!   faces with, -1 if the face cannot be found.
// *****************************************************************************
{
  for (const auto& cf : m_bndFace)
    // cppcheck-suppress useStlAlgorithm
    if (cf.second.find(t) != end(cf.second))<--- Unmatched suppression: useStlAlgorithm
      return cf.first;
  return -1;
}

std::size_t
Ghosts::nodetripletMatch(
  const std::array< std::size_t, 2 >& id,
  const tk::UnsMesh::Face& t )
// *****************************************************************************
// Check if entries in inpoel, inpofa and node-triplet are consistent
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] t node-triplet associated with the chare boundary face
//! \return number of nodes in inpoel that matched with t and inpofa
// *****************************************************************************
{
  const auto& esuf = m_fd.Esuf();
  const auto& inpofa = m_fd.Inpofa();
  const auto& lid = Disc()->Lid();

  std::size_t counter = 0;
  for (std::size_t k=0; k<4; ++k)
  {
    auto el = esuf[ 2*id[0] ];
    auto ip = m_inpoel[ 4*static_cast< std::size_t >( el )+k ];<--- Variable 'ip' is assigned a value that is never used.
    Assert( el == static_cast< int >( id[1] ), "Mismatch in id and esuf" );
    for (std::size_t j=0; j<3; ++j)
    {
      auto jp = tk::cref_find( lid, t[j] );
      auto fp = inpofa[ 3*id[0]+(2-j) ];
      if (ip == jp && ip == fp) ++counter;
    }
  }

  return counter;
}

void
Ghosts::addEsuf(
  const std::array< std::size_t, 2 >& id,
  std::size_t ghostid )
// *****************************************************************************
// Fill elements surrounding a face along chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] ghostid Local ID for ghost tet
//! \details This function extends and fills in the elements surrounding faces
//!   data structure (esuf) so that the left and right element id is filled
//!   in correctly on chare boundaries to contain the correct inner tet id and
//!   the local tet id for the outer (ghost) tet, both adjacent to the given
//!   chare-face boundary. Prior to this function, this data structure does not
//!   have yet face-element connectivity adjacent to chare-boundary faces, only
//!   for physical boundaries and internal faces that are not on the chare
//!   boundary (this latter purely as a result of mesh partitioning). The remote
//!   element id of the ghost is stored in a location that is local to our own
//!   esuf. The face numbering is such that esuf stores the element-face
//!   connectivity first for the physical-boundary faces, followed by that of
//!   the internal faces, followed by the chare-boundary faces. As a result,
//!   esuf can be used by physics algorithms in exactly the same way as would be
//!   used in serial. In serial, of course, this data structure is not extended
//!   at the end by the chare-boundaries.
// *****************************************************************************
{
  auto& esuf = m_fd.Esuf();

  Assert( 2*id[0]+1 < esuf.size(), "Indexing out of esuf" );

  // put in inner tet id
  Assert( esuf[ 2*id[0] ] == -2 && esuf[ 2*id[0]+1 ] == -2, "Updating esuf at "
          "wrong location instead of chare-boundary" );
  esuf[ 2*id[0]+0 ] = static_cast< int >( id[1] );
  // put in local id for outer/ghost tet
  esuf[ 2*id[0]+1 ] = static_cast< int >( ghostid );
}

void
Ghosts::addEsuel(
  const std::array< std::size_t, 2 >& id,
  std::size_t ghostid,
  const tk::UnsMesh::Face& t )
// *****************************************************************************
// Fill elements surrounding a element along chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to it
//! \param[in] ghostid Local ID for ghost tet
//! \param[in] t node-triplet associated with the chare boundary face
//! \details This function updates the elements surrounding element (esuel) data
//    structure for the (inner) tets adjacent to the chare-boundaries. It fills
//    esuel of this inner tet with the local tet-id that has been assigned to
//    the outer ghost tet in Ghosts::comGhost in place of the -1 before.
// *****************************************************************************
{
  const auto& lid = Disc()->Lid();
  [[maybe_unused]] const auto& esuf = m_fd.Esuf();
  auto& esuel = m_fd.Esuel();

  std::array< tk::UnsMesh::Face, 4 > face;
  for (std::size_t f = 0; f<4; ++f)
    for (std::size_t i = 0; i<3; ++i)
      face[f][i] = m_inpoel[ id[1]*4 + tk::lpofa[f][i] ];

  tk::UnsMesh::Face tl{{ tk::cref_find( lid, t[0] ),
                         tk::cref_find( lid, t[1] ),
                         tk::cref_find( lid, t[2] ) }};

  std::size_t i(0), nmatch(0);
  for (const auto& f : face) {
    if (tk::UnsMesh::Eq< 3 >()( tl, f )) {
      Assert( esuel[ id[1]*4 + i ] == -1, "Incorrect boundary element found in "
             "esuel");
      esuel[ id[1]*4 + i ] = static_cast<int>(ghostid);
      ++nmatch;<--- Variable 'nmatch' is assigned a value that is never used.
      Assert( esuel[ id[1]*4 + i ] == esuf[ 2*id[0]+1 ], "Incorrect boundary "
             "element entered in esuel" );
      Assert( static_cast<int>(id[1]) == esuf[ 2*id[0]+0 ], "Boundary "
             "element entered in incorrect esuel location" );
    }
    ++i;
  }

  // ensure that exactly one face matched
  Assert( nmatch == 1, "Incorrect number of node-triplets (faces) matched for "
         "updating esuel; matching faces = "+ std::to_string(nmatch) );
}

void
Ghosts::addGeoFace(
  const tk::UnsMesh::Face& t,
  const std::array< std::size_t, 2 >& id )
// *****************************************************************************
// Fill face-geometry data along chare boundary
//! \param[in] t Face (given by 3 global node IDs) on the chare boundary
//! \param[in] id Local face and (inner) tet id adjacent to face t
//! \details This function fills in the face geometry data along a chare
//!    boundary.
// *****************************************************************************
{
  const auto& lid = Disc()->Lid();

  // get global node IDs reversing order to get outward-pointing normal
  auto A = tk::cref_find( lid, t[2] );
  auto B = tk::cref_find( lid, t[1] );
  auto C = tk::cref_find( lid, t[0] );
  auto geochf = tk::geoFaceTri( {{m_coord[0][A], m_coord[0][B], m_coord[0][C]}},
                                {{m_coord[1][A], m_coord[1][B], m_coord[1][C]}},
                                {{m_coord[2][A], m_coord[2][B], m_coord[2][C]}} );

  for (std::size_t i=0; i<7; ++i)
    m_geoFace(id[0],i) = geochf(0,i);
}

#include "NoWarning/ghosts.def.h"