1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
// *****************************************************************************
/*!
  \file      src/Main/MeshConvDriver.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Mesh converter driver
  \details   Mesh converter driver.
*/
// *****************************************************************************

#include "Types.hpp"
#include "Tags.hpp"
#include "MeshConvDriver.hpp"
#include "MeshFactory.hpp"
#include "Writer.hpp"

#include "NoWarning/meshconv.decl.h"

using meshconv::MeshConvDriver;

extern CProxy_Main mainProxy;

MeshConvDriver::MeshConvDriver( const ctr::CmdLine& cmdline, int ) :
  m_print( cmdline.logname( cmdline.get< tag::io, tag::screen >(),
                            cmdline.get< tag::io, tag::nrestart >() ),
           cmdline.get< tag::verbose >() ? std::cout : std::clog,
           std::ios_base::app ),
  m_reorder( cmdline.get< tag::reorder >() ),
  m_input(),
  m_output()
// *****************************************************************************
//  Constructor
//! \param[in] cmdline Command line object storing data parsed from the command
//!   line arguments
// *****************************************************************************
{
  // Save input file name
  m_input = cmdline.get< tag::io, tag::input >();
  // Save output file name
  m_output = cmdline.get< tag::io, tag::output >();
}

void
MeshConvDriver::execute() const
// *****************************************************************************
//  Execute: Convert mesh file
// *****************************************************************************
{
  m_print.endsubsection();

  std::vector< std::pair< std::string, tk::real > > times;

  // If input filename contains a '%', we aggregate multiple files
  if (m_input.find('%') == std::string::npos) {

    // Convert single mesh

    times.push_back( {} );
    auto mesh = tk::readUnsMesh( m_print, m_input, times[0] );
    auto wtimes = tk::writeUnsMesh( m_print, m_output, mesh, m_reorder );
    times.insert( end(times), begin(wtimes), end(wtimes) );

  } else {

    // Aggregate multiple meshes containing surface output

    // Find a '%' sign in the input filename, and assuming a syntax of
    // '.<nfile>.%', find '<nfile>' as the number of files to aggregate.
    auto percent_pos = m_input.find( '%' );
    auto input_basename = m_input.substr( 0, percent_pos );
    auto dot1 = m_input.find_last_of( '.', percent_pos );
    auto dot2 = m_input.find_last_of( '.', dot1-1 );
    auto nfile_str = m_input.substr( dot2+1, dot1-dot2-1  );
    std::stringstream ss( nfile_str );
    if (nfile_str.empty())
      Throw( "The percent sign must be followed by an "
             "integer, the number of files to aggregate" );
    std::size_t nfile;
    ss >> nfile;
    m_print.diag( "Aggregating " + std::to_string(nfile) +
                  " files from base filename: '" + input_basename +'\'' );

    const auto eps = std::numeric_limits< tk::real >::epsilon();

    // Lambda to echo some diagnostics on the mesh being processes to screen
    auto diag = [&]( const std::string& name, const tk::UnsMesh& mesh ){
      m_print.diag( name + ": ntri: " +
        std::to_string(mesh.triinpoel().size()/3) +
        ", ntime: " + std::to_string(mesh.vartimes().size()) +
        (!mesh.nodevars().empty() ? ", node_var: " +
           std::to_string(mesh.nodevars()[0].size()) : "") +
        (!mesh.nodevars()[0].empty() ? ", npoin: " +
           std::to_string(mesh.nodevars()[0][0].size()) : "") +
        (!mesh.elemvars().empty() ? ", elem_var: " +
           std::to_string(mesh.elemvars()[0].size()) : "") +
        (!mesh.elemvars()[0].empty() ? ", nelem: " +
           std::to_string(mesh.elemvars()[0][0].size()) : "") );
    };

    // Output-mesh containers, will store aggregated surface(s) and field output
    tk::UnsMesh::Coords coords;
    auto& X = coords[0];
    auto& Y = coords[1];
    auto& Z = coords[2];
    std::size_t npoin = 0;
    std::size_t nelem = 0;
    std::vector< std::size_t > otriinpoel;
    std::vector< std::string > nodevarnames;
    std::vector< std::string > elemvarnames;
    std::vector< tk::real > vartimes;
    std::vector< std::vector< std::vector< tk::real > > > nodevars;
    std::vector< std::vector< std::vector< tk::real > > > elemvars;
    // Counter for number of non-empty meshes processed
    std::size_t k = 0;
    for (std::size_t m=0; m<nfile; ++m) {
      std::string name = input_basename + std::to_string(m);
      times.push_back( {} );
      auto mesh = tk::readUnsMesh( m_print, name, times.back() );
      const auto& triinpoel = mesh.triinpoel();
      // Skip meshes with a single triange cell
      if (triinpoel.size() == 3) continue;
      const auto& x = mesh.x();
      const auto& y = mesh.y();
      const auto& z = mesh.z();
      nodevarnames = mesh.nodevarnames();
      elemvarnames = mesh.elemvarnames();
      vartimes = mesh.vartimes();
      // Echo some diagnostics on the mesh being processes to screen
      diag( name, mesh );
      // Aggregate data from each triangle element in mesh
      for (std::size_t e=0; e<triinpoel.size()/3; ++e) {
        for (std::size_t n=0; n<3; ++n) {
          auto j = triinpoel[ e*3+n ];
          bool visited = false;
          // WARNING: linear search below, will not scale well
          for (std::size_t i=0; i<X.size(); ++i) {
            // If mesh point has already been seen (on a previous mesh)
            if (std::abs(x[j]-X[i]) < eps &&
                std::abs(y[j]-Y[i]) < eps &&
                std::abs(z[j]-Z[i]) < eps)
            { // no point in connectivity but nothing else
              visited = true;
              otriinpoel.push_back( i );
            }
          }
          if (!visited) { // Mesh point not yet seen
            // save coordinates and (global) point id in aggregated connectivity
            X.push_back( x[j] );
            Y.push_back( y[j] );
            Z.push_back( z[j] );
            otriinpoel.push_back( npoin );
            // aggregate nodal field data for all times and variables
            std::size_t time = 0;
            std::size_t varid = 0;
            for (const auto& t : mesh.nodevars()) {  // for all times
              if (k == 0 && npoin == 0) nodevars.push_back( {} );
              for (const auto& v : t) {              // for all variables
                if (k == 0 && npoin == 0) nodevars.back().push_back( {} );
                nodevars[time][varid].push_back( v[j] );
                ++varid;
              }
              ++time;
              varid = 0;
            }
            ++npoin;      // increase number of nodes in output mesh
          }
        }

        // aggregate elemental field data for all times and variables
        std::size_t etime = 0;
        std::size_t evarid = 0;
        for (const auto& t : mesh.elemvars()) {  // for all times
          if (k == 0 && nelem == 0) elemvars.push_back( {} );
          for (const auto& v : t) {              // for all variables
            if (k == 0 && nelem == 0) elemvars.back().push_back( {} );
            elemvars[etime][evarid].push_back( v[e] );
            ++evarid;
          }
          ++etime;
          evarid = 0;
        }
        ++nelem;    // increase number of elements in output mesh
      }
      ++k;        // increase number of non-empty meshes processed
    }

    // Construct aggregated output mesh
    tk::UnsMesh outmesh( coords, otriinpoel, nodevarnames, elemvarnames,
      vartimes, nodevars, elemvars );
    // Echo diagnostics on the aggreegate output mesh
    diag( m_output, outmesh );
    // Write output mesh to file
    auto wtimes = tk::writeUnsMesh( m_print, m_output, outmesh, m_reorder );
    // Collect wall-clock time data
    times.insert( end(times), begin(wtimes), end(wtimes) );

  }

  mainProxy.timestamp( times );

  mainProxy.finalize();
}