1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
#ifndef AMR_refinement_h
#define AMR_refinement_h

#include <algorithm>

#include "Macro.hpp"
#include "tet_store.hpp"
#include "node_connectivity.hpp"

// TODO: make this have a base class to support multiple generator schemes
// using the policy design pattern

#if defined(STRICT_GNUC)
  #pragma GCC diagnostic push
  #pragma GCC diagnostic ignored "-Wunused-but-set-variable"
#endif

namespace AMR {

    class refinement_t {
        private:

            size_t DEFAULT_REFINEMENT_LEVEL = 0; //TODO: Is this in the right place?
            size_t MIN_REFINEMENT_LEVEL = DEFAULT_REFINEMENT_LEVEL;
            // list of "intermediate" edges to be deleted
            std::set< edge_t > delete_list;

        public:

            //! Default constructor for migration
            refinement_t() {}

            //! Constructor taking a user-specified max refinement level
            refinement_t( size_t u_mrl ) :
              MAX_REFINEMENT_LEVEL( u_mrl ) {}

            size_t MAX_REFINEMENT_LEVEL;

            // TODO: Document this
            child_id_list_t generate_child_ids( tet_store_t& tet_store, size_t parent_id, size_t count = MAX_CHILDREN)
            {
                //return morton_id_generator_t::get_children_ids(parent_id);
                return tet_store.generate_child_ids(parent_id, count);
            }

            /**
             * @brief function to detect when an invalid refinement is
             * invoked
             *
             * @param tet_store Tet store to use
             * @param tet_id Id the of the tet which will be refined
             *
             * @return A bool stating if the tet can be validly refined
             */
            bool check_allowed_refinement( tet_store_t& tet_store, size_t tet_id)
            {
                Refinement_State& master_element = tet_store.data(tet_id);<--- Variable 'master_element' can be declared with const

                // These asserts mean we never actually try refine a 1:2 or 1:4
                assert( master_element.refinement_case !=
                        Refinement_Case::one_to_two);
                assert( master_element.refinement_case !=
                        Refinement_Case::one_to_four);

                // cppcheck-suppress assertWithSideEffect
                assert( tet_store.is_active(tet_id) );

                // Check this won't take us past the max refinement level
                if (master_element.refinement_level >= MAX_REFINEMENT_LEVEL)
                {
                    return false;
                }

                // If we got here, we didn't detect anything which tells us not
                // to refine
                return true;
            }

            /**
             * @brief Method which takes a tet id, and deduces the other
             * parameters needed to perform a 1:2
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id The id to refine 1:2
             */
            void refine_one_to_two( tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t tet_id)
            {
                edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
                node_pair_t nodes = find_single_refinement_nodes(tet_store,edge_list);
                refine_one_to_two( tet_store, node_connectivity, tet_id, nodes[0], nodes[1]);
            }

/*
            //! @brief Method which takes a tet id, and transforms arguments
            //!   into the form needed for the main 1:2 refinement method
            //! @param tet_id The id to refine 1:2
            void refine_one_to_two(
                    size_t tet_id,
                    std::string edge_key
            )
            {
                std::vector<std::string> nodes = util::split(edge_key,KEY_DELIM);
                size_t edge_node_A_id =  std::stoul (nodes[0],nullptr,0);
                size_t edge_node_B_id =  std::stoul (nodes[1],nullptr,0);
                refine_one_to_two( tet_id, edge_node_A_id, edge_node_B_id);
            }
*/
            /**
             * @brief Refine a given tet id into 2 children.
             * NOTE: Does not do any validity checking (currently?)
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id Id of tet to refine
             * @param edge_node_A_id The first node of id of the edge which
             * will be split
             * @param edge_node_B_id The second node of id of the
             * edge which will be split
             */
            void refine_one_to_two(
                    tet_store_t& tet_store,
                    node_connectivity_t& node_connectivity,
                    size_t tet_id,
                    size_t edge_node_A_id,
                    size_t edge_node_B_id
            )
            {

                trace_out << "refine_one_to_two" << std::endl;
                if (!check_allowed_refinement(tet_store,tet_id)) return;

                tet_t original_tet = tet_store.get(tet_id);

                //coordinate_t original_tet_c = node_connectivity->id_to_coordinate(id);

                size_t new_node_id = node_connectivity.add( edge_node_A_id, edge_node_B_id );

                /// Split existing tet into two new tets

                // The two new tets will be the same, but for each an edge will
                // be cut, losing an edge  replaced by E

                tet_t new_tet1;
                tet_t new_tet2;

                // Create a new tet that is based on the original
                copy_tet(&new_tet1, &original_tet);

                // Replace all node ids in tet that were pointing to A with new_node_id
                replace_node(&new_tet1, edge_node_A_id, new_node_id);

                // Create a new tet that is based on the original
                copy_tet(&new_tet2, &original_tet);

                // Replace all node ids in tet that were pointing to B with new_node_id
                replace_node(&new_tet2, edge_node_B_id, new_node_id);

                // Now, update the edge list

                // Generate edges for split
                tet_store.edge_store.split(edge_node_A_id, edge_node_B_id, new_node_id,
                        Edge_Lock_Case::intermediate);

                child_id_list_t child_list = generate_child_ids(tet_store,tet_id, 2);

                size_t first_child_id = child_list[0];
                size_t second_child_id = child_list[1];

                // Add the two new tets to the system
                size_t new_tet_id = first_child_id;
                tet_store.add(
                        first_child_id,
                        new_tet1,
                        Refinement_Case::one_to_two,
                        tet_id
                );

                //size_t new_tet_id2 = second_child_id;
                tet_store.add(
                        second_child_id,
                        new_tet2,
                        Refinement_Case::one_to_two,
                        tet_id
                );

                //trace_out << "1:2 DOING REFINE OF " << tet_id << ". Adding " << child_list[0] << " and " << child_list[1] << std::endl;

                // This call is only needed to add a single edge, from the new
                // node to the node on the normal to that face, but avoids
                // directly calculating which nodes that is
                tet_store.generate_edges(new_tet_id);

                // Currently we lock one per tet, around the split node. We
                // also need to lock the two "arms" which come out from it
                //lock_edges_from_node(new_tet_id, new_node_id, Edge_Lock_Case::intermediate);
                //lock_edges_from_node(new_tet_id2, new_node_id, Edge_Lock_Case::intermediate);

                // Deactivate parent tet?
                tet_store.deactivate(tet_id);
                //lock_edges_from_node(new_node_id, Edge_Lock_Case::intermediate);
                trace_out << "Adding " << new_node_id << " to intermediate list " << std::endl;
                tet_store.intermediate_list.insert(new_node_id);
            }

            /**
             * @brief Method which takes a tet id, and deduces the other
             * parameters needed to perform a 1:4
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id The id to refine 1:4
            */
            void refine_one_to_four( tet_store_t& tet_store,
                    node_connectivity_t& node_connectivity, size_t tet_id)
            {
                trace_out << "do refine 1:4 " << std::endl;
                //bool face_refine = false;
                size_t face_refine_id = 0; // FIXME: Does this need a better default
                face_list_t face_list = tet_store.generate_face_lists(tet_id);

                // Iterate over each face
                for (size_t face = 0; face < NUM_TET_FACES; face++)
                {
                    int num_face_refine_edges = 0;

                    face_ids_t face_ids = face_list[face];
                    trace_out << "face ids " <<
                        face_ids[0] << ", " <<
                        face_ids[1] << ", " <<
                        face_ids[2] << ", " <<
                        std::endl;

                    edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
                    // For this face list, see which ones need refining
                    trace_out << "Looping to " << NUM_FACE_NODES << std::endl;
                    for (size_t k = 0; k < NUM_FACE_NODES; k++)
                    {
                        trace_out << "nodes " << k << std::endl;

                        edge_t edge = face_edge_list[k];
                        if (tet_store.edge_store.get(edge).needs_refining == 1)
                        {
                            num_face_refine_edges++;
                            trace_out << "Ref " << edge << " Num face => " << num_face_refine_edges << std::endl;
                        }

                        // Check for locked edges
                            // This case only cares about faces with no locks
                        if (tet_store.edge_store.lock_case(edge) != Edge_Lock_Case::unlocked)
                        {
                            // Abort this face
                            trace_out << "Face has lock it's not this one " << face << std::endl;
                            num_face_refine_edges = 0;
                            break;
                        }
                        trace_out << "Num face => " << num_face_refine_edges << std::endl;
                    }
                    if (num_face_refine_edges >= 2)
                    {
                        assert(num_face_refine_edges < 4);
                        //face_refine = true;
                        trace_out << "Accepting face " << face << std::endl;
                        face_refine_id = face;
                        break;
                    }
                }

                tet_t tet = tet_store.get(tet_id);
                size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);
                size_t opposite_id = tet[opposite_offset];

                trace_out << "1:4 tet mark id " << tet_id << std::endl;
                trace_out << "opposite offset " << opposite_offset << std::endl;
                trace_out << "opposite id " << opposite_id << std::endl;
                trace_out << "face refine id " << face_refine_id << std::endl;
                trace_out << "face list 0 " << face_list[face_refine_id][0] << std::endl;
                trace_out << "face list 1 " << face_list[face_refine_id][1] << std::endl;
                trace_out << "face list 2 " << face_list[face_refine_id][2] << std::endl;

                refine_one_to_four(tet_store, node_connectivity, tet_id, face_list[face_refine_id], opposite_id);
            }

            /**
             * @brief Method which takes a tet id, and deduces the other
             * parameters needed to perform a 1:4, as a part of an 8:4 deref
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id The id to refine 1:4
             * @param kept_edges Vector of edges to keep after deref-ref
            */
            void deref_refine_one_to_four( tet_store_t& tet_store,
                    node_connectivity_t& node_connectivity, size_t tet_id,
                    std::vector< edge_t >& kept_edges)
            {
                trace_out << "do refine 1:4 " << std::endl;
                //bool face_refine = false;
                size_t face_refine_id = 0; // FIXME: Does this need a better default
                face_list_t face_list = tet_store.generate_face_lists(tet_id);

                // Iterate over each face
                for (size_t face = 0; face < NUM_TET_FACES; face++)
                {
                    int num_face_refine_edges = 0;

                    face_ids_t face_ids = face_list[face];
                    trace_out << "face ids " <<
                        face_ids[0] << ", " <<
                        face_ids[1] << ", " <<
                        face_ids[2] << ", " <<
                        std::endl;

                    edge_list_t face_edge_list = AMR::edge_store_t::generate_keys_from_face_ids(face_ids);
                    // For this face list, see which ones need refining
                    trace_out << "Looping to " << NUM_FACE_NODES << std::endl;
                    for (size_t k = 0; k < NUM_FACE_NODES; k++)
                    {
                        edge_t edge = face_edge_list[k];
                        trace_out << "edge-nodes " << edge.get_data()[0] << "-"
                          << edge.get_data()[1] << std::endl;

                        if (tet_store.edge_store.get(edge).needs_refining == 2)
                        {
                            num_face_refine_edges++;
                            trace_out << "Ref " << edge << " Num face => " << num_face_refine_edges << std::endl;
                        }

                        // Check for locked edges
                            // This case only cares about faces with no locks
                        if (tet_store.edge_store.lock_case(edge) != Edge_Lock_Case::unlocked)
                        {
                            // Abort this face
                            trace_out << "Face has lock it's not this one " << face << std::endl;
                            num_face_refine_edges = 0;
                            break;
                        }
                        trace_out << "Num face => " << num_face_refine_edges << std::endl;
                    }
                    if (num_face_refine_edges >= 2)
                    {
                        assert(num_face_refine_edges < 4);
                        //face_refine = true;
                        trace_out << "Accepting face " << face << std::endl;
                        face_refine_id = face;
                        break;
                    }
                }

                tet_t tet = tet_store.get(tet_id);
                size_t opposite_offset = AMR::node_connectivity_t::face_list_opposite(face_list, face_refine_id);
                size_t opposite_id = tet[opposite_offset];

                trace_out << "1:4 tet mark id " << tet_id << std::endl;
                trace_out << "opposite offset " << opposite_offset << std::endl;
                trace_out << "opposite id " << opposite_id << std::endl;
                trace_out << "face refine id " << face_refine_id << std::endl;
                trace_out << "face list 0 " << face_list[face_refine_id][0] << std::endl;
                trace_out << "face list 1 " << face_list[face_refine_id][1] << std::endl;
                trace_out << "face list 2 " << face_list[face_refine_id][2] << std::endl;

                // store edges that should not be removed due to the deref-ref
                auto kept_edge_list = AMR::edge_store_t::
                  generate_keys_from_face_ids(face_list[face_refine_id]);
                for (size_t i=0; i<3; ++i) {
                  kept_edges.push_back(kept_edge_list[i]);
                }

                refine_one_to_four(tet_store, node_connectivity, tet_id, face_list[face_refine_id], opposite_id);
            }

            /**
             * @brief Refine a given tet id into 4 children.
             * NOTE: Does not do any validity checking (currently?)
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id The id of the tet to refine
             * @param face_ids The ids which make the face to be split
             * @param opposite_id The remaining id which is "opposite" the
             * split face
             */
            void refine_one_to_four(
                    tet_store_t& tet_store,
                    node_connectivity_t& node_connectivity,
                    size_t tet_id,
                    std::array<size_t, NUM_FACE_NODES> face_ids,
                    size_t opposite_id
            )
            {

                trace_out << "refine_one_to_four" << std::endl;
                if (!check_allowed_refinement(tet_store,tet_id)) return;

                trace_out << "Refining tet_id " << tet_id <<
                    " 1:4 opposite edge " << opposite_id << std::endl;

                tet_t t = tet_store.get(tet_id);
                trace_out  << "Tet has nodes " <<
                    t[0] << ", " <<
                    t[1] << ", " <<
                    t[2] << ", " <<
                    t[3] << ", " <<
                    std::endl;

                trace_out << "face_ids " <<
                    face_ids[0] << ", " <<
                    face_ids[1] << ", " <<
                    face_ids[2] << ", " <<
                    std::endl;

                size_t A = face_ids[0];
                size_t B = face_ids[1];
                size_t C = face_ids[2];
                size_t D = opposite_id;

                trace_out <<
                    " A " << A <<
                    " B " << B <<
                    " C " << C <<
                    " D " << D <<
                    std::endl;

                // Make new nodes
                //coordinate_t AB_mid = node_connectivity->find_mid_point(A, B);
                size_t AB = node_connectivity.add(A,B);

                //coordinate_t AC_mid = node_connectivity->find_mid_point(A, C);
                size_t AC = node_connectivity.add(A,C);

                //coordinate_t BC_mid = node_connectivity->find_mid_point(B, C);
                size_t BC = node_connectivity.add(B,C);

                // Use nodes to update edges
                // All added edges will be locked due to containing intermediate points
                // Split Outer face  edges
                tet_store.edge_store.split(A, C, AC, Edge_Lock_Case::intermediate);
                tet_store.edge_store.split(A, B, AB, Edge_Lock_Case::intermediate);
                tet_store.edge_store.split(B, C, BC, Edge_Lock_Case::intermediate);

                // Connect D to intermediate points
                tet_store.edge_store.generate(D, AC, Edge_Lock_Case::intermediate);
                tet_store.edge_store.generate(D, BC, Edge_Lock_Case::intermediate);
                tet_store.edge_store.generate(D, AB, Edge_Lock_Case::intermediate);
                // Connect inner edges
                tet_store.edge_store.generate(AC, BC, Edge_Lock_Case::intermediate);
                tet_store.edge_store.generate(AC, AB, Edge_Lock_Case::intermediate);
                tet_store.edge_store.generate(AB, BC, Edge_Lock_Case::intermediate);

                // Make new Tets
                //  This is just the node opposite the face plus each pair
                //  of the news nodes, and the old corner
                //  FIXME: How to find that near corner programatically?

                // Hard coded solution
                // A AC AB D
                // AC AB BC D
                // AC BC C D
                // AB B BC D

                size_t num_children = 4;
                child_id_list_t child = generate_child_ids(tet_store,tet_id, num_children);

                // Outsides
                tet_store.add(child[0], {{A,  AB, AC, D}}, Refinement_Case::one_to_four, tet_id);
                tet_store.add(child[2], {{AC, BC, C,  D}}, Refinement_Case::one_to_four, tet_id);
                tet_store.add(child[3], {{AB, B,  BC, D}}, Refinement_Case::one_to_four, tet_id);

                // Center
                size_t center_id = child[1]; // 1 to preserve Jacobian order
                tet_store.add(center_id, {{AC, AB, BC, D}}, Refinement_Case::one_to_four, tet_id);


                // TODO: replace this with a more concise way to lock the correct edges

                tet_store.add_center(center_id);
                /*
                lock_edges_from_node(child[0], AB, Edge_Lock_Case::intermediate);
                lock_edges_from_node(child[0], AC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(child[2], AC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(child[2], BC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(child[3], AB, Edge_Lock_Case::intermediate);
                lock_edges_from_node(child[3], BC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(center_id, AC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(center_id, AB, Edge_Lock_Case::intermediate);
                lock_edges_from_node(center_id, BC, Edge_Lock_Case::intermediate);
                */


                tet_store.deactivate(tet_id);

                //trace_out << "1:4 DOING REFINE OF " << tet_id << ". Adding "
                    // << child[0] << ", "
                    // << child[1] << ", "
                    // << child[2] << ", "
                    // << child[3]
                    // << std::endl;

                /*
                lock_edges_from_node(AB, Edge_Lock_Case::intermediate);
                lock_edges_from_node(AC, Edge_Lock_Case::intermediate);
                lock_edges_from_node(BC, Edge_Lock_Case::intermediate);
                */

                trace_out << "Adding " << AB << " to intermediate list " << std::endl;
                tet_store.intermediate_list.insert(AB);
                trace_out << "Adding " << AC << " to intermediate list " << std::endl;
                tet_store.intermediate_list.insert(AC);
                trace_out << "Adding " << BC << " to intermediate list " << std::endl;
                tet_store.intermediate_list.insert(BC);

            }

            /**
             * @brief Refine a given tet id into 8 children.
             * NOTE: Does not do any validity checking (currently?)
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Mesh node connectivity (graph)
             * @param tet_id Id of tet to refine
             */
            void refine_one_to_eight( tet_store_t& tet_store,
                    node_connectivity_t& node_connectivity, size_t tet_id)
            {

                trace_out << "refine_one_to_eight" << std::endl;
                if (!check_allowed_refinement(tet_store,tet_id)) return;

                // Split every edge into two
                // Makes 4 tets out of the old corners and 3 near mid-points
                // Make 4 out of the midpoints

                // For Tet {ABCD} need to know all (non-repeating) node pairs
                // {AB} {AC} {AD} {BC} {BD} {CD}
                // This can either be hard coded, or generated with a 2d loop
                // The loop would just be i=0..4, j=i..4
                //


                tet_t tet = tet_store.get(tet_id);

                size_t A = tet[0];
                size_t B = tet[1];
                size_t C = tet[2];
                size_t D = tet[3];

                trace_out << "A " << A << " B " << B << " C " << C << " D " << D
                    << std::endl;

                // Generate pairs of nodes (i.e edges)
                // Hard coding for now, can swap out for loop
                //coordinate_t AB_mid = node_connectivity->find_mid_point(A,B);
                size_t AB = node_connectivity.add(A,B);

                //coordinate_t AC_mid = node_connectivity->find_mid_point(A,C);
                size_t AC = node_connectivity.add(A,C);

                //coordinate_t AD_mid = node_connectivity->find_mid_point(A,D);
                size_t AD = node_connectivity.add(A,D);

                //coordinate_t BC_mid = node_connectivity->find_mid_point(B,C);
                size_t BC = node_connectivity.add(B,C);

                //coordinate_t BD_mid = node_connectivity->find_mid_point(B,D);
                size_t BD = node_connectivity.add(B,D);

                //coordinate_t CD_mid = node_connectivity->find_mid_point(C,D);
                size_t CD = node_connectivity.add(C,D);

                // Update edges

                tet_store.edge_store.split(A, C, AC, Edge_Lock_Case::unlocked);
                tet_store.edge_store.split(A, B, AB, Edge_Lock_Case::unlocked);
                tet_store.edge_store.split(A, D, AD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.split(B, C, BC, Edge_Lock_Case::unlocked);
                tet_store.edge_store.split(B, D, BD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.split(C, D, CD, Edge_Lock_Case::unlocked);


                // Outside edges for face ABC
                tet_store.edge_store.generate(AC, BC, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AC, AB, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AB, BC, Edge_Lock_Case::unlocked);

                // Outside edges for face ACD
           	tet_store.edge_store.generate(AC, AD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AD, CD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AC, CD, Edge_Lock_Case::unlocked);

                // Outside edges for face BCD
                tet_store.edge_store.generate(BD, CD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(BD, BC, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(CD, BC, Edge_Lock_Case::unlocked);

                // Outside edges for face ABD
                 tet_store.edge_store.generate(AD, BD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AB, AD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(AB, BD, Edge_Lock_Case::unlocked);

                // Interior Edges
                   tet_store.edge_store.generate(AC, BD, Edge_Lock_Case::unlocked);
                tet_store.edge_store.generate(CD, AD, Edge_Lock_Case::unlocked);

                // Add the new tets
                //
                // External
                // A AB AC AD - A
                // B BA BC BD - B
                // C CA CB CD - C
                // D DA DB DC - D
                // -
                // Internal (for a face BDC, it's the intermediate and mid opposite)
                // BC CD DB AC - BDC
                // AB BD AD AC - ABD
                // AB AC BC BD - ABC
                // AC AD CD BD - ACD
                //

                // TODO: This is actually generating IDs not trying to get them
                child_id_list_t child = generate_child_ids(tet_store,tet_id);

                // This order should give a positive Jacobian
                tet_store.add(child[0], {{A, AB, AC, AD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[1], {{B, BC, AB, BD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[2], {{C, AC, BC, CD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[3], {{D, AD, CD, BD}}, Refinement_Case::one_to_eight, tet_id);

                tet_store.add(child[4], {{BC, CD, AC, BD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[5], {{AB, BD, AC, AD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[6], {{AB, BC, AC, BD}}, Refinement_Case::one_to_eight, tet_id);
                tet_store.add(child[7], {{AC, BD, CD, AD}}, Refinement_Case::one_to_eight, tet_id);

                tet_store.deactivate(tet_id);

                //trace_out << "1:8 DOING REFINE OF " << tet_id << ". "
                    // << child[0] << ", "
                    // << child[1] << ", "
                    // << child[2] << ", "
                    // << child[3] << ", "
                    // << child[4] << ", "
                    // << child[5] << ", "
                    // << child[6] << ", "
                    // << child[7]
                    // << std::endl;

            }

            // This is just a simple assignment, but I wanted to abstract it
            // for if we change the underlying type to something which a simple
            // assignment is no longer safe
            /**
             * @brief Function to duplicate (deep copy) a tet. Useful for when
             * you want to make a tet that's very similar to an existing one
             *
             * @param out The tet to store the copy
             * @param original The tet to copy the data from
             */
            void copy_tet(tet_t* out, tet_t* original)
            {
                // NOTE: This will do a deep copy, so is safer than it may look
                *out = *original;
            }

            // This is just a std::replace, but may need to be more complicated
            // in the future?
            /**
             * @brief function to take an existing list of tet ids and
             * replace one. This can be useful for when you want to build very
             * similar tets which share nodes
             *
             * @param tet Tet to perform operation on
             * @param remove Element to be replaced
             * @param add Element to replace with
             */
            void replace_node(tet_t* tet, size_t remove, size_t add)
            {
                std::replace(tet->begin(), tet->end(), remove, add);
            }

            /**
             * @brief Function to find out slot in the x,y,z data arrays a tet lives
             *
             * // NOTE: this is _currently_ trivial, but will be nice if we for
             * example swap data stores to a map
             *
             * @param tet_store Tet store to use
             * @param tet tet of the tet to look for
             * @param element offset into that tet to look at
             *
             * @return tet into data arrays the tet lives
             */
            // TODO: Move this (or rename?)
            size_t tet_id_to_node_id( tet_store_t& tet_store, size_t tet, size_t element) {
                return tet_store.get(tet)[element];
            }

            /**
             * @brief Function to find the nodes which make up the
             * single (or first?º edge which needs to be refined in an given
             * edge_list
             *
             * @param tet_store Tet store to use
             * @param edge_list The edge list to search for a refinement edge
             *
             * @return The node pair which represent the edge which needs
             * refining
             */
            node_pair_t find_single_refinement_nodes( tet_store_t& tet_store, edge_list_t edge_list)
            {
                node_pair_t returned_nodes;
                bool found_break = false;
                for (size_t k = 0; k < NUM_TET_EDGES; k++)
                {
                    edge_t edge = edge_list[k];

                    if (tet_store.edge_store.get(edge).needs_refining == 1)
                    {
                        returned_nodes[0] = edge.first();
                        returned_nodes[1] = edge.second();

                        trace_out << "1:2 needs to be split on " <<
                            returned_nodes[0] << " and " <<
                            returned_nodes[1] << std::endl;

                        found_break = true;
                        break;
                    }
                }

                assert(found_break);

                return returned_nodes;
            }

            void lock_intermediates(
                    tet_store_t& tet_store,
                    const std::unordered_set<size_t>& intermediate_list,
                    Edge_Lock_Case lock_case
                )
            {
                // Loop over all edges
                // If the edge is in the intermediate_list, deal with it
                for (const auto& p : tet_store.edge_store.edges)
                {
                    auto e = p.first;
                    size_t k1 = e.first();
                    size_t k2 = e.second();
                    // Can we make this double search cheaper?
                    if (
                            (intermediate_list.count(k1)) ||
                            (intermediate_list.count(k2))
                       )
                    {
                        trace_out << "Locking intermediate " << e << " from " << k1 << " and " << k2 << std::endl;
                        tet_store.edge_store.get(e).lock_case = lock_case;
                        tet_store.edge_store.get(e).needs_refining = 0;
                    }
                }

            }

            // TODO: remove this, it's horrible and not efficient.
            // WARNING: THIS GOES OVER ALL TETS!!!!
            void lock_edges_from_node(
                    tet_store_t& tet_store,
                    size_t node_id,
                    Edge_Lock_Case lock_case
            )
            {
                // Iterate over edges of ALL tet
                for (const auto& kv : tet_store.tets)
                {
                    size_t tet_id = kv.first;
                    edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
                    for (size_t k = 0; k < NUM_TET_EDGES; k++)
                    {
                        // If it contains that node id, mark it using lock_case
                        edge_t edge = edge_list[k];

                        size_t edge_node_A_id = edge.first();
                        size_t edge_node_B_id = edge.second();

                        if ((edge_node_A_id == node_id) || (edge_node_B_id == node_id)) {
                            trace_out << " found node in " << edge_node_A_id << " - " << edge_node_B_id << " set to " << lock_case << std::endl;
                            tet_store.edge_store.get(edge).lock_case = lock_case;
                            tet_store.edge_store.get(edge).needs_refining = 0;
                        }
                    }
                }
            }
//            void lock_edges_from_node(
//                    tet_store_t& tet_store,
//                    size_t tet_id,
//                    size_t node_id,
//                    Edge_Lock_Case lock_case
//            )
//            {
//                // Iterate over edges of of tet
//                edge_list_t edge_list = tet_store.generate_edge_keys(tet_id);
//                for (size_t k = 0; k < NUM_TET_EDGES; k++)
//                {
//                    // If it contains that node id, mark it using lock_case
//                    edge_t edge = edge_list[k];
//
//                    size_t edge_node_A_id = edge.first();
//                    size_t edge_node_B_id = edge.second();
//
//                    if ((edge_node_A_id == node_id) || (edge_node_B_id == node_id)) {
//                        tet_store.edge_store.get(edge).lock_case = lock_case;
//                    }
//                }
//            }


            ///// DEREFINEMENT STARTS HERE /////
            /**
             * @brief Function to iterate over children and remove them
             *
             * @param tet_store Tet store to use
             * @param parent_id Id of the parent for whom you will delete the
             * children
             */
            void derefine_children(tet_store_t& tet_store, size_t parent_id)
            {
                // For a given tet_id, find and delete its children
                Refinement_State& parent = tet_store.data(parent_id);
                for (auto c : parent.children)
                {
                    tet_store.erase(c);
                    //tet_store.deactivate(c);

                    /*
                    auto children = tet_store.data(c).children;
                    // Debug printing
                    std::cout << "tet " << c << "has ";
                    for (auto child : children)
                    {
                        std::cout << " _child " << child;
                    }
                    std::cout << std::endl;
                    */
                }
                parent.children.clear();
            }

            /**
             * @brief Common code for derefinement. Deactives the children and
             * actives the parent
             *
             * @param tet_store Tet store to use
             * @param parent_id The id of the parent
             */
            void generic_derefine(tet_store_t& tet_store, size_t parent_id)
            {
                derefine_children(tet_store,parent_id);
                tet_store.activate(parent_id);
            }

            /**
             * @brief Perform 2->1 derefinement on tet
             *
             * @param tet_store Tet store to use
             * @param parent_id The id of the parent
             */
            void derefine_two_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;
                // build a delete-list of edges/intermediates first, mesh_adapter
                // deletes edges from this list later
                determine_deletelist_of_intermediates(tet_store, parent_id);
                generic_derefine(tet_store,parent_id);
            }

            /**
             * @brief Perform 4->1 derefinement on tet
             *
             * @param tet_store Tet store to use
             * @param parent_id The id of the parent
             */
            void derefine_four_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;
                // build a delete-list of edges/intermediates first, mesh_adapter
                // deletes edges from this list later
                determine_deletelist_of_intermediates(tet_store, parent_id);
                generic_derefine(tet_store,parent_id);
            }

            /**
             * @brief Perform 8->1 derefinement on tet
             *
             * @param tet_store Tet store to use
             * @param parent_id The id of the parent
             */
            void derefine_eight_to_one(tet_store_t& tet_store, node_connectivity_t&, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;

                generic_derefine(tet_store,parent_id);

                // TODO: Do we delete the nodes? Do we even have nodes?

                // Delete the center edges
                    // If edge isn't in the parent, delete it? Is there a better way?
                edge_list_t parent_edges = tet_store.generate_edge_keys(parent_id);

                Refinement_State& parent = tet_store.data(parent_id);<--- Variable 'parent' can be declared with const
                for (auto c : parent.children)
                {
                    edge_list_t child_edges = tet_store.generate_edge_keys(c);
                    // build a delete-list of non-matching edges first, then
                    // mesh_adapter deletes edges from this list later
                    determine_deletelist_of_non_matching_edges(child_edges, parent_edges);
                }
            }

            // TODO: Document This.
            void derefine_four_to_two(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;

                // A 4:2 (implemented as a 4:1 + 1:2) keeps three child edges,
                // two of which are from the 1:2 splitting. The third edge
                // connects the opposite parent node with the intermediate node
                // (of the 1:2 splitting). Figure out which is this edge, and
                // remove it from the delete list.
                // 1. first store the possible edges that connect parent nodes
                //    with the intermediate node of the 1:2. There are 2
                //    possibilities, because we can already eliminate the
                //    parents of the intermediate node.
                auto edge = find_edge_not_derefined(tet_store,
                  node_connectivity, parent_id);

                std::array< edge_t, 2 > int_par_edges;
                auto parent_tet = tet_store.get(parent_id);
                auto npnode = node_connectivity.data().at(edge.get_data());
                size_t icount(0);
                for (size_t i=0; i<NUM_TET_NODES; ++i) {
                  if (parent_tet[i] != edge.first() &&
                    parent_tet[i] != edge.second()) {
                    int_par_edges[icount] = edge_t(parent_tet[i], npnode);
                    ++icount;
                  }
                }
                assert(icount == 2);

                // 2. find which one of these edges is present in the 4 children
                child_id_list_t children = tet_store.data(parent_id).children;
                bool ipedge_set = false;
                edge_t int_par_edge;
                for (size_t i=0; i<children.size(); i++) {
                  edge_list_t chedge_list = tet_store.generate_edge_keys(children[i]);
                  // Check each edge, and compare with possible edges
                  for (size_t k=0; k<NUM_TET_EDGES; k++) {
                    for (const auto& ipedge : int_par_edges) {
                      if (chedge_list[k] == ipedge) {<--- Consider using std::find_if algorithm instead of a raw loop.
                        int_par_edge = ipedge;
                        ipedge_set = true;
                        break;
                      }
                    }
                  }
                }
                assert(ipedge_set);

                derefine_four_to_one(tet_store, node_connectivity, parent_id);
                refine_one_to_two( tet_store, node_connectivity, parent_id,
                  edge.first(), edge.second() );

                // remove edge not derefined from delete list
                delete_list.erase(int_par_edge);
                std::vector< edge_t > parent_edges;
                parent_edges.push_back(edge);
                remove_from_deletelist(node_connectivity, parent_edges);
            }

            // TODO: Document This.
            void derefine_eight_to_two(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;

                auto edge = find_edge_not_derefined(tet_store,
                  node_connectivity, parent_id);
                derefine_eight_to_one(tet_store, node_connectivity, parent_id);
                refine_one_to_two( tet_store, node_connectivity, parent_id,
                  edge.first(), edge.second() );
                // remove edge not derefined from delete list
                std::vector< edge_t > parent_edges;
                parent_edges.push_back(edge);
                remove_from_deletelist(node_connectivity, parent_edges);
            }

            // TODO: Document This.
            void derefine_eight_to_four(tet_store_t& tet_store, node_connectivity_t& node_connectivity, size_t parent_id)
            {
                //if (!check_allowed_derefinement(tet_store,parent_id)) return;
                // TODO: think about if the logic for these derefs are right
                derefine_eight_to_one(tet_store, node_connectivity, parent_id);
                std::vector< edge_t > kept_edges;
                deref_refine_one_to_four( tet_store, node_connectivity,
                  parent_id, kept_edges);
                // remove edge not derefined from delete list
                remove_from_deletelist(node_connectivity, kept_edges);
            }

            /**
             * @brief Loop over children and determine delete-list of all intermediate edges
             *
             * @param tet_store Tet store to use
             * @param parent_id Id of parent
             */
            void determine_deletelist_of_intermediates(tet_store_t& tet_store, size_t parent_id)
            {
                Refinement_State& parent = tet_store.data(parent_id);<--- Variable 'parent' can be declared with const
                auto parent_edges = tet_store.generate_edge_keys(parent_id);
                std::set< edge_t > parent_edge_set;
                for (auto pe:parent_edges) parent_edge_set.insert(pe);
                for (auto c : parent.children)
                {
                    edge_list_t edge_list = tet_store.generate_edge_keys(c);
                    for (size_t k = 0; k < NUM_TET_EDGES; k++)
                    {
                        edge_t edge = edge_list[k];
                        // accept this code may try delete an edge which has already gone
                        if (tet_store.edge_store.exists(edge)) {
                            if (parent_edge_set.count(edge) == 0)
                            {
                                trace_out << "child " << c << " adding to delete list: "
                                  << edge.first() << " - " << edge.second() << std::endl;
                                delete_list.insert(edge);
                            }
                        }
                    }
                }
            }

            /**
             * @brief Remove 'intermediate' edges (based on parent edges) from
             *   delete list
             *
             * @param node_connectivity Node connectivity data structure
             * @param parent_edges List of parent edges whose 'child' edges need
             *   to be removed from the delete list
             */
            void remove_from_deletelist(
              node_connectivity_t& node_connectivity,
              const std::vector< edge_t >& parent_edges )
            {
              for (const auto& edge:parent_edges) {
                auto npnode = node_connectivity.data().at(edge.get_data());
                edge_t e1(edge.first(),npnode);
                edge_t e2(edge.second(),npnode);
                delete_list.erase(e1);
                delete_list.erase(e2);
              }
            }

            /**
             * @brief Deletes the intermediate edge in the delete list for derefinement
             *
             * @param tet_store Tet store to use
             */
            void delete_intermediates_of_children(tet_store_t& tet_store)
            {
              for (const auto& edge : delete_list) {
                tet_store.edge_store.erase(edge);
                tet_store.intermediate_list.erase(edge.get_data()[0]);
                tet_store.intermediate_list.erase(edge.get_data()[1]);
              }

              delete_list.clear();
            }

            /**
             * @brief If edge in candidate is not present in basis, add edge
             * (candidate) to delete list
             *
             * @param candidate The edge list which is to be searched and deleted
             * @param basis The edge list to check against
             */
            void determine_deletelist_of_non_matching_edges(edge_list_t candidate,
              edge_list_t basis)
            {
                trace_out << "Looking for edges to delete" << std::endl;

                // TODO: Sanity check this now we changed to edge_t

                // Loop over the edges in each child. Look over the basis and
                // if we can't find it, delete it
                for (size_t k = 0; k < NUM_TET_EDGES; k++)
                {
                    edge_t search_key = candidate[k];

                    // Search the basis for it
                    bool found_it = false;

                    for (size_t l = 0; l < NUM_TET_EDGES; l++)
                    {
                        edge_t key = basis[l];
                        if (search_key == key)
                        {
                            found_it = true;
                        }
                    }

                    // If we didn't find it, delete it
                    if (!found_it)
                    {
                        // Delete it
                        //tet_store.edge_store.erase(search_key);
                        trace_out << "adding to delete list: "
                          << search_key.first() << " - " << search_key.second()
                          << std::endl;
                        delete_list.insert(search_key);
                    }
                }
            }


            /**
             * @brief function to detect when an invalid derefinement is
             * invoked
             *
             * @param tet_store Tet store to use
             * @param tet_id Id the of the tet which will be de-refined
             *
             * @return A bool stating if the tet can be validly de-refined
             */
            bool check_allowed_derefinement( tet_store_t& tet_store, size_t tet_id)
            {
                Refinement_State& master_element = tet_store.data(tet_id);<--- Variable 'master_element' can be declared with const

                // Check this won't take us past the max refinement level
                if (master_element.refinement_level <= MIN_REFINEMENT_LEVEL)
                {
                    return false;
                }

                // If we got here, we didn't detect anything which tells us not
                // to
                return true;
            }


            // HERE BE DRAGONS! THIS IS DANGEROUS IF YOU USE IT WRONG
            // For every child of parent_id, set his children to our won
            // TODO: set a flag for the curious user to know we trashed the children
            void overwrite_children(
                    tet_store_t& tet_store,
                    const child_id_list_t& to_be_replaced,
                    const child_id_list_t& replace_with
            )
            {
                for (auto c : to_be_replaced)
                {
                    tet_store.data(c).children = replace_with;
                }
            }

            /**
             * @brief function to detect which edge should not get derefined
             *
             * @param tet_store Tet store to use
             * @param node_connectivity Node connectivity to use
             * @param tet_id Id the of the tet which will be de-refined
             *
             * @return Array of size two containing nodes of required edge
             */
            edge_t find_edge_not_derefined(
              tet_store_t& tet_store,
              node_connectivity_t& node_connectivity,
              size_t tet_id)
            {
              // 2 nonparent nodes set to derefine for a 4:2
              // 5 nonparent nodes set to derefine for an 8:2
              // will have 2 or 5 nonparent nodes set to deref; Figure out which
              // edge is the one that is not set to deref

              auto derefine_node_set = find_derefine_node_set(tet_store, tet_id);

              //// Do number of points
              //std::unordered_set<size_t> derefine_node_set;

              // Find the set of nodes which are not in the parent
              std::unordered_set<size_t> non_parent_nodes =
                child_exclusive_nodes(tet_store, tet_id);

              // from the above non_parent_nodes set and derefine_node_set,
              // figureout which node should be removed
              std::size_t ed_A(0), ed_B(0);
              for (auto npn:non_parent_nodes) {
                if (derefine_node_set.count(npn) == 0) {
                  // we've found the node that should not be removed, now we
                  // need to find the edge it belongs to
                  auto nonderef_edge = node_connectivity.get(npn);
                  ed_A = nonderef_edge[0];
                  ed_B = nonderef_edge[1];
                  //std::cout << "do-not-deref-APAN " << "A " << nd_edge[0]
                  //        << " B " << nd_edge[1] << std::endl;
                }
              }

              assert(ed_A!=ed_B);
              edge_t nd_edge(ed_A, ed_B);
              return nd_edge;
            }

            /**
             * @brief function to detect what intermediate/non-parent nodes are
             *   marked for derefinement
             *
             * @param tet_store Tet store to use
             * @param tet_id Id of the tet which will be de-refined
             *
             * @return Set of nodes of marked for derefinement
             */
            std::unordered_set< size_t > find_derefine_node_set(
              tet_store_t& tet_store,
              size_t tet_id)
            {
              // Set of nodes which are not in the parent
              std::unordered_set<size_t> non_parent_nodes =
                child_exclusive_nodes(tet_store, tet_id);
              std::unordered_set<size_t> derefine_node_set, unmarked_deref_node_set,
                final_deref_node_set;

              child_id_list_t children = tet_store.data(tet_id).children;

              // Look at children
              trace_out << tet_id << " Looping over " << children.size() << "children" << std::endl;
              for (size_t i = 0; i < children.size(); i++)
              {
                  trace_out << "child: " << children[i] << std::endl;
                  // TODO: Is this in element or tet ids?
                  edge_list_t edge_list = tet_store.generate_edge_keys(children[i]);
                  for (size_t k = 0; k < NUM_TET_EDGES; k++)
                  {
                      edge_t edge = edge_list[k];
                      // TODO: where do we makr the edges that need to be derefed? parent of child?
                      // Check each node, see if its an intermediate
                      size_t A = edge.first();
                      size_t B = edge.second();
                      trace_out << "checking edge for deref " << A << " - " << B << std::endl;

                      //if (tet_store.is_intermediate(A))
                      if (non_parent_nodes.count(A) )
                      {
                        if (tet_store.edge_store.get(edge).needs_derefining) {
                          trace_out << "Adding " << A << std::endl;
                          derefine_node_set.insert(A);
                        }
                        else {
                          unmarked_deref_node_set.insert(A);
                          //trace_out << "NOT added " << A << std::endl;
                        }
                      }

                      //if (tet_store.is_intermediate(B))
                      if (non_parent_nodes.count(B))
                      {
                        if (tet_store.edge_store.get(edge).needs_derefining) {
                          trace_out << "Adding " << B << std::endl;
                          derefine_node_set.insert(B);
                        }
                        else {
                          unmarked_deref_node_set.insert(B);
                          //trace_out << "NOT added " << B << std::endl;
                        }
                      }
                  }
              }

              //trace_out << "marked for deref: " << derefine_node_set.size() << std::endl;
              //trace_out << "NOT marked for deref: " << unmarked_deref_node_set.size() << std::endl;

              // remove nodes that are unmarked for derefinement
              for (auto drnode : derefine_node_set) {
                if (unmarked_deref_node_set.count(drnode) == 0) {
                  final_deref_node_set.insert(drnode);
                  trace_out << "Final deref node " << drnode << std::endl;
                }
              }

              derefine_node_set = final_deref_node_set;
              return derefine_node_set;
            }


            std::unordered_set<size_t> child_exclusive_nodes(tet_store_t& tet_store,
              size_t tet_id)
            {
              std::unordered_set<size_t> non_parent_nodes;

              // array
              auto parent_tet = tet_store.get(tet_id);

              // convert to set
              std::unordered_set<size_t> parent_set(begin(parent_tet), end(parent_tet));

              child_id_list_t children = tet_store.data(tet_id).children;
              for (size_t i = 0; i < children.size(); i++)
              {
                      auto child_tet = tet_store.get( children[i] );

                      // Look at nodes, if not present add to set
                      for (std::size_t j = 0; j < NUM_TET_NODES; j++)
                      {
                              auto node = child_tet[j];
                              if (parent_set.count(node) == 0)
                              {
                                      non_parent_nodes.insert(node);
                              }
                      }
              }

              trace_out <<" Found " << non_parent_nodes.size() << " non parent nodes " << std::endl;
              return non_parent_nodes;

            }
    };
}

#if defined(STRICT_GNUC)
  #pragma GCC diagnostic pop
#endif

#endif // guard