1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
// *****************************************************************************
/*!
  \file      src/Base/Vector.hpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Vector algebra
  \details   Vector algebra.
*/
// *****************************************************************************
#ifndef Vector_h
#define Vector_h

#include <array>
#include <cmath>
#include <vector>
#include <cblas.h>
#include <lapacke.h>

#include "Types.hpp"
#include "Exception.hpp"

// ignore old-style-casts required for lapack/blas calls
#if defined(__clang__)
  #pragma clang diagnostic ignored "-Wold-style-cast"
#endif

namespace tk {

//! Flip sign of vector components
//! \param[in] v Vector whose components to multiply by -1.0
inline void
flip( std::array< real, 3 >& v )
{
  v[0] = -v[0];
  v[1] = -v[1];
  v[2] = -v[2];
}

//! Compute the cross-product of two vectors
//! \param[in] v1x x coordinate of the 1st vector
//! \param[in] v1y y coordinate of the 1st vector
//! \param[in] v1z z coordinate of the 1st vector
//! \param[in] v2x x coordinate of the 2nd vector
//! \param[in] v2y y coordinate of the 2nd vector
//! \param[in] v2z z coordinate of the 2nd vector
//! \param[out] rx x coordinate of the product vector
//! \param[out] ry y coordinate of the product vector
//! \param[out] rz z coordinate of the product vector
#pragma omp declare simd
inline void
cross( real v1x, real v1y, real v1z,
       real v2x, real v2y, real v2z,
       real& rx, real& ry, real& rz )
{
  rx = v1y*v2z - v2y*v1z;
  ry = v1z*v2x - v2z*v1x;
  rz = v1x*v2y - v2x*v1y;
}

//! Compute the cross-product of two vectors
//! \param[in] v1 1st vector
//! \param[in] v2 2nd vector
//! \return Cross-product
inline std::array< real, 3 >
cross( const std::array< real, 3 >& v1, const std::array< real, 3 >& v2 )
{
  real rx, ry, rz;
  cross( v1[0], v1[1], v1[2], v2[0], v2[1], v2[2], rx, ry, rz );
  return { std::move(rx), std::move(ry), std::move(rz) };
}

//! Compute the cross-product of two vectors divided by a scalar
//! \param[in] v1x x coordinate of the 1st vector
//! \param[in] v1y y coordinate of the 1st vector
//! \param[in] v1z z coordinate of the 1st vector
//! \param[in] v2x x coordinate of the 2nd vector
//! \param[in] v2y y coordinate of the 2nd vector
//! \param[in] v2z z coordinate of the 2nd vector
//! \param[in] j The scalar to divide the product with
//! \param[out] rx x coordinate of the product vector
//! \param[out] ry y coordinate of the product vector
//! \param[out] rz z coordinate of the product vector
#pragma omp declare simd uniform(j)
inline void
crossdiv( real v1x, real v1y, real v1z,
          real v2x, real v2y, real v2z,
          real j,
          real& rx, real& ry, real& rz )
{
  cross( v1x, v1y, v1z, v2x, v2y, v2z, rx, ry, rz );
  rx /= j;
  ry /= j;
  rz /= j;
}

//! Compute the cross-product of two vectors divided by a scalar
//! \param[in] v1 1st vector
//! \param[in] v2 2nd vector
//! \param[in] j Scalar to divide each component by
//! \return Cross-product divided by scalar
inline std::array< real, 3 >
crossdiv( const std::array< real, 3 >& v1,
          const std::array< real, 3 >& v2,
          real j )
{
  return {{ (v1[1]*v2[2] - v2[1]*v1[2]) / j,
            (v1[2]*v2[0] - v2[2]*v1[0]) / j,
            (v1[0]*v2[1] - v2[0]*v1[1]) / j }};
}

//! Compute the dot-product of two vectors
//! \param[in] v1 1st vector
//! \param[in] v2 2nd vector
//! \return Dot-product
inline real
dot( const std::array< real, 3 >& v1, const std::array< real, 3 >& v2 )
{
  return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

//! Compute the dot-product of a matrix and a vector
//! \param[in] m Matrix
//! \param[in] v vector
//! \return Dot-product
inline std::array< real, 3 >
matvec(
  const std::array< std::array< real, 3 >, 3 >& m,
  const std::array< real, 3 >& v )
{
  std::array< real, 3 > mv{0, 0, 0};
  for (std::size_t i=0; i<3; ++i) {
    for (std::size_t j=0; j<3; ++j)
      mv[i] += m[i][j]*v[j];
  }

  return mv;
}

//! Compute length of a vector
//! \param[in] x X coordinate of vector
//! \param[in] y Y coordinate of vector
//! \param[in] z Z coordinate of vector
//! \return length
#pragma omp declare simd
inline real
length( real x, real y, real z )
{
  return std::sqrt( x*x + y*y + z*z );
}

//! Compute length of a vector
//! \param[in] v vector
//! \return length
inline real
length( const std::array< real, 3 >& v )
{
  return std::sqrt( dot(v,v) );
}

//! Scale vector to unit length
//! \param[in,out] v Vector to normalize
inline void
unit( std::array< real, 3 >& v ) noexcept(ndebug)
{
  auto len = length( v );
  Assert( len > std::numeric_limits< tk::real >::epsilon(), "div by zero" );<--- Exception thrown in function declared not to throw exceptions.
  v[0] /= len;
  v[1] /= len;
  v[2] /= len;
}

//! Compute the triple-product of three vectors
//! \param[in] v1x x coordinate of the 1st vector
//! \param[in] v1y y coordinate of the 1st vector
//! \param[in] v1z z coordinate of the 1st vector
//! \param[in] v2x x coordinate of the 2nd vector
//! \param[in] v2y y coordinate of the 2nd vector
//! \param[in] v2z z coordinate of the 2nd vector
//! \param[in] v3x x coordinate of the 3rd vector
//! \param[in] v3y y coordinate of the 3rd vector
//! \param[in] v3z z coordinate of the 3rd vector
//! \return Scalar value of the triple product
#pragma omp declare simd
inline tk::real
triple( real v1x, real v1y, real v1z,
        real v2x, real v2y, real v2z,
        real v3x, real v3y, real v3z )
{
  real cx, cy, cz;
  cross( v2x, v2y, v2z, v3x, v3y, v3z, cx, cy, cz );
  return v1x*cx + v1y*cy + v1z*cz;
}

//! Compute the triple-product of three vectors
//! \param[in] v1 1st vector
//! \param[in] v2 2nd vector
//! \param[in] v3 3rd vector
//! \return Triple-product
inline real
triple( const std::array< real, 3 >& v1,
        const std::array< real, 3 >& v2,
        const std::array< real, 3 >& v3 )
{
  return dot( v1, cross(v2,v3) );
}

//! Rotate vector about X axis
//! \param[in] v Vector to rotate
//! \param[in] angle Angle to use to rotate with
//! \return Rotated vector
inline std::array< real, 3 >
rotateX( const std::array< real, 3 >& v, real angle )
{
  using std::cos;  using std::sin;

  std::array< std::array< real, 3 >, 3 >
    R{{ {{ 1.0,         0.0,          0.0 }},
        {{ 0.0,   cos(angle), -sin(angle) }},
        {{ 0.0,   sin(angle),  cos(angle) }} }};

  return {{ dot(R[0],v), dot(R[1],v), dot(R[2],v) }};
}

//! Rotate vector about Y axis
//! \param[in] v Vector to rotate
//! \param[in] angle Angle to use to rotate with
//! \return Rotated vector
inline std::array< real, 3 >
rotateY( const std::array< real, 3 >& v, real angle )
{
  using std::cos;  using std::sin;

  std::array< std::array< real, 3 >, 3 >
    R{{ {{ cos(angle),  0.0, sin(angle) }},
        {{ 0.0,         1.0,        0.0 }},
        {{ -sin(angle), 0.0, cos(angle) }} }};

  return {{ dot(R[0],v), dot(R[1],v), dot(R[2],v) }};
}

//! Rotate vector about Z axis
//! \param[in] v Vector to rotate
//! \param[in] angle Angle to use to rotate with
//! \return Rotated vector
inline std::array< real, 3 >
rotateZ( const std::array< real, 3 >& v, real angle )
{
  using std::cos;  using std::sin;

  std::array< std::array< real, 3 >, 3 >
    R{{ {{ cos(angle), -sin(angle), 0.0 }},
        {{ sin(angle),  cos(angle), 0.0 }},
        {{ 0.0,         0.0,        1.0 }} }};

  return {{ dot(R[0],v), dot(R[1],v), dot(R[2],v) }};
}

//! \brief Compute the determinant of the Jacobian of a coordinate
//!  transformation over a tetrahedron
//! \param[in] v1 (x,y,z) coordinates of 1st vertex of the tetrahedron
//! \param[in] v2 (x,y,z) coordinates of 2nd vertex of the tetrahedron
//! \param[in] v3 (x,y,z) coordinates of 3rd vertex of the tetrahedron
//! \param[in] v4 (x,y,z) coordinates of 4th vertex of the tetrahedron
//! \return Determinant of the Jacobian of transformation of physical
//!   tetrahedron to reference (xi, eta, zeta) space
inline real
Jacobian( const std::array< real, 3 >& v1,
          const std::array< real, 3 >& v2,
          const std::array< real, 3 >& v3,
          const std::array< real, 3 >& v4 )
{
  std::array< real, 3 > ba{{ v2[0]-v1[0], v2[1]-v1[1], v2[2]-v1[2] }},
                        ca{{ v3[0]-v1[0], v3[1]-v1[1], v3[2]-v1[2] }},
                        da{{ v4[0]-v1[0], v4[1]-v1[1], v4[2]-v1[2] }};
  return triple( ba, ca, da );
}

//! \brief Compute the inverse of the Jacobian of a coordinate transformation
//!   over a tetrahedron
//! \param[in] v1 (x,y,z) coordinates of 1st vertex of the tetrahedron
//! \param[in] v2 (x,y,z) coordinates of 2nd vertex of the tetrahedron
//! \param[in] v3 (x,y,z) coordinates of 3rd vertex of the tetrahedron
//! \param[in] v4 (x,y,z) coordinates of 4th vertex of the tetrahedron
//! \return Inverse of the Jacobian of transformation of physical
//!   tetrahedron to reference (xi, eta, zeta) space
inline std::array< std::array< real, 3 >, 3 >
inverseJacobian( const std::array< real, 3 >& v1,
                 const std::array< real, 3 >& v2,
                 const std::array< real, 3 >& v3,
                 const std::array< real, 3 >& v4 )
{
  std::array< std::array< real, 3 >, 3 > jacInv;

  auto detJ = Jacobian( v1, v2, v3, v4 );

  jacInv[0][0] =  (  (v3[1]-v1[1])*(v4[2]-v1[2])
                   - (v4[1]-v1[1])*(v3[2]-v1[2])) / detJ;
  jacInv[1][0] = -(  (v2[1]-v1[1])*(v4[2]-v1[2])
                   - (v4[1]-v1[1])*(v2[2]-v1[2])) / detJ;
  jacInv[2][0] =  (  (v2[1]-v1[1])*(v3[2]-v1[2])
                   - (v3[1]-v1[1])*(v2[2]-v1[2])) / detJ;

  jacInv[0][1] = -(  (v3[0]-v1[0])*(v4[2]-v1[2])
                   - (v4[0]-v1[0])*(v3[2]-v1[2])) / detJ;
  jacInv[1][1] =  (  (v2[0]-v1[0])*(v4[2]-v1[2])
                   - (v4[0]-v1[0])*(v2[2]-v1[2])) / detJ;
  jacInv[2][1] = -(  (v2[0]-v1[0])*(v3[2]-v1[2])
                   - (v3[0]-v1[0])*(v2[2]-v1[2])) / detJ;

  jacInv[0][2] =  (  (v3[0]-v1[0])*(v4[1]-v1[1])
                   - (v4[0]-v1[0])*(v3[1]-v1[1])) / detJ;
  jacInv[1][2] = -(  (v2[0]-v1[0])*(v4[1]-v1[1])
                   - (v4[0]-v1[0])*(v2[1]-v1[1])) / detJ;
  jacInv[2][2] =  (  (v2[0]-v1[0])*(v3[1]-v1[1])
                   - (v3[0]-v1[0])*(v2[1]-v1[1])) / detJ;

  return jacInv;
}

//! Compute the determinant of 3x3 matrix
//!  \param[in] a 3x3 matrix
//!  \return Determinant of the 3x3 matrix
inline tk::real
determinant( const std::array< std::array< tk::real, 3 >, 3 >& a )
{
  return ( a[0][0] * (a[1][1]*a[2][2]-a[1][2]*a[2][1])
         - a[0][1] * (a[1][0]*a[2][2]-a[1][2]*a[2][0])
         + a[0][2] * (a[1][0]*a[2][1]-a[1][1]*a[2][0]) );
}

//! Solve a 3x3 system of equations using Cramer's rule
//!  \param[in] a 3x3 lhs matrix
//!  \param[in] b 3x1 rhs matrix
//!  \return Array of solutions of the 3x3 system
inline std::array < tk::real, 3 >
cramer( const std::array< std::array< tk::real, 3 >, 3>& a,
        const std::array< tk::real, 3 >& b )
{
  auto de = determinant( a );

  auto nu(0.0);
  std::array < real, 3 > x;

  nu = determinant( {{{{b[0], a[0][1], a[0][2]}},
                      {{b[1], a[1][1], a[1][2]}},
                      {{b[2], a[2][1], a[2][2]}}}} );
  x[0] = nu/de;

  nu = determinant( {{{{a[0][0], b[0], a[0][2]}},
                      {{a[1][0], b[1], a[1][2]}},
                      {{a[2][0], b[2], a[2][2]}}}} );
  x[1] = nu/de;

  nu = determinant( {{{{a[0][0], a[0][1], b[0]}},
                      {{a[1][0], a[1][1], b[1]}},
                      {{a[2][0], a[2][1], b[2]}}}} );
  x[2] = nu/de;

  return x;
}

//! Move a point to a reference space given coordinates of origin of that space
//!  \param[in] origin Origin of reference frame to which point is to be moved
//!  \param[in,out] point Point that needs to be moved to reference frame
inline void
movePoint( const std::array< tk::real, 3 >& origin,
  std::array< tk::real, 3 >& point )
{
  for (std::size_t i=0; i<3; ++i)
    point[i] -= origin[i];
}

//! Rotate a point in 3D space by specifying rotation angles in degrees
//!  \param[in] angles Angles in 3D space by which point is to be rotated
//!  \param[in,out] point Point that needs to be rotated
inline void
rotatePoint( const std::array< tk::real, 3 >& angles,
  std::array< tk::real, 3 >& point )
{
  // Convert angles to radian
  tk::real pi = 4.0*std::atan(1.0);
  auto a = angles[0] * pi/180.0;
  auto b = angles[1] * pi/180.0;
  auto c = angles[2] * pi/180.0;

  // Rotation matrix
  std::array< std::array< tk::real, 3 >, 3 > rotMat;
  {
    using namespace std;
    rotMat[0][0] = cos(b)*cos(c);
    rotMat[0][1] = - cos(b)*sin(c);
    rotMat[0][2] = sin(b);

    rotMat[1][0] = sin(a)*sin(b)*cos(c) + cos(a)*sin(c);
    rotMat[1][1] = - sin(a)*sin(b)*sin(c) + cos(a)*cos(c);
    rotMat[1][2] = - sin(a)*cos(b);

    rotMat[2][0] = - cos(a)*sin(b)*cos(c) + sin(a)*sin(c);
    rotMat[2][1] = cos(a)*sin(b)*sin(c) + sin(a)*cos(c);
    rotMat[2][2] = cos(a)*cos(b);
  }

  // Apply rotation
  std::array< tk::real, 3 > x{{0.0, 0.0, 0.0}};
  for (std::size_t i=0; i<3; ++i) {
    for (std::size_t j=0; j<3; ++j) {
      x[i] += rotMat[i][j]*point[j];
    }
  }
  point = x;
}

//! \brief Get the Right Cauchy-Green strain tensor from the inverse deformation
//! gradient tensor.
//! \param[in] g Inverse deformation gradient tensor
//! \return Right Cauchy-Green tensor
inline std::array< std::array< real, 3 >, 3 >
getRightCauchyGreen(const std::array< std::array< real, 3 >, 3 >& g)
{
  // allocate matrices
  double G[9], C[9];

  // initialize c-matrices
  for (std::size_t i=0; i<3; ++i) {
    for (std::size_t j=0; j<3; ++j)
      G[i*3+j] = g[i][j];
  }

  // get g.g^T
  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
    3, 3, 3, 1.0, G, 3, G, 3, 0.0, C, 3);

  // get inv(g.g^T)
  lapack_int ipiv[9];

  #ifndef NDEBUG
  lapack_int ierr =
  #endif
    LAPACKE_dgetrf(LAPACK_ROW_MAJOR, 3, 3, C, 3, ipiv);
  Assert(ierr==0, "Lapack error in LU factorization of g.g^T");

  #ifndef NDEBUG
  lapack_int jerr =
  #endif
    LAPACKE_dgetri(LAPACK_ROW_MAJOR, 3, C, 3, ipiv);
  Assert(jerr==0, "Lapack error in inverting g.g^T");

  // Output C as 2D array
  return {{ {C[0], C[1], C[2]},
            {C[3], C[4], C[5]},
            {C[6], C[7], C[8]} }};
}

//! \brief Get the Left Cauchy-Green strain tensor from the inverse deformation
//! gradient tensor.
//! \param[in] g Inverse deformation gradient tensor
//! \return Left Cauchy-Green tensor
inline std::array< std::array< real, 3 >, 3 >
getLeftCauchyGreen(const std::array< std::array< real, 3 >, 3 >& g)
{
  // allocate matrices
  double G[9], b[9];

  // initialize c-matrices
  for (std::size_t i=0; i<3; ++i) {
    for (std::size_t j=0; j<3; ++j)
      G[i*3+j] = g[i][j];
  }

  // get g^T.g
  cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans,
    3, 3, 3, 1.0, G, 3, G, 3, 0.0, b, 3);

  // get inv(g^T.g)
  lapack_int ipiv[9];

  #ifndef NDEBUG
  lapack_int ierr =
  #endif
    LAPACKE_dgetrf(LAPACK_ROW_MAJOR, 3, 3, b, 3, ipiv);
  Assert(ierr==0, "Lapack error in LU factorization of g^T.g");

  #ifndef NDEBUG
  lapack_int jerr =
  #endif
    LAPACKE_dgetri(LAPACK_ROW_MAJOR, 3, b, 3, ipiv);
  Assert(jerr==0, "Lapack error in inverting g^T.g");

  // Output b as 2D array
  return {{ {b[0], b[1], b[2]},
            {b[3], b[4], b[5]},
            {b[6], b[7], b[8]} }};
}

//! \brief Rotate a second order tensor (e.g. a Strain/Stress matrix) from
//! the (x,y,z) to a new (r,s,t) coordinate system.
//! The first direction is given by a unit vector r = (rx,ry,rz).
//! Then, the second is chosen to be:
//! if |rx| > 0 or |ry| > 0:
//! - s = (ry/sqrt(rx*rx+ry*ry),-rx/sqrt(rx*rx+ry*ry),0)
//! else:
//! - s = (1,0,0)
//! Then, third basis vector is obtained from
//! the cross-product between the first two.
//! \param[in] mat matrix to be rotated.
//! \param[in] r Coordinates of the first basis vector r = (rx,ry,rz).
//! \return rotated tensor
inline std::array< std::array< tk::real, 3 >, 3 >
rotateTensor(const std::array< std::array< tk::real, 3 >, 3 >& mat,
             const std::array< tk::real, 3 >& r )
{
  // define rotation matrix
  tk::real eps = 1.0e-04;
  double rotMat[9];
  tk::real rx = r[0];
  tk::real ry = r[1];
  tk::real rz = r[2];
  if (std::abs(rx) > eps || std::abs(ry) > eps)
  {
    tk::real rxryNorm = std::sqrt(rx*rx+ry*ry);
    rotMat[0] = rx;
    rotMat[1] = ry;
    rotMat[2] = rz;
    rotMat[3] = ry/rxryNorm;
    rotMat[4] = -rx/rxryNorm;
    rotMat[5] = 0.0;
    rotMat[6] = rx*rz/rxryNorm;
    rotMat[7] = ry*rz/rxryNorm;
    rotMat[8] = -rxryNorm;
  }
  else
  {
    rotMat[0] = rx;
    rotMat[1] = ry;
    rotMat[2] = rz;
    rotMat[3] = 1.0;
    rotMat[4] = 0.0;
    rotMat[5] = 0.0;
    rotMat[6] = 0.0;
    rotMat[7] = 1.0;
    rotMat[8] = 0.0;
  }

  // define matrices
  double matAuxIn[9], matAuxOut[9];
  for (std::size_t i=0; i<3; ++i)
    for (std::size_t j=0; j<3; ++j)
      matAuxIn[i*3+j] = mat[i][j];

  // compute matAuxIn*rotMat and store it into matAuxOut
  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
    3, 3, 3, 1.0, matAuxIn, 3, rotMat, 3, 0.0, matAuxOut, 3);

  // matAuxOut -> matAuxIn
  for (std::size_t i=0; i<9; i++)
  {
    matAuxIn[i]  = matAuxOut[i];
    matAuxOut[i] = 0.0;
  }

  // compute rotMat^T*matAuxIn and store it into matAuxOut
  cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans,
    3, 3, 3, 1.0, rotMat, 3, matAuxIn, 3, 0.0, matAuxOut, 3);

  // return matAuxOut as a 2D array
  return {{ {matAuxOut[0], matAuxOut[1], matAuxOut[2]},
            {matAuxOut[3], matAuxOut[4], matAuxOut[5]},
            {matAuxOut[6], matAuxOut[7], matAuxOut[8]} }};
}

//! \brief Reflect a second order tensor (e.g. a Strain/Stress matrix)
//! \param[in] mat matrix to be rotated.
//! \param[in] reflectMat Reflection matrix
//! \return reflected tensor
inline std::array< std::array< tk::real, 3 >, 3 >
reflectTensor(const std::array< std::array< tk::real, 3 >, 3 >& mat,
              const std::array< std::array< tk::real, 3 >, 3 >& reflectMat)
{
  // define reflection matrix
  double refMat[9];
  for (std::size_t i=0; i<3; ++i)
    for (std::size_t j=0; j<3; ++j)
      refMat[i*3+j] = reflectMat[i][j];

  // define matAux (I need matrices as row major 1D arrays)
  double matAuxIn[9], matAuxOut[9];
  for (std::size_t i=0; i<3; ++i)
    for (std::size_t j=0; j<3; ++j)
      matAuxIn[i*3+j] = mat[i][j];

  // compute matAuxIn*refMat and store it into matAuxOut
  cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
    3, 3, 3, 1.0, matAuxIn, 3, refMat, 3, 0.0, matAuxOut, 3);

  // matAuxOut -> matAuxIn
  for (std::size_t i=0; i<9; i++)
  {
    matAuxIn[i]  = matAuxOut[i];
    matAuxOut[i] = 0.0;
  }

  // compute refMat^T*matAuxIn and store it into matAuxOut
  cblas_dgemm(CblasRowMajor, CblasTrans, CblasNoTrans,
    3, 3, 3, 1.0, refMat, 3, matAuxIn, 3, 0.0, matAuxOut, 3);

  // return matAuxOut as a 2D array
  return {{ {matAuxOut[0], matAuxOut[1], matAuxOut[2]},
            {matAuxOut[3], matAuxOut[4], matAuxOut[5]},
            {matAuxOut[6], matAuxOut[7], matAuxOut[8]} }};
}

} // tk::

#endif // Vector_h