1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612 | #include "mesh_adapter.hpp"
#include <assert.h> // for assert
#include <cstddef> // for size_t
#include <iostream> // for operator<<, endl, basic_os...
#include <set> // for set
#include <utility> // for pair
#include "AMR/AMR_types.hpp" // for Edge_Refinement, edge_list_t
#include "AMR/Loggers.hpp" // for trace_out
#include "AMR/Refinement_State.hpp" // for Refinement_Case, Refinemen...
#include "AMR/edge.hpp" // for operator<<, edge_t
#include "AMR/edge_store.hpp" // for edge_store_t
#include "AMR/marked_refinements_store.hpp" // for marked_refinements_store_t
#include "AMR/node_connectivity.hpp" // for node_connectivity_t
#include "AMR/refinement.hpp" // for refinement_t
#include "AMR/tet_store.hpp" // for tet_store_t
#if defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunreachable-code"
#pragma clang diagnostic ignored "-Wdocumentation"
#endif
namespace AMR {
#ifdef ENABLE_NODE_STORE
/**
* @brief This accepts external coord arrays and allows the node_store to
* track the new node positions as they are added
*
* @param m_x X coodinates
* @param m_y Y coodinates
* @param m_z Z coodinates
* @param graph_size Total number of nodes
*/
// TODO: remove graph size and use m.size()
// TODO: remove these pointers
//void mesh_adapter_t::init_node_store(coord_type* m_x, coord_type* m_y, coord_type* m_z)
//{
// assert( m_x->size() == m_y->size() );
// assert( m_x->size() == m_z->size() );
// node_store.set_x(*m_x);
// node_store.set_y(*m_y);
// node_store.set_z(*m_z);
//}
#endif
std::pair< bool, std::size_t > mesh_adapter_t::check_same_face(
std::size_t tet_id,
const std::unordered_set<std::size_t>& inactive_nodes)
{
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
Assert(inactive_nodes.size()==3 || inactive_nodes.size()==2,
"Incorrectly sized inactive nodes set");
// for a tet ABCD, the keys (edges) are ordered
// A-B, A-C, A-D, B-C, B-D, C-D
// 0-1, 0-2, 0-3, 1-2, 1-3, 2-3
std::array< std::array< std::size_t, 3 >, 4 >
edges_on_face;
// A-B-C
edges_on_face[0][0] =
tk::cref_find(node_connectivity.data(),edge_list[0].get_data());
edges_on_face[0][1] =
tk::cref_find(node_connectivity.data(),edge_list[1].get_data());
edges_on_face[0][2] =
tk::cref_find(node_connectivity.data(),edge_list[3].get_data());
// A-B-D
edges_on_face[1][0] =
tk::cref_find(node_connectivity.data(),edge_list[0].get_data());
edges_on_face[1][1] =
tk::cref_find(node_connectivity.data(),edge_list[2].get_data());
edges_on_face[1][2] =
tk::cref_find(node_connectivity.data(),edge_list[4].get_data());
// B-C-D
edges_on_face[2][0] =
tk::cref_find(node_connectivity.data(),edge_list[3].get_data());
edges_on_face[2][1] =
tk::cref_find(node_connectivity.data(),edge_list[4].get_data());
edges_on_face[2][2] =
tk::cref_find(node_connectivity.data(),edge_list[5].get_data());
// A-C-D
edges_on_face[3][0] =
tk::cref_find(node_connectivity.data(),edge_list[1].get_data());
edges_on_face[3][1] =
tk::cref_find(node_connectivity.data(),edge_list[2].get_data());
edges_on_face[3][2] =
tk::cref_find(node_connectivity.data(),edge_list[5].get_data());
//Iterate over edges to determine if inactive_nodes are all part of a face
bool same_face(false);
[[maybe_unused]] bool tnode_set(false);
std::size_t third_node = 0;
for(const auto& face : edges_on_face)
{
std::size_t icount = 0;
for (const auto& np_node : face) {
if (inactive_nodes.count(np_node)) ++icount;
}
if (inactive_nodes.size() == icount) {
same_face = true;
// if the two inactive_nodes being checked are on the same parent
// face, determine the third node on that face
if (inactive_nodes.size() == 2) {
for (auto fn:face) {
if (inactive_nodes.count(fn) == 0) {
third_node = fn;
tnode_set = true;
break;
}
}
}
}
}
if (same_face && inactive_nodes.size() == 2)
Assert(tnode_set, "Third node on face not set in derefine");
return {same_face, third_node};
}
/** @brief Consume an existing mesh, and turn it into the AMRs
* representations of tets and nodes
*
* @param tetinpoel Vector of nodes grouped together in blocks of 4 to
* represent tets
*/
void mesh_adapter_t::consume_tets(const std::vector< std::size_t >& tetinpoel )
{
for (size_t i = 0; i < tetinpoel.size(); i+=4)
{
tet_t t = {
{
tetinpoel[i],
tetinpoel[i+1],
tetinpoel[i+2],
tetinpoel[i+3]
}
};
trace_out << "Consume tet " << i << std::endl;
tet_store.add(t, AMR::Refinement_Case::initial_grid);
}
}
/**
* @brief Place holder function to evaluate error estimate at
* nodes, and therefor mark things as needing to be refined
*/
//void mesh_adapter_t::evaluate_error_estimate() {
// for (auto& kv : tet_store.edge_store.edges)
// {
// // Mark them as needing refinement
// if (kv.second.refinement_criteria > refinement_cut_off)
// {
// kv.second.needs_refining = 1;
// }
// else
// {
// // TODO: Check this won't be overwriting valuable
// // information from last iteration
// kv.second.needs_refining = 0;
// }
// }
//}
/**
* @brief Helper function to apply uniform refinement to all tets
*/
void mesh_adapter_t::mark_uniform_refinement()
{
for (auto& kv : tet_store.edge_store.edges) {
auto& local = kv.second;
if (local.lock_case == Edge_Lock_Case::unlocked)
local.needs_refining = 1;
}
mark_refinement();
}
/**
* @brief Helper function to apply uniform derefinement to all tets
*/
void mesh_adapter_t::mark_uniform_derefinement()
{
const auto& inp = tet_store.get_active_inpoel();
auto& edge_store = tet_store.edge_store;
for (std::size_t t=0; t<inp.size()/4; ++t) {
const auto edges =
edge_store.generate_keys(
{inp[t*4+0], inp[t*4+1], inp[t*4+2], inp[t*4+3]});
for (const auto& tetedge : edges) {
auto e = edge_store.edges.find(tetedge);
if (e != end(edge_store.edges)) {
auto& local = e->second;
local.needs_derefining = 1;
}
}
}
mark_derefinement();
}
/**
* @brief For a given set of edges, set their refinement criteria for
* refinement
*
* @param remote Vector of edges and edge tags
*/
void mesh_adapter_t::mark_error_refinement(
const std::vector< std::pair< edge_t, edge_tag > >& remote )
{
for (const auto& r : remote) {
auto& local = tet_store.edge_store.get( r.first );
if (r.second == edge_tag::REFINE) {
if (local.lock_case > Edge_Lock_Case::unlocked) {
local.needs_refining = 0;
} else {
local.needs_refining = 1;
// an edge deemed to be 'needing refinement', cannot be derefined
local.needs_derefining = 0;
}
} else if (r.second == edge_tag::DEREFINE) {
local.needs_derefining = 1;
}
}
mark_refinement();
mark_derefinement();
}
void mesh_adapter_t::mark_error_refinement_corr( const EdgeData& edges )
{
for (const auto& r : edges)
{
auto& edgeref = tet_store.edge_store.get( edge_t(r.first) );
edgeref.needs_refining = std::get<0>(r.second);
edgeref.needs_derefining = std::get<1>(r.second);
Assert(edgeref.lock_case == Edge_Lock_Case::unlocked ?
edgeref.lock_case <= std::get<2>(r.second) : true,
"Edge " + std::to_string(r.first[0]) +
"-" + std::to_string(r.first[1]) +
" : current edge-lock " + std::to_string(edgeref.lock_case) +
" stricter than received edge-lock " +
std::to_string(std::get<2>(r.second)));
edgeref.lock_case = std::get<2>(r.second);
}
mark_refinement();
mark_derefinement();
}
/**
* @brief Function to detect the compatibility class (1,
* 2, or 3) based on the number of locked edges and the existence
* of intermediate edges
*
* @param num_locked_edges The number of locked edges
* @param num_intermediate_edges The number of intermediate edges
* @param refinement_case The refinement case of the tet
* @param normal TODO: Document this!
*
* @return The compatibili4y class of the current scenario
*/
int mesh_adapter_t::detect_compatibility(
int num_locked_edges,
int num_intermediate_edges,
AMR::Refinement_Case refinement_case,
int normal
)
{
int compatibility = 0;
num_locked_edges += num_intermediate_edges;
/*
// Split this into three categories
// 1. Normal elements without locked edges. => 1
//if (normal) {
// 3. Intermediate elements with at least one edge marked for refinement => 3
if (num_intermediate_edges > 0)
{
compatibility = 3;
}
else if (num_locked_edges == 0) {
compatibility = 1;
}
// 2. Normal elements with locked edges. => 2
else {
compatibility = 2;
}
//}
*/
//else {
//if (num_intermediate_edges > 0) { compatibility = 3; }
//}
// Only 1:2 and 1:4 are intermediates and eligible for class3 // NOT TRUE!
/*
if (num_intermediate_edges > 0)
{
if (!normal) {
trace_out << " not normal 3 " << std::endl;
compatibility = 3;
}
else { // Attempt to allow for "normal" 1:4 and 1:8
compatibility = 2;
trace_out << " normal 3 " << std::endl;
}
}
else {
if (num_locked_edges == 0) {
trace_out << " no lock 1 " << std::endl;
compatibility = 1;
}
else {
trace_out << " lock 2 " << std::endl;
compatibility = 2;
}
}
*/
// Old implementation
// Only 1:2 and 1:4 are intermediates and eligible for class3 // NOT TRUE!
if (
(refinement_case == AMR::Refinement_Case::one_to_two) or
(refinement_case == AMR::Refinement_Case::one_to_four)
)
{
if (!normal) {
trace_out << " not normal 3 " << std::endl;
compatibility = 3;
}
else { // Attempt to allow for "normal" 1:4 and 1:8
compatibility = 2;
trace_out << " normal 3 " << std::endl;
}
}
else {
if (num_locked_edges == 0) {
trace_out << " no lock 1 " << std::endl;
compatibility = 1;
}
else {
trace_out << " lock 2 " << std::endl;
compatibility = 2;
}
}
assert(compatibility > 0);
assert(compatibility < 4);
return compatibility;
}
/**
* @brief Function which implements the main refinement algorithm from
* the paper Iterating over the cells, deciding which refinement and
* compatibility types are appropriate etc
*/
void mesh_adapter_t::mark_refinement() {
#ifndef AMR_MAX_ROUNDS
// Paper says the average actual num rounds will be 5-15
#define AMR_MAX_ROUNDS 50
#endif
const size_t max_num_rounds = AMR_MAX_ROUNDS;
// Mark refinements
size_t iter;
//Iterate until convergence
for (iter = 0; iter < max_num_rounds; iter++)
{
tet_store.marked_refinements.get_state_changed() = false;
// Loop over Tets.
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
trace_out << "Process tet " << tet_id << std::endl;
// Only apply checks to tets on the active list
if (tet_store.is_active(tet_id)) {
int num_locked_edges = 0;
int num_intermediate_edges = 0;
// Loop over nodes and count the number which need refining
int num_to_refine = 0;
// This is useful for later inspection
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
//Iterate over edges
for(auto & key : edge_list)
{
trace_out << "Edge " << key << std::endl;
//Count locked edges and edges in need of
// refinement
// Count Locked Edges
if(tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::locked)
{
trace_out << "Found locked edge " << key << std::endl;
trace_out << "Locked :" << tet_store.edge_store.get(key).lock_case << std::endl;
num_locked_edges++;
}
else if(tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::intermediate
|| tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::temporary)
{
trace_out << "Found intermediate edge " << key << std::endl;
num_intermediate_edges++;
}
else
{
// Count edges which need refining
// We check in here as we won't refine a
// locked edge and will thus ignore it
if (tet_store.edge_store.get(key).needs_refining == 1)
{
num_to_refine++;
trace_out << "key needs ref " << key << std::endl;
}
}
}
// TODO: Should this be a reference?
AMR::Refinement_Case refinement_case = tet_store.get_refinement_case(tet_id);
int normal = tet_store.is_normal(tet_id);
trace_out << "Checking " << tet_id <<
" ref case " << refinement_case <<
" num ref " << num_to_refine <<
" normal " << normal <<
std::endl;
//If we have any tets to refine
if (num_to_refine > 0)
{
//Determine compatibility case
int compatibility = detect_compatibility(num_locked_edges,
num_intermediate_edges, refinement_case, normal);
trace_out << "Compat " << compatibility << std::endl;
// Now check num_to_refine against situations
if (compatibility == 1)
{
refinement_class_one(num_to_refine, tet_id);
}
else if (compatibility == 2)
{
refinement_class_two(edge_list, tet_id);
}
else if (compatibility == 3)
{
refinement_class_three(tet_id);
}
/*
// Write temp mesh out
std::string temp_file = "temp." +
std::to_string(iter) + "." +
std::to_string(tet_id) + ".exo";
std::cout << "Writing " << temp_file << std::endl;
Adaptive_UnsMesh outmesh(
get_active_inpoel(), x(), y(), z()
);
tk::ExodusIIMeshWriter( temp_file, tk::ExoWriter::CREATE ).
writeMesh(outmesh);
*/
} // if num_to_refine
else {
// If we got here, we don't want to refine this guy
tet_store.marked_refinements.add(tet_id, AMR::Refinement_Case::none);
}
} // if active
else {
trace_out << "Inactive" << std::endl;
}
} // For
// If nothing changed during that round, break
if (!tet_store.marked_refinements.get_state_changed())
{
trace_out << "Terminating loop at iter " << iter << std::endl;
break;
}
trace_out << "End iter " << iter << std::endl;
}
trace_out << "Loop took " << iter << " rounds." << std::endl;
//std::cout << "Print Tets" << std::endl;
//print_tets();
}
/**
* @brief Helper function to print tet information when needed
*/
void mesh_adapter_t::print_tets() {
tet_store.print_tets();
}
/**
* @brief Function to call refinement after each tet has had it's
* refinement case marked and calculated
*/
void mesh_adapter_t::perform_refinement()
{
// Track tets which need to be deleted this iteration
std::set<size_t> round_two;
trace_out << "Perform ref" << std::endl;
// Do refinements
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
trace_out << "Do refine of " << tet_id << std::endl;
if (tet_store.has_refinement_decision(tet_id))
{
switch(tet_store.marked_refinements.get(tet_id))
{
case AMR::Refinement_Case::one_to_two:
refiner.refine_one_to_two(tet_store,node_connectivity,tet_id);
break;
case AMR::Refinement_Case::one_to_four:
refiner.refine_one_to_four(tet_store,node_connectivity,tet_id);
break;
case AMR::Refinement_Case::one_to_eight:
refiner.refine_one_to_eight(tet_store,node_connectivity,tet_id);
break;
case AMR::Refinement_Case::two_to_eight:
round_two.insert( tet_store.get_parent_id(tet_id) );
//std::cout << "2->8\n";
break;
case AMR::Refinement_Case::four_to_eight:
round_two.insert( tet_store.get_parent_id(tet_id));
//std::cout << "4->8\n";
break;
case AMR::Refinement_Case::initial_grid:
// Do nothing
case AMR::Refinement_Case::none:
// Do nothing
break;
// No need for default as enum is explicitly covered
}
// Mark tet as not needing refinement
tet_store.marked_refinements.erase(tet_id);
}
}
trace_out << "round_two size " << round_two.size() << std::endl;
for (const auto i : round_two)
{
trace_out << "round two i " << i << std::endl;
// Cache children as we're about to change this data
auto former_children = tet_store.data(i).children;
AMR::Refinement_State& element = tet_store.data(i);
if (element.children.size() == 2)
{
trace_out << "perform 2:8" << std::endl;
refiner.derefine_two_to_one(tet_store,node_connectivity,i);
}
else if (element.children.size() == 4)
{
trace_out << "perform 4:8" << std::endl;
refiner.derefine_four_to_one(tet_store,node_connectivity,i);
}
else {
std::cout << "num children " << element.children.size() << std::endl;
assert(0);
}
// remove tets and edges marked for deletion above
refiner.delete_intermediates_of_children(tet_store);
tet_store.process_delete_list();
refiner.refine_one_to_eight(tet_store,node_connectivity,i);
// Grab children after it has been updated
auto current_children = tet_store.data(i).children;
// I want to set the children stored in *my* own children, to be
// the value of my new children....
//refiner.overwrite_children(tet_store, former_children, current_children);
tet_store.unset_marked_children(i); // FIXME: This will not work well in parallel
element.refinement_case = AMR::Refinement_Case::one_to_eight;
}
// Clean up dead edges
// clean_up_dead_edges(); // Nothing get's marked as "dead" atm?
//std::cout << "Total Edges : " << tet_store.edge_store.size() << std::endl;
//std::cout << "Total Tets : " << tet_store.size() << std::endl;
//std::cout << "Total Nodes : " << m_x.size() << std::endl;
trace_out << "Done ref" << std::endl;
node_connectivity.print();
node_connectivity.print();
tet_store.print_node_types();
tet_store.print_tets();
//node_connectivity.print();
//reset_intermediate_edges();
remove_edge_locks(1);
remove_normals();
lock_intermediates();
for (auto& kv : tet_store.edge_store.edges) {
auto& local = kv.second;
if (local.needs_refining == 1) local.needs_refining = 0;
}
}
void mesh_adapter_t::lock_intermediates()
{
/*
for (auto k : tet_store.intermediate_list)
{
refiner.lock_edges_from_node(tet_store,k, Edge_Lock_Case::intermediate);
}
*/
// TODO: Passing tet_store twice probably isn't the best
refiner.lock_intermediates(tet_store, tet_store.intermediate_list, Edge_Lock_Case::intermediate);
}
/**
* @brief A method implementing "Algorithm 1" from the paper
*
* @param num_to_refine Number of edges to refine
* @param tet_id The id of the given tet
*/
void mesh_adapter_t::refinement_class_one(int num_to_refine, size_t tet_id)
{
trace_out << "Refinement Class One" << std::endl;
// "If nrefine = 1
// Accept as a 1:2 refinement"
if (num_to_refine == 1)
{
tet_store.mark_one_to_two(tet_id);
}
// "Else if nrefine = 2 OR nrefine = 3"
else if (num_to_refine > 1 && num_to_refine < 4)
{
// We need to detect if the edges which need to refine are
// on the same face
// and if so which face so we know how to 1:4
face_list_t face_list = tet_store.generate_face_lists(tet_id);
bool edges_on_same_face = false;
size_t face_refine_id = 0;
// Iterate over each face
for (size_t face = 0; face < NUM_TET_FACES; face++)
{
int num_face_refine_edges = 0;
face_ids_t face_ids = face_list[face];
trace_out << "Face is " <<
face_ids[0] << ", " <<
face_ids[1] << ", " <<
face_ids[2] << ", " <<
std::endl;
edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
// For this face list, see which ones need refining
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
edge_t key = face_edge_list[k];
if (tet_store.edge_store.get(key).needs_refining == 1)
{
num_face_refine_edges++;
}
}
if (num_face_refine_edges == num_to_refine)
{
edges_on_same_face = true;
face_refine_id = face;
trace_out << "Breaking with face value " << face << std::endl;
break;
}
}
// "If active edges are on the same face
// Activate any inactive edges of the face
// Accept as a 1:4 // refinement"
if (edges_on_same_face)
{
size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list,
face_refine_id);
tet_t tet = tet_store.get(tet_id);
size_t opposite_id = tet[opposite_offset];
trace_out << "face_refine_id " << face_refine_id << std::endl;
trace_out << "opposite_offset " << opposite_offset << std::endl;
trace_out << "opposite_id " << opposite_id << std::endl;
// Activate edges on this face
edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_list[face_refine_id]);
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
edge_t key = face_edge_list[k];
tet_store.edge_store.mark_for_refinement(key);
}
//refiner.refine_one_to_four(tet_id, face_list[face_refine_id],
//opposite_id);
tet_store.mark_one_to_four(tet_id);
}
// "Else if active edges are not on the same face
// Activate all edges
// Accept as a 1:8 refinement"
else {
//refiner.refine_one_to_eight(tet_id);
tet_store.mark_edges_for_refinement(tet_id);
tet_store.mark_one_to_eight(tet_id);
}
}
// "Else if nrefine > 3
// Activate any inactive edges
// Accept as a 1:8 refinement"
else if (num_to_refine > 3)
{
//refiner.refine_one_to_eight(tet_id);
tet_store.mark_edges_for_refinement(tet_id);
tet_store.mark_one_to_eight(tet_id);
}
}
// TODO: Document this
void mesh_adapter_t::lock_tet_edges(size_t tet_id) {
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
{
trace_out << "LOCKING! " << key << std::endl;
tet_store.edge_store.get(key).lock_case = AMR::Edge_Lock_Case::locked;
}
}
}
// TODO: Document this
// TODO: This has too similar a name to deactivate_tet
void mesh_adapter_t::deactivate_tet_edges(size_t tet_id) {
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
tet_store.edge_store.unmark_for_refinement(key);
trace_out << "Deactivating " << key << std::endl;
tet_store.edge_store.get(key).needs_derefining = false;
}
}
/**
* @brief Unmarks edges of given tet for derefinement only
*
* @param tet_id The id of the given tet
*/
void mesh_adapter_t::deactivate_deref_tet_edges(size_t tet_id) {
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
trace_out << "Deactivating " << key << std::endl;
tet_store.edge_store.get(key).needs_derefining = false;
}
}
/**
* @brief An implementation of "Algorithm 2" from the paper
*
* @param edge_list The list of edges for the given tet
* @param tet_id The id of the given tet
*/
void mesh_adapter_t::refinement_class_two(edge_list_t edge_list, size_t tet_id)
{
trace_out << "Refinement Class Two" << std::endl;
// "Deactivate all locked edges"
// count number of active edges
int num_active_edges = 0;
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
if (tet_store.edge_store.get(key).lock_case != AMR::Edge_Lock_Case::unlocked)
{
tet_store.edge_store.unmark_for_refinement(key);
}
// "Count number of active edges"
if (tet_store.edge_store.get(key).needs_refining == 1) {
num_active_edges++;
}
}
// Find out of two active edges live on the same face
bool face_refine = false;
size_t face_refine_id = 0; // FIXME: Does this need a better default
face_list_t face_list = tet_store.generate_face_lists(tet_id);
// Iterate over each face
for (size_t face = 0; face < NUM_TET_FACES; face++)
{
trace_out << "face " << face << std::endl;
int num_face_refine_edges = 0;
int num_face_locked_edges = 0;
face_ids_t face_ids = face_list[face];
edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
// For this face list, see which ones need refining
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
edge_t key = face_edge_list[k];
trace_out << "Checking " << key << std::endl;
if (tet_store.edge_store.get(key).needs_refining == 1)
{
num_face_refine_edges++;
trace_out << "ref! " << key << std::endl;
}
// Check for locked edges
// This case only cares about faces with no locks
if (tet_store.edge_store.get(key).lock_case != AMR::Edge_Lock_Case::unlocked)
{
num_face_locked_edges++;
trace_out << "locked! " << key << std::endl;
}
}
// Decide if we want to process this face
if (num_face_refine_edges >= 2 && num_face_locked_edges == 0)
{
// We can refine this face
face_refine = true;
face_refine_id = face;
break;
}
}
// "If nrefine = 1
// Accept as 1:2 refinement"
// TODO: can we hoist this higher
if (num_active_edges == 1)
{
//node_pair_t nodes = find_single_refinement_nodes(edge_list);
//refine_one_to_two( tet_id, nodes[0], nodes[1]);
tet_store.mark_one_to_two(tet_id);
}
// "Else if any face has nrefine >= 2 AND no locked edges
// Active any inactive edges of the face
// Accept as a 1:4 refinement"
else if (face_refine)
{
size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);
tet_t tet = tet_store.get(tet_id);
size_t opposite_id = tet[opposite_offset];
trace_out << "Tet ID " << tet_id << std::endl;
trace_out << "Opposite offset " << opposite_offset << std::endl;
trace_out << "Opposite id " << opposite_id << std::endl;
trace_out << "Face refine id " << face_refine_id << std::endl;
edge_list_t face_edge_list =
AMR::edge_store_t::generate_keys_from_face_ids(face_list[face_refine_id]);
for (size_t k = 0; k < NUM_FACE_NODES; k++)
{
edge_t key = face_edge_list[k];
tet_store.edge_store.mark_for_refinement(key);
}
//refiner.refine_one_to_four(tet_id, face_list[face_refine_id], opposite_id);
tet_store.mark_one_to_four(tet_id);
}
// "Else
// Deactivate all edges
// Mark all edges as locked"
else {
trace_out << "Class 2 causes some locking.." << std::endl;
deactivate_tet_edges(tet_id);
lock_tet_edges(tet_id);
}
}
/**
* @brief Based on a tet_id, decide if it's current state of locked
* and marked edges maps to a valid refinement case. The logic for
* this was derived from talking to JW and reading Chicoma.
*
* It basically just checks if something a 1:2 and has 3
* intermediates and 3 makred edges, or is a 1:4 and has 5/6
* intermediates
*
* @param child_id the id of the tet to check
*
* @return A bool saying if the tet is in a valid state to be refined
*/
bool mesh_adapter_t::check_valid_refinement_case(size_t child_id) {
trace_out << "check valid ref " << child_id << std::endl;
edge_list_t edge_list = tet_store.generate_edge_keys(child_id);
size_t num_to_refine = 0;
size_t num_intermediate = 0;
size_t unlocked = 0;
size_t locked = 0;
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
trace_out << "Key " << key << std::endl;
// Count intermediate edges
if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::intermediate
|| tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::temporary)
{
trace_out << "found intermediate" << std::endl;
num_intermediate++;
}
// Count number of marked for refinement
if (tet_store.edge_store.get(key).needs_refining == 1)
{
trace_out << "found refine" << std::endl;
num_to_refine++;
}
if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
{
trace_out << "found unlocked" << std::endl;
unlocked++;
}
if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::locked)
{
trace_out << "found locked" << std::endl;
locked++;
}
}
AMR::Refinement_State& element = tet_store.data(child_id);<--- Variable 'element' can be declared with const
trace_out <<
"Intermediates " << num_intermediate <<
" num to refine " << num_to_refine <<
" unlocked " << unlocked <<
" locked " << locked <<
" Case " << element.refinement_case <<
std::endl;
// check if element is 1:2
if (element.refinement_case == AMR::Refinement_Case::one_to_two)
{
// If so check it has 3 intermediates and 3 which need refining
if (num_intermediate != 3 || num_to_refine != 3) {
return false;
}
else {
trace_out << "True " <<
"Intermediates " << num_intermediate <<
" num to refine " << num_to_refine <<
" Case " << element.refinement_case <<
" 2:1 " << AMR::Refinement_Case::one_to_two <<
std::endl;
}
}
// check if element is 1:4
else if (element.refinement_case == AMR::Refinement_Case::one_to_four)
{
// TODO: Check if it's a center tet for a 1:4
// FIXME: Is this even needed? How else would you get these
// combinations? Can't we just combine these two checks?
bool is_center_tet = tet_store.is_center(child_id);
if (is_center_tet)
{
if (num_to_refine != 0 || num_intermediate != 6)
{
trace_out << "Fail compat 1:4 center" << std::endl;
return false;
}
}
else { // Is one of the outsides (not center)
if (num_to_refine != 1 || num_intermediate != 5)
{
trace_out << "Fail compat 1:4 non center" << std::endl;
return false;
}
}
}
// If it makes it here, it's compatible
return true;
}
/**
* @brief Place holder method for the implementation of "Algorithm
* 3" from the paper
*/
// TODO: Does this parse a childs siblings multiple times?
void mesh_adapter_t::refinement_class_three(size_t tet_id) {
trace_out << "Refinement Class Three" << std::endl;
// "Identify parent element iparent"
// TODO: WE should either always use the id to fetch, or always do the data lookup
//size_t parent_id = master_elements.get_parent(tet_id);
size_t parent_id = tet_store.get_parent_id(tet_id);
trace_out << "Parent id = " << parent_id << std::endl;
// NOTE: This implies comms when we use these ids?
child_id_list_t children = tet_store.data(parent_id).children;
// "Do for each child element ielement
// Activate all non-locked edges
// Deactivate all locked edges"
for (size_t i = 0; i < children.size(); i++)
{
// TODO: Is this in element or tet ids?
trace_out << "Checking child " << children[i] << std::endl;
edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
trace_out << "Compat 3 " << key << std::endl;
if (tet_store.edge_store.get(key).lock_case == AMR::Edge_Lock_Case::unlocked)
{
trace_out << "Compat 3 marking edge " << key << std::endl;
tet_store.edge_store.mark_for_refinement(key);
}
else {
tet_store.edge_store.unmark_for_refinement(key);
}
}
}
// "Set compatible = TRUE
bool compatible = true;
// Do for each child element ielement
// If ielement is not a valid refinement case
// compatible = FALSE"
for (size_t i = 0; i < children.size(); i++)
{
size_t child = children[i];
if ( !check_valid_refinement_case(child) )
{
trace_out << "Compat 3 Marking compatible false because of invalid refinement case" << std::endl;
compatible = false;
}
else {
trace_out << "Is compatible" << std::endl;
}
}
// "If compatible = FALSE
// Do for each child element ielement
// Deactive all edges of ielement
// Mark all edges of ielement as locked
// Mark ielement as normal"
if (compatible == false)
{
for (size_t i = 0; i < children.size(); i++)
{
size_t child = children[i];
deactivate_tet_edges(child);
lock_tet_edges(child);
trace_out << "Compat 3 locking edges of " << child << std::endl;
// Here we interpret normal to mean "don't treat it like it has intermediates"
tet_store.mark_normal(child);
trace_out << "Compat 3 " << child << std::endl;
}
}
else {
trace_out << "TIME TO 2:8 " << tet_id << std::endl;
// Accept as 2:8 or 4:8
AMR::Refinement_State& element = tet_store.data(tet_id);
if (element.refinement_case == AMR::Refinement_Case::one_to_two)
{
tet_store.mark_two_to_eight(tet_id);
}
else if (element.refinement_case == AMR::Refinement_Case::one_to_four)
{
tet_store.mark_four_to_eight(tet_id);
}
else {
trace_out << " I don't know what to do with this..it looks like you're trying to 2/4:8 an 8... " << std::endl;
}
}
}
void mesh_adapter_t::remove_normals()
{
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
tet_store.set_normal(tet_id, 0);
}
}
void mesh_adapter_t::remove_edge_locks(int intermediate)
{
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
trace_out << "Process tet removelock " << tet_id << std::endl;
// Only apply checks to tets on the active list
if (tet_store.is_active(tet_id)) {
// change it from intermediate to locked
update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::locked, AMR::Edge_Lock_Case::unlocked);
if (intermediate) {
update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::intermediate, AMR::Edge_Lock_Case::unlocked);
}
}
}
}
//void mesh_adapter_t::reset_intermediate_edges()
//{
// for (const auto& kv : tet_store.tets)
// {
// size_t tet_id = kv.first;
// trace_out << "Process tet reset " << tet_id << std::endl;
// // Only apply checks to tets on the active list
// if (tet_store.is_active(tet_id)) {
// // change it from intermediate to locked
// update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::intermediate, AMR::Edge_Lock_Case::locked);
// }
// }
//}
void mesh_adapter_t::update_tet_edges_lock_type(size_t tet_id, AMR::Edge_Lock_Case check, AMR::Edge_Lock_Case new_case) {
edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t key = edge_list[k];
if (tet_store.edge_store.get(key).lock_case == check)
{
tet_store.edge_store.get(key).lock_case = new_case;
}
}
}
/**
* @brief This unlocks edges that were previously locked with a `temporary'
* lock, indicating a parallel compatibility induced locking
*/
void mesh_adapter_t::remove_edge_temp_locks()
{
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
trace_out << "Process tet remove temp lock " << tet_id << std::endl;
// Only apply checks to tets on the active list
if (tet_store.is_active(tet_id)) {
// change it from temporary to unlocked
update_tet_edges_lock_type(tet_id, AMR::Edge_Lock_Case::temporary,
AMR::Edge_Lock_Case::unlocked);
}
}
}
void mesh_adapter_t::mark_derefinement()
{
const size_t max_num_rounds = AMR_MAX_ROUNDS;
// Mark refinements
size_t iter;
//Iterate until convergence
for (iter = 0; iter < max_num_rounds; iter++)
{
tet_store.marked_derefinements.get_state_changed() = false;
// set of elements which have been considered for derefinement
std::unordered_set< size_t > done_deref_marking;
// Loop over tets
for (const auto& kv : tet_store.tets)
{
// this loop only runs for active tets
if (!tet_store.is_active(kv.first)) {
deactivate_deref_tet_edges(kv.first);
continue;
}
size_t activetet_id = kv.first;
// check if activetet_id has a parent (assign to tet_id)
// if it does not, activetet_id is not a derefinement candidate
size_t tet_id;
const auto& activetet_data = tet_store.data(activetet_id);
if (!activetet_data.has_parent) {
deactivate_deref_tet_edges(activetet_id);
continue;
}
else {
tet_id = activetet_data.parent_id;
}
// if already considered for deref, do not reconsider
if (done_deref_marking.count(tet_id) > 0) {
continue;
}
done_deref_marking.insert(tet_id);
child_id_list_t children = tet_store.data(tet_id).children;
// check if any child of tet_id (i.e. any active tet) is marked
// for refinement
bool is_child_ref(false);
for (size_t i=0; i<children.size(); i++) {
edge_list_t chedge_list = tet_store.generate_edge_keys(children[i]);
// Check each edge, see if it is marked for refinement
for (size_t k=0; k<NUM_TET_EDGES; k++) {
edge_t edge = chedge_list[k];
if (tet_store.edge_store.get(edge).needs_refining == 1) {
is_child_ref = true;
continue;
}
}
}
// deactivate from deref if marked for ref
if (is_child_ref) {
trace_out << tet_id << " Looping cancelled since child marked for refinement." << std::endl;
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
deactivate_deref_tet_edges(tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
continue;
}
// check if tet_id has been marked for deref-ref
edge_list_t pedge_list = tet_store.generate_edge_keys(tet_id);
// Check each edge, see if it is marked for refinement
for (size_t k=0; k<NUM_TET_EDGES; k++) {
edge_t edge = pedge_list[k];
// deactivate child-edges from deref if marked '2'
if (tet_store.edge_store.get(edge).needs_refining == 2) {
auto edge_nodes = edge.get_data();
auto ch_node = node_connectivity.data().at(edge_nodes);
std::array< edge_t, 2> ch_edge;
ch_edge[0] = {edge_nodes[0], ch_node};
ch_edge[1] = {edge_nodes[1], ch_node};
tet_store.edge_store.get(ch_edge[0]).needs_derefining = 0;
tet_store.edge_store.get(ch_edge[1]).needs_derefining = 0;
}
}
// This is useful for later inspection
//edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
std::size_t num_to_derefine = 0; // Nodes
AMR::Refinement_Case refinement_case = tet_store.get_refinement_case(tet_id);
auto derefine_node_set = refiner.find_derefine_node_set(tet_store, tet_id);
// Find the set of nodes which are not in the parent
std::unordered_set<size_t> non_parent_nodes =
refiner.child_exclusive_nodes(tet_store, tet_id);
//for (auto drnode: derefine_node_set)
// trace_out << "derefine node: " << drnode << std::endl;
num_to_derefine = derefine_node_set.size();
if (num_to_derefine > 0) {
trace_out << "num_to_derefine " << num_to_derefine << std::endl;
trace_out << "ref_case " << refinement_case << std::endl;
trace_out << "num children " << children.size() << std::endl;
}
//num_to_derefine = convert_derefine_edges_to_points(tet_store, tet_id, num_edges_to_derefine, refinement_case);
// "If nderefine = 1
if (num_to_derefine == 1)
{
// If icase = 1:2
//if (refinement_case == AMR::Refinement_Case::one_to_two)
if (children.size() == 2)
{
// Accept as 2:1 derefine"
trace_out << "Accept as 2:1" << std::endl;
//refiner.derefine_two_to_one(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::two_to_one);
}
// "Else
else {
// Deactivate all points"
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
trace_out << "giving up on deref decision. deactivate near 2:1 ntd = 1" << std::endl;
}
}
// "If nderefine = 2
else if (num_to_derefine == 2)
{
// If icase = 1:4
//if (refinement_case == AMR::Refinement_Case::one_to_four)
if (children.size() == 4)
{
// Accept as 4:2 derefine"
trace_out << "Accept as 4:2" << std::endl;
//refiner.derefine_four_to_two(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::four_to_two);
}
// "Else
else {
// Deactivate all points"
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
trace_out << "giving up on deref decision. deactivate near 4:2 ntd = 2" << std::endl;
}
}
// "If nderefine = 3
else if (num_to_derefine == 3)
{
// If icase = 1:4
//if (refinement_case == AMR::Refinement_Case::one_to_four)
if (children.size() == 4)
{
// Accept as 4:1 derefine"
trace_out << "Accept as 4:1" << std::endl;
//refiner.derefine_four_to_one(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::four_to_one);
}
// "Else if icase = 1:8
//else if (refinement_case == AMR::Refinement_Case::one_to_eight)
else if (children.size() == 8)
{
// we have a list of (non-parent) nodes that is marked
// for derefinement. First, determine the nodes that are
// unmarked for derefinement (or inactive_nodes). Then,
// determine if these are on a single face.
std::unordered_set<size_t> inactive_node_set;
for (auto npn : non_parent_nodes) {
if (derefine_node_set.count(npn) == 0)
inactive_node_set.insert(npn);
}
Assert(inactive_node_set.size() == 3, "Incorrectly "
"sized inactive-node set");
auto same_face = check_same_face(tet_id, inactive_node_set);
// If inactive points lie on same face
if (same_face.first == true)
{
// Accept as 8:4 derefinement
trace_out << "Accept as 8:4" << std::endl;
// create a vector of node-array-pairs to mark edges
// for refinement 1:4
std::vector< std::array< std::size_t, 2 > > ref_edges;
trace_out << "inactive nodes on same face: ";
for (auto n:inactive_node_set) {
trace_out << n << ", ";
ref_edges.push_back(node_connectivity.get(n));
}
trace_out << std::endl;
tet_store.edge_store.mark_edges_for_deref_ref(ref_edges);
//refiner.derefine_eight_to_four(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_four);
}
// "Else
else {
// Deactivate all points"
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
trace_out << "giving up on deref decision. deactivate near 8:4 ntd = 3" << std::endl;
}
}
}
// "If nderefine = 4
else if (num_to_derefine == 4)
//else if (children.size() == 4)
{
// we have a list of (non-parent) nodes that is marked
// for derefinement. First, determine the nodes that are
// unmarked for derefinement (or inactive_nodes). Then,
// determine if these are on a single face.
std::unordered_set<size_t> inactive_node_set;
for (auto npn : non_parent_nodes) {
if (derefine_node_set.count(npn) == 0)
inactive_node_set.insert(npn);
}
Assert(inactive_node_set.size() == 2, "Incorrectly "
"sized inactive-node set");
// Check if the inactive point belong to the same parent
// face and deactivate the third point on that face
auto same_face = check_same_face(tet_id, inactive_node_set);
if (same_face.first == true)
{
// deactivate the edges associated with same_face.second
for (size_t i = 0; i < children.size(); i++)
{
edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
for (size_t k = 0; k < NUM_TET_EDGES; k++)
{
edge_t edge = edge_list[k];
size_t A = edge.first();
size_t B = edge.second();
if (A == same_face.second || B == same_face.second)
tet_store.edge_store.get(edge).needs_derefining = false;
}
}
// create a vector of node-array-pairs to mark edges
// for refinement 1:4
inactive_node_set.insert(same_face.second);
std::vector< std::array< std::size_t, 2 > > ref_edges;
for (auto n:inactive_node_set) {
ref_edges.push_back(node_connectivity.get(n));<--- Consider using std::transform algorithm instead of a raw loop.
}
tet_store.edge_store.mark_edges_for_deref_ref(ref_edges);
// Accept as 8:4 derefinement
trace_out << "Accept as 8:4" << std::endl;
//refiner.derefine_eight_to_four(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_four);
}
// "Else
else {
// Deactivate all points"
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
trace_out << "giving up on deref decision. deactivate near 8:4 ntd = 4" << std::endl;
}
}
// "If nderefine = 5
else if (num_to_derefine == 5)
{
// Accept as 8:2 derefine"
trace_out << "Accept as 8:2 " << std::endl;
//refiner.derefine_eight_to_two(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_two);
}
// "If nderefine = 6
else if (num_to_derefine == 6)
{
// Accept as 8:1 derefine"
trace_out << "Accept as 8:1" << std::endl;
//refiner.derefine_eight_to_one(tet_store, node_connectivity, tet_id);
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::eight_to_one);
}
// "If nderefine = 0
else {
tet_store.mark_derefinement_decision(tet_id, AMR::Derefinement_Case::skip);
// Deactivate all points"
for (auto child_id : children) {
deactivate_deref_tet_edges(child_id);
}
trace_out << "giving up with no deref decision because nderefine = 0" << std::endl;
}
}
// If nothing changed during that round, break
if (!tet_store.marked_derefinements.get_state_changed())
{
trace_out << "Terminating loop at iter " << iter << std::endl;
break;
}
trace_out << "End iter " << iter << std::endl;
// clear out set of elements considered during this iteration
done_deref_marking.clear();
}
trace_out << "Deref Loop took " << iter << " rounds." << std::endl;
}
// TODO: document
void mesh_adapter_t::perform_derefinement()
{
trace_out << "Perform deref" << std::endl;
// Do derefinements
for (const auto& kv : tet_store.tets)
{
size_t tet_id = kv.first;
//size_t parent_id = 0;
// TODO: Do I really want to loop all tets?
// TODO: is this doing a double lookup?
if (tet_store.has_derefinement_decision(tet_id))
{
trace_out << "Do derefine of " << tet_id << std::endl;
//size_t parent_id = tet_store.get_parent_id(tet_id);
//trace_out << "Parent = " << parent_id << std::endl;
switch(tet_store.marked_derefinements.get(tet_id))
{
case AMR::Derefinement_Case::two_to_one:
refiner.derefine_two_to_one(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 2:1 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::four_to_one:
refiner.derefine_four_to_one(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 4:1 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::four_to_two:
refiner.derefine_four_to_two(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 4:2 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::eight_to_one:
refiner.derefine_eight_to_one(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 8:1 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::eight_to_two:
refiner.derefine_eight_to_two(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 8:2 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::eight_to_four:
refiner.derefine_eight_to_four(tet_store,node_connectivity,tet_id);
trace_out << "Completed derefine 8:4 of " << tet_id << std::endl;
break;
case AMR::Derefinement_Case::skip:
// What do we do with skip?
break;
}
// Mark tet as not needing derefinement
tet_store.marked_derefinements.erase(tet_id);
}
}
node_connectivity.print();
refiner.delete_intermediates_of_children(tet_store);
tet_store.process_delete_list();
tet_store.print_node_types();
lock_intermediates();
for (auto& kv : tet_store.edge_store.edges) {
auto& local = kv.second;
local.needs_derefining = 0;
if (local.needs_refining == 2) local.needs_refining = 0;
}
}
}
#if defined(__clang__)
#pragma clang diagnostic pop
#endif
|