1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693 | // *****************************************************************************
/*!
\file src/PDE/Limiter.cpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Limiters for discontiunous Galerkin methods
\details This file contains functions that provide limiter function
calculations for maintaining monotonicity near solution discontinuities
for the DG discretization.
*/
// *****************************************************************************
#include <array>
#include <vector>
#include "FaceData.hpp"
#include "Vector.hpp"
#include "Limiter.hpp"
#include "DerivedData.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Basis.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "PrefIndicator.hpp"
#include "Reconstruction.hpp"
#include "Integrate/Mass.hpp"
#include "MultiMat/MiscMultiMatFns.hpp"
#include "MultiSpecies/MultiSpeciesIndexing.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
void
WENO_P1( const std::vector< int >& esuel,
tk::Fields& U )
// *****************************************************************************
// Weighted Essentially Non-Oscillatory (WENO) limiter for DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in,out] U High-order solution vector which gets limited
//! \details This WENO function should be called for transport and compflow
//! \note This limiter function is experimental and untested. Use with caution.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto cweight = inciter::g_inputdeck.get< tag::cweight >();
auto nelem = esuel.size()/4;
std::array< std::vector< tk::real >, 3 >
limU {{ std::vector< tk::real >(nelem),
std::vector< tk::real >(nelem),
std::vector< tk::real >(nelem) }};
std::size_t ncomp = U.nprop()/rdof;
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
for (std::size_t e=0; e<nelem; ++e)
{
WENOLimiting(U, esuel, e, c, rdof, cweight, limU);
}
auto mark = c*rdof;
for (std::size_t e=0; e<nelem; ++e)
{
U(e, mark+1) = limU[0][e];
U(e, mark+2) = limU[1][e];
U(e, mark+3) = limU[2][e];
}
}
}
void
Superbee_P1( const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
const tk::UnsMesh::Coords& coord,
tk::Fields& U )
// *****************************************************************************
// Superbee limiter for DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \details This Superbee function should be called for transport and compflow
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
auto beta_lim = 2.0;
for (std::size_t e=0; e<esuel.size()/4; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
auto phi = SuperbeeLimiting(U, esuel, inpoel, coord, e, ndof, rdof,
dof_el, ncomp, beta_lim);
// apply limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phi[c] * U(e, mark+1);
U(e, mark+2) = phi[c] * U(e, mark+2);
U(e, mark+3) = phi[c] * U(e, mark+3);
}
}
}
}
void
SuperbeeMultiMat_P1(
const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat )
// *****************************************************************************
// Superbee limiter for multi-material DGP1
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] coord Array of nodal coordinates
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \details This Superbee function should be called for multimat
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::multimat,
tag::intsharp >();
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
auto beta_lim = 2.0;
for (std::size_t e=0; e<esuel.size()/4; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
// limit conserved quantities
auto phic = SuperbeeLimiting(U, esuel, inpoel, coord, e, ndof, rdof,
dof_el, ncomp, beta_lim);
// limit primitive quantities
auto phip = SuperbeeLimiting(P, esuel, inpoel, coord, e, ndof, rdof,
dof_el, nprim, beta_lim);
std::vector< tk::real > phic_p2;
std::vector< std::vector< tk::real > > unk, prim;<--- Unused variable: unk<--- Unused variable: prim
if(ndof > 1)
BoundPreservingLimiting(nmat, ndof, e, inpoel, coord, U, phic,
phic_p2);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0));
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd)
{
for (std::size_t k=0; k<nmat; ++k)
{
if (matInt[k])
phic[volfracIdx(nmat,k)] = 1.0;
}
}
else
{
if (!g_inputdeck.get< tag::accuracy_test >())
consistentMultiMatLimiting_P1(nmat, rdof, e, solidx, U, P, phic,
phic_p2);
}
// apply limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phic[c] * U(e, mark+1);
U(e, mark+2) = phic[c] * U(e, mark+2);
U(e, mark+3) = phic[c] * U(e, mark+3);
}
for (inciter::ncomp_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
P(e, mark+1) = phip[c] * P(e, mark+1);
P(e, mark+2) = phip[c] * P(e, mark+2);
P(e, mark+3) = phip[c] * P(e, mark+3);
}
}
}
}
void
VertexBasedTransport_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const tk::UnsMesh::Coords& coord,
tk::Fields& U )
// *****************************************************************************
// Kuzmin's vertex-based limiter for transport DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U High-order solution vector which gets limited
//! \details This vertex-based limiter function should be called for transport.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::transport,
tag::intsharp >();
std::size_t ncomp = U.nprop()/rdof;
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
std::vector< tk::real > phi(ncomp, 1.0);
std::vector< std::size_t > var;
for (std::size_t c=0; c<ncomp; ++c) var.push_back(c);
// limit conserved quantities
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phi, var);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(ncomp, 0);
std::vector< tk::real > alAvg(ncomp, 0.0);
for (std::size_t k=0; k<ncomp; ++k)
alAvg[k] = U(e,k*rdof);
auto intInd = interfaceIndicator(ncomp, alAvg, matInt);
if ((intsharp > 0) && intInd)
{
for (std::size_t k=0; k<ncomp; ++k)
{
if (matInt[k]) phi[k] = 1.0;
}
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phi[c] * U(e, mark+1);
U(e, mark+2) = phi[c] * U(e, mark+2);
U(e, mark+3) = phi[c] * U(e, mark+3);
}
}
}
}
void
VertexBasedCompflow_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const std::vector< inciter::EOS >& mat_blk,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
const tk::FluxFn& flux,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Kuzmin's vertex-based limiter for single-material DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] mat_blk EOS material block
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
// //! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in] flux Riemann flux function to use
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for compflow.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
// Null field for MarkShockCells argument
tk::Fields P;
if (inciter::g_inputdeck.get< tag::shock_detector_coeff >()
> 1e-6)
MarkShockCells(false, nelem, 1, ndof, rdof, mat_blk, ndofel,
inpoel, coord, fd, geoFace, geoElem, flux, solidx, U, P, shockmarker);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1 && shockmarker[e])
{
std::vector< tk::real > phi(ncomp, 1.0);
std::vector< std::size_t > var;
for (std::size_t c=0; c<ncomp; ++c) var.push_back(c);
// limit conserved quantities
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phi, var);
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phi[c] * U(e, mark+1);
U(e, mark+2) = phi[c] * U(e, mark+2);
U(e, mark+3) = phi[c] * U(e, mark+3);
}
}
}
}
void
VertexBasedCompflow_P2(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const std::vector< inciter::EOS >& mat_blk,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
[[maybe_unused]] const std::vector< std::size_t >& gid,
[[maybe_unused]] const std::unordered_map< std::size_t, std::size_t >& bid,
[[maybe_unused]] const std::vector< std::vector<tk::real> >& uNodalExtrm,
[[maybe_unused]] const std::vector< std::vector<tk::real> >& mtInv,
const tk::FluxFn& flux,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Kuzmin's vertex-based limiter on reference element for single-material DGP2
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] mat_blk EOS material block
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
// //! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
//! variables
//! \param[in] mtInv Inverse of Taylor mass matrix
//! \param[in] flux Riemann flux function to use
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for compflow.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
// Null field for MarkShockCells argument
tk::Fields P;
if (inciter::g_inputdeck.get< tag::shock_detector_coeff >()
> 1e-6)
MarkShockCells(false, nelem, 1, ndof, rdof, mat_blk, ndofel,
inpoel, coord, fd, geoFace, geoElem, flux, solidx, U, P, shockmarker);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1 && shockmarker[e])
{
// The vector of limiting coefficients for P1 and P2 coefficients
std::vector< tk::real > phic_p1(ncomp, 1.0);
// Removing 3rd order DOFs if discontinuity is detected, and applying
// limiting to the 2nd order/P1 solution
for (std::size_t c=0; c<ncomp; ++c) {
for(std::size_t idof = 4; idof < rdof; idof++) {
auto mark = c * rdof + idof;
U(e, mark) = 0.0;
}
}
// Obtain limiting coefficient for P1 coefficients
std::vector< std::size_t > var;
for (std::size_t c=0; c<ncomp; ++c) var.push_back(c);
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic_p1, var);
// apply limiter function to the solution with Taylor basis
for (std::size_t c=0; c<ncomp; ++c) {
auto mark = c * rdof;
for(std::size_t idof=1; idof<4; idof++)
U(e, mark+idof) = phic_p1[c] * U(e, mark+idof);
}
}
}
}
void
VertexBasedMultiMat_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const std::vector< inciter::EOS >& mat_blk,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
const tk::FluxFn& flux,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Kuzmin's vertex-based limiter for multi-material DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] mat_blk EOS material block
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
// //! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in] flux Riemann flux function to use
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for multimat.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::multimat,
tag::intsharp >();
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
// Evaluate the interface condition and mark the shock cells
if (inciter::g_inputdeck.get< tag::shock_detector_coeff >()
> 1e-6 && ndof > 1)
MarkShockCells(false, nelem, nmat, ndof, rdof, mat_blk, ndofel,
inpoel, coord, fd, geoFace, geoElem, flux, solidx, U, P, shockmarker);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
std::vector< tk::real > phic(ncomp, 1.0);
std::vector< tk::real > phip(nprim, 1.0);
if(shockmarker[e]) {
// When shockmarker is 1, there is discontinuity within the element.
// Hence, the vertex-based limiter will be applied.
// limit conserved quantities
std::vector< std::size_t > varc;
for (std::size_t c=0; c<ncomp; ++c) varc.push_back(c);
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic, varc);
// limit primitive quantities
std::vector< std::size_t > varp;
for (std::size_t c=0; c<nprim; ++c) varp.push_back(c);
VertexBasedLimiting(P, esup, inpoel, coord, e, rdof, dof_el,
nprim, phip, varp);
} else {
// When shockmarker is 0, the volume fraction, density and energy
// of minor material will still be limited to ensure a stable solution.
std::vector< std::size_t > vars;
for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat,k));
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic, vars);
for(std::size_t k=0; k<nmat; ++k) {
if(U(e, volfracDofIdx(nmat,k,rdof,0)) < 1e-4) {
// limit the density and energy of minor materials
vars.clear();
vars.push_back(densityIdx(nmat, k));
vars.push_back(energyIdx(nmat, k));
if (solidx[k] > 0) {
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
vars.push_back(deformIdx(nmat, solidx[k], i, j));
}
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic, vars);
// limit the pressure of minor materials
VertexBasedLimiting(P, esup, inpoel, coord, e, rdof, dof_el,
nprim, phip, std::vector< std::size_t >{pressureIdx(nmat, k)});
}
}
}
std::vector< tk::real > phic_p2, phip_p2;
PositivityLimitingMultiMat(nmat, mat_blk, rdof, dof_el, ndofel, e, inpoel,
coord, fd.Esuel(), U, P, phic, phic_p2, phip, phip_p2);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0));
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd) {
for (std::size_t k=0; k<nmat; ++k) {
if (matInt[k]) {
phic[volfracIdx(nmat,k)] = 1.0;
}
}
}
else {
if(nmat > 1)
BoundPreservingLimiting(nmat, ndof, e, inpoel, coord, U, phic,
phic_p2);
if (!g_inputdeck.get< tag::accuracy_test >())
consistentMultiMatLimiting_P1(nmat, rdof, e, solidx, U, P, phic,
phic_p2);
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phic[c] * U(e, mark+1);
U(e, mark+2) = phic[c] * U(e, mark+2);
U(e, mark+3) = phic[c] * U(e, mark+3);
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
P(e, mark+1) = phip[c] * P(e, mark+1);
P(e, mark+2) = phip[c] * P(e, mark+2);
P(e, mark+3) = phip[c] * P(e, mark+3);
}
}
}
}
void
VertexBasedMultiMat_P2(
const bool pref,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const std::vector< inciter::EOS >& mat_blk,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::UnsMesh::Coords& coord,
[[maybe_unused]] const std::vector< std::size_t >& gid,
[[maybe_unused]] const std::unordered_map< std::size_t, std::size_t >& bid,
[[maybe_unused]] const std::vector< std::vector<tk::real> >& uNodalExtrm,
[[maybe_unused]] const std::vector< std::vector<tk::real> >& pNodalExtrm,
[[maybe_unused]] const std::vector< std::vector<tk::real> >& mtInv,
const tk::FluxFn& flux,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Kuzmin's vertex-based limiter for multi-material DGP2
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
//! \param[in] mat_blk EOS material block
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
// //! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
//! variables
//! \param[in] pNodalExtrm Chare-boundary nodal extrema for primitive
//! variables
//! \param[in] mtInv Inverse of Taylor mass matrix
//! \param[in] flux Riemann flux function to use
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for multimat.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
const auto intsharp = inciter::g_inputdeck.get< tag::multimat,
tag::intsharp >();
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
// Evaluate the interface condition and mark the shock cells
if (inciter::g_inputdeck.get< tag::shock_detector_coeff >()
> 1e-6)
MarkShockCells(pref, nelem, nmat, ndof, rdof, mat_blk, ndofel,
inpoel, coord, fd, geoFace, geoElem, flux, solidx, U, P, shockmarker);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
// For multi-material simulation, when dofel = 1, p0p1 is applied and ndof
// for solution evaluation should be 4
if(ncomp > 5 && dof_el == 1)
dof_el = 4;
if (dof_el > 1)
{
// The vector of limiting coefficients for P1
std::vector< tk::real > phic_p1(ncomp, 1.0), phic_p2(ncomp, 1.0);
std::vector< tk::real > phip_p1(nprim, 1.0), phip_p2(nprim, 1.0);
// Only when the cell is marked with discontinuous solution or P0P1 scheme
// is used, the vertex-based slope limiter will be applied.
if(shockmarker[e] || dof_el == 4) {
// Removing 3rd order DOFs if discontinuity is detected, and applying
// limiting to the 2nd order/P1 solution
for (std::size_t c=0; c<ncomp; ++c) {
auto mark = c * rdof;
for(std::size_t idof = 4; idof < rdof; idof++)
U(e, mark+idof) = 0.0;
}
for (std::size_t c=0; c<nprim; ++c) {
auto mark = c * rdof;
for(std::size_t idof = 4; idof < rdof; idof++)
P(e, mark+idof) = 0.0;
}
// Obtain limiter coefficient for P1 conserved quantities
std::vector< std::size_t > varc;
for (std::size_t c=0; c<ncomp; ++c) varc.push_back(c);
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic_p1, varc);
// Obtain limiter coefficient for P1 primitive quantities
std::vector< std::size_t > varp;
for (std::size_t c=0; c<nprim; ++c) varp.push_back(c);
VertexBasedLimiting(P, esup, inpoel, coord, e, rdof, dof_el,
nprim, phip_p1, varp);
} else {
// When shockmarker is 0, the volume fraction will still be limited to
// ensure a stable solution. Since the limiting strategy for third order
// solution will downgrade the accuracy to second order, the density,
// energy and pressure of minor material will not be limited.
std::vector< std::size_t > vars;
for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat,k));
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic_p1, vars);
//for(std::size_t k=0; k<nmat; ++k) {
// if(U(e, volfracDofIdx(nmat,k,rdof,0)) < 1e-4) {
// // limit the density of minor materials
// VertexBasedLimiting(unk, U, esup, inpoel, coord, e, rdof, dof_el,
// ncomp, phic_p1, std::vector< std::size_t >{densityIdx(nmat,k)});
// // limit the pressure of minor materials
// VertexBasedLimiting(prim, P, esup, inpoel, coord, e, rdof, dof_el,
// nprim, phip_p1, std::vector< std::size_t >{pressureIdx(nmat,k)});
// }
//}
}
PositivityLimitingMultiMat(nmat, mat_blk, ndof, dof_el, ndofel, e, inpoel,
coord, fd.Esuel(), U, P, phic_p1, phic_p2, phip_p1, phic_p2);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0));
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd) {
for (std::size_t k=0; k<nmat; ++k) {
if (matInt[k]) {
phic_p1[volfracIdx(nmat,k)] = 1.0;
}
}
}
else {
if(nmat > 1)
BoundPreservingLimiting(nmat, ndof, e, inpoel, coord, U,
phic_p1, phic_p2);
if (!g_inputdeck.get< tag::accuracy_test >())
consistentMultiMatLimiting_P1(nmat, rdof, e, solidx, U, P, phic_p1,
phic_p2);
}
// apply limiing coefficient
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c * rdof;
for(std::size_t idof=1; idof<4; idof++)
U(e, mark+idof) = phic_p1[c] * U(e, mark+idof);
for(std::size_t idof=4; idof<rdof; idof++)
U(e, mark+idof) = phic_p2[c] * U(e, mark+idof);
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c * rdof;
for(std::size_t idof=1; idof<4; idof++)
P(e, mark+idof) = phip_p1[c] * P(e, mark+idof);
for(std::size_t idof=4; idof<rdof; idof++)
P(e, mark+idof) = phip_p2[c] * P(e, mark+idof);
}
}
}
}
void
VertexBasedMultiMat_FV(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
std::size_t nelem,
const tk::UnsMesh::Coords& coord,
const std::vector< int >& srcFlag,
const std::vector< std::size_t >& solidx,
tk::Fields& U,
tk::Fields& P,
std::size_t nmat )
// *****************************************************************************
// Kuzmin's vertex-based limiter for multi-material FV
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] nelem Number of elements
//! \param[in] coord Array of nodal coordinates
//! \param[in] srcFlag Whether the energy source was added
//! \param[in] solidx Solid material index indicator
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \param[in] nmat Number of materials in this PDE system
//! \details This vertex-based limiter function should be called for multimat.
//! For details see: Kuzmin, D. (2010). A vertex-based hierarchical slope
//! limiter for p-adaptive discontinuous Galerkin methods. Journal of
//! computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto intsharp = inciter::g_inputdeck.get< tag::multimat,
tag::intsharp >();
std::size_t ncomp = U.nprop()/rdof;
std::size_t nprim = P.nprop()/rdof;
for (std::size_t e=0; e<nelem; ++e)
{
std::vector< tk::real > phic(ncomp, 1.0);
std::vector< tk::real > phip(nprim, 1.0);
// limit conserved quantities
std::vector< std::size_t > var;
for (std::size_t k=0; k<nmat; ++k) {
var.push_back(volfracIdx(nmat,k));
var.push_back(densityIdx(nmat,k));
}
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, rdof, ncomp,
phic, var);
// limit primitive quantities
var.clear();
for (std::size_t c=0; c<nprim; ++c) var.push_back(c);
VertexBasedLimiting(P, esup, inpoel, coord, e, rdof, rdof, nprim,
phip, var);
// limits under which compression is to be performed
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = U(e, volfracDofIdx(nmat,k,rdof,0));
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
if ((intsharp > 0) && intInd && srcFlag[e] == 0)
{
for (std::size_t k=0; k<nmat; ++k)
{
if (matInt[k])
phic[volfracIdx(nmat,k)] = 1.0;
}
}
else
{
if (!g_inputdeck.get< tag::accuracy_test >()) {
std::vector< tk::real > phic_p2(ncomp, 1.0);
consistentMultiMatLimiting_P1(nmat, rdof, e, solidx, U, P, phic,
phic_p2);
}
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phic[c] * U(e, mark+1);
U(e, mark+2) = phic[c] * U(e, mark+2);
U(e, mark+3) = phic[c] * U(e, mark+3);
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
P(e, mark+1) = phip[c] * P(e, mark+1);
P(e, mark+2) = phip[c] * P(e, mark+2);
P(e, mark+3) = phip[c] * P(e, mark+3);
}
}
}
void
VertexBasedMultiSpecies_P1(
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const std::vector< std::size_t >& ndofel,
std::size_t nelem,
const std::vector< inciter::EOS >& /*mat_blk*/,
const inciter::FaceData& /*fd*/,
const tk::Fields& /*geoFace*/,
const tk::Fields& /*geoElem*/,
const tk::UnsMesh::Coords& coord,
const tk::FluxFn& /*flux*/,
tk::Fields& U,
std::size_t nspec,
std::vector< std::size_t >& shockmarker )<--- Parameter 'shockmarker' can be declared with const
// *****************************************************************************
// Kuzmin's vertex-based limiter for multi-species DGP1
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] nelem Number of elements
// //! \param[in] mat_blk EOS material block
// //! \param[in] fd Face connectivity and boundary conditions object
// //! \param[in] geoFace Face geometry array
// //! \param[in] geoElem Element geometry array
//! \param[in] coord Array of nodal coordinates
// //! \param[in] flux Riemann flux function to use
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in] nspec Number of species in this PDE system
//! \param[in,out] shockmarker Shock detection marker array
//! \details This vertex-based limiter function should be called for
//! multispecies. For details see: Kuzmin, D. (2010). A vertex-based
//! hierarchical slope limiter for p-adaptive discontinuous Galerkin methods.
//! Journal of computational and applied mathematics, 233(12), 3077-3085.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ndof = inciter::g_inputdeck.get< tag::ndof >();
std::size_t ncomp = U.nprop()/rdof;
//// Evaluate the interface condition and mark the shock cells
//if (inciter::g_inputdeck.get< tag::shock_detector_coeff >()
// > 1e-6 && ndof > 1)
// MarkShockCells(false, nelem, nmat, ndof, rdof, mat_blk, ndofel,
// inpoel, coord, fd, geoFace, geoElem, flux, solidx, U, P, shockmarker);
for (std::size_t e=0; e<nelem; ++e)
{
// If an rDG method is set up (P0P1), then, currently we compute the P1
// basis functions and solutions by default. This implies that P0P1 is
// unsupported in the p-adaptive DG (PDG). This is a workaround until we
// have rdofel, which is needed to distinguish between ndofs and rdofs per
// element for pDG.
std::size_t dof_el;
if (rdof > ndof)
{
dof_el = rdof;
}
else
{
dof_el = ndofel[e];
}
if (dof_el > 1)
{
std::vector< std::size_t > vars;
if(shockmarker[e]) {
// When shockmarker is 1, there is discontinuity within the element.
// Hence, the vertex-based limiter will be applied.
for (std::size_t c=0; c<ncomp; ++c) vars.push_back(c);
} else {
// When shockmarker is 0, the density of minor species will still be
// limited to ensure a stable solution.
tk::real rhob(0.0);
for(std::size_t k=0; k<nspec; ++k)
rhob += U(e, multispecies::densityDofIdx(nspec,k,rdof,0));
for(std::size_t k=0; k<nspec; ++k) {
if (U(e, multispecies::densityDofIdx(nspec,k,rdof,0))/rhob < 1e-4) {
// limit the density of minor species
vars.push_back(multispecies::densityIdx(nspec, k));
}
}
}
std::vector< tk::real > phic(ncomp, 1.0);
VertexBasedLimiting(U, esup, inpoel, coord, e, rdof, dof_el,
ncomp, phic, vars);
//std::vector< tk::real > phic_p2, phip_p2;
//PositivityLimitingMultiMat(nmat, mat_blk, rdof, dof_el, ndofel, e, inpoel,
// coord, fd.Esuel(), U, P, phic, phic_p2, phip, phip_p2);
// TODO: Unit sum of mass fractions is maintained by using common limiter
// for all species densities. Investigate better approaches.
if (!g_inputdeck.get< tag::accuracy_test >()) {
tk::real phi_rhos_p1(1.0);
for (std::size_t k=0; k<nspec; ++k)
phi_rhos_p1 = std::min( phi_rhos_p1,
phic[multispecies::densityIdx(nspec, k)] );
// same limiter for all densities
for (std::size_t k=0; k<nspec; ++k)
phic[multispecies::densityIdx(nspec, k)] = phi_rhos_p1;
}
// apply limiter function
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
U(e, mark+1) = phic[c] * U(e, mark+1);
U(e, mark+2) = phic[c] * U(e, mark+2);
U(e, mark+3) = phic[c] * U(e, mark+3);
}
}
}
}
void
WENOLimiting( const tk::Fields& U,
const std::vector< int >& esuel,
std::size_t e,
inciter::ncomp_t c,
std::size_t rdof,
tk::real cweight,
std::array< std::vector< tk::real >, 3 >& limU )
// *****************************************************************************
// WENO limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esuel Elements surrounding elements
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] c Index of component which is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] cweight Weight of the central stencil
//! \param[in,out] limU Limited gradients of component c
// *****************************************************************************
{
std::array< std::array< tk::real, 3 >, 5 > gradu;
std::array< tk::real, 5 > wtStencil, osc, wtDof;
auto mark = c*rdof;
// reset all stencil values to zero
for (auto& g : gradu) g.fill(0.0);
osc.fill(0);
wtDof.fill(0);
wtStencil.fill(0);
// The WENO limiter uses solution data from the neighborhood in the form
// of stencils to enforce non-oscillatory conditions. The immediate
// (Von Neumann) neighborhood of a tetrahedral cell consists of the 4
// cells that share faces with it. These are the 4 neighborhood-stencils
// for the tetrahedron. The primary stencil is the tet itself. Weights are
// assigned to these stencils, with the primary stencil usually assigned
// the highest weight. The lower the primary/central weight, the more
// dissipative the limiting effect. This central weight is usually problem
// dependent. It is set higher for relatively weaker discontinuities, and
// lower for stronger discontinuities.
// primary stencil
gradu[0][0] = U(e, mark+1);
gradu[0][1] = U(e, mark+2);
gradu[0][2] = U(e, mark+3);
wtStencil[0] = cweight;
// stencils from the neighborhood
for (std::size_t is=1; is<5; ++is)
{
auto nel = esuel[ 4*e+(is-1) ];
// ignore physical domain ghosts
if (nel == -1)
{
gradu[is].fill(0.0);
wtStencil[is] = 0.0;
continue;
}
std::size_t n = static_cast< std::size_t >( nel );
gradu[is][0] = U(n, mark+1);
gradu[is][1] = U(n, mark+2);
gradu[is][2] = U(n, mark+3);
wtStencil[is] = 1.0;
}
// From these stencils, an oscillation indicator is calculated, which
// determines the effective weights for the high-order solution DOFs.
// These effective weights determine the contribution of each of the
// stencils to the high-order solution DOFs of the current cell which are
// being limited. If this indicator detects a large oscillation in the
// solution of the current cell, it reduces the effective weight for the
// central stencil contribution to its high-order DOFs. This results in
// a more dissipative and well-behaved solution in the troubled cell.
// oscillation indicators
for (std::size_t is=0; is<5; ++is)
osc[is] = std::sqrt( tk::dot(gradu[is], gradu[is]) );
tk::real wtotal = 0;
// effective weights for dofs
for (std::size_t is=0; is<5; ++is)
{
// A small number (1.0e-8) is needed here to avoid dividing by a zero in
// the case of a constant solution, where osc would be zero. The number
// is not set to machine zero because it is squared, and a number
// between 1.0e-8 to 1.0e-6 is needed.
wtDof[is] = wtStencil[is] * pow( (1.0e-8 + osc[is]), -2 );
wtotal += wtDof[is];
}
for (std::size_t is=0; is<5; ++is)
{
wtDof[is] = wtDof[is]/wtotal;
}
limU[0][e] = 0.0;
limU[1][e] = 0.0;
limU[2][e] = 0.0;
// limiter function
for (std::size_t is=0; is<5; ++is)
{
limU[0][e] += wtDof[is]*gradu[is][0];
limU[1][e] += wtDof[is]*gradu[is][1];
limU[2][e] += wtDof[is]*gradu[is][2];
}
}
std::vector< tk::real >
SuperbeeLimiting( const tk::Fields& U,
const std::vector< int >& esuel,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
std::size_t e,
std::size_t ndof,
std::size_t rdof,
std::size_t dof_el,
inciter:: ncomp_t ncomp,
tk::real beta_lim )
// *****************************************************************************
// Superbee limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esuel Elements surrounding elements
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] beta_lim Parameter which is equal to 2 for Superbee and 1 for
//! minmod limiter
//! \return phi Limiter function for solution in element e
// *****************************************************************************
{
// Superbee is a TVD limiter, which uses min-max bounds that the
// high-order solution should satisfy, to ensure TVD properties. For a
// high-order method like DG, this involves the following steps:
// 1. Find min-max bounds in the immediate neighborhood of cell.
// 2. Calculate the Superbee function for all the points where solution
// needs to be reconstructed to (all quadrature points). From these,
// use the minimum value of the limiter function.
std::vector< tk::real > uMin(ncomp, 0.0), uMax(ncomp, 0.0);
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
uMin[c] = U(e, mark);
uMax[c] = U(e, mark);
}
// ----- Step-1: find min/max in the neighborhood
for (std::size_t is=0; is<4; ++is)
{
auto nel = esuel[ 4*e+is ];
// ignore physical domain ghosts
if (nel == -1) continue;
auto n = static_cast< std::size_t >( nel );
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
uMin[c] = std::min(uMin[c], U(n, mark));
uMax[c] = std::max(uMax[c], U(n, mark));
}
}
// ----- Step-2: loop over all quadrature points to get limiter function
// to loop over all the quadrature points of all faces of element e,
// coordinates of the quadrature points are needed.
// Number of quadrature points for face integration
auto ng = tk::NGfa(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
tk::GaussQuadratureTri( ng, coordgp, wgp );
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
// initialize limiter function
std::vector< tk::real > phi(ncomp, 1.0);
for (std::size_t lf=0; lf<4; ++lf)
{
// Extract the face coordinates
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordfa, coordgp );
//Compute the basis functions
auto B_l = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
auto state =
tk::eval_state(ncomp, rdof, dof_el, e, U, B_l);
Assert( state.size() == ncomp, "Size mismatch" );
// compute the limiter function
for (inciter::ncomp_t c=0; c<ncomp; ++c)
{
auto phi_gp = 1.0;
auto mark = c*rdof;
auto uNeg = state[c] - U(e, mark);
if (uNeg > 1.0e-14)
{
uNeg = std::max(uNeg, 1.0e-08);
phi_gp = std::min( 1.0, (uMax[c]-U(e, mark))/(2.0*uNeg) );
}
else if (uNeg < -1.0e-14)
{
uNeg = std::min(uNeg, -1.0e-08);
phi_gp = std::min( 1.0, (uMin[c]-U(e, mark))/(2.0*uNeg) );
}
else
{
phi_gp = 1.0;
}
phi_gp = std::max( 0.0,
std::max( std::min(beta_lim*phi_gp, 1.0),
std::min(phi_gp, beta_lim) ) );
phi[c] = std::min( phi[c], phi_gp );
}
}
}
return phi;
}
void
VertexBasedLimiting(
const tk::Fields& U,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
std::size_t e,
std::size_t rdof,
std::size_t dof_el,
std::size_t ncomp,
std::vector< tk::real >& phi,
const std::vector< std::size_t >& VarList )
// *****************************************************************************
// Kuzmin's vertex-based limiter function calculation for P1 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in,out] phi Limiter function for solution in element e
//! \param[in] VarList List of variable indices to be limited
// *****************************************************************************
{
// Kuzmin's vertex-based TVD limiter uses min-max bounds that the
// high-order solution should satisfy, to ensure TVD properties. For a
// high-order method like DG, this involves the following steps:
// 1. Find min-max bounds in the nodal-neighborhood of cell.
// 2. Calculate the limiter function (Superbee) for all the vertices of cell.
// From these, use the minimum value of the limiter function.
// Prepare for calculating Basis functions
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > uMin(VarList.size(), 0.0),
uMax(VarList.size(), 0.0);
// loop over all nodes of the element e
for (std::size_t lp=0; lp<4; ++lp)
{
// reset min/max
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto mark = VarList[i]*rdof;
uMin[i] = U(e, mark);
uMax[i] = U(e, mark);
}
auto p = inpoel[4*e+lp];
const auto& pesup = tk::cref_find(esup, p);
// ----- Step-1: find min/max in the neighborhood of node p
// loop over all the internal elements surrounding this node p
for (auto er : pesup)
{
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto mark = VarList[i]*rdof;
uMin[i] = std::min(uMin[i], U(er, mark));
uMax[i] = std::max(uMax[i], U(er, mark));
}
}
// ----- Step-2: compute the limiter function at this node
// find high-order solution
std::vector< tk::real > state;
std::array< tk::real, 3 > gp{cx[p], cy[p], cz[p]};
auto B_p = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
state = tk::eval_state(ncomp, rdof, dof_el, e, U, B_p);
Assert( state.size() == ncomp, "Size mismatch" );
// compute the limiter function
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto c = VarList[i];
auto phi_gp = 1.0;
auto mark = c*rdof;
auto uNeg = state[c] - U(e, mark);
auto uref = std::max(std::fabs(U(e,mark)), 1e-14);
if (uNeg > 1.0e-06*uref)
{
phi_gp = std::min( 1.0, (uMax[i]-U(e, mark))/uNeg );
}
else if (uNeg < -1.0e-06*uref)
{
phi_gp = std::min( 1.0, (uMin[i]-U(e, mark))/uNeg );
}
else
{
phi_gp = 1.0;
}
// ----- Step-3: take the minimum of the nodal-limiter functions
phi[c] = std::min( phi[c], phi_gp );
}
}
}
void
VertexBasedLimiting_P2( const std::vector< std::vector< tk::real > >& unk,
const tk::Fields& U,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
std::size_t e,
std::size_t rdof,
[[maybe_unused]] std::size_t dof_el,
std::size_t ncomp,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< std::vector<tk::real> >& NodalExtrm,
const std::vector< std::size_t >& VarList,
std::vector< tk::real >& phi )
// *****************************************************************************
// Kuzmin's vertex-based limiter function calculation for P2 dofs
//! \param[in] U High-order solution vector which is to be limited
//! \param[in] esup Elements surrounding points
//! \param[in] inpoel Element connectivity
//! \param[in] e Id of element whose solution is to be limited
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] dof_el Local number of degrees of freedom
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] NodalExtrm Chare-boundary nodal extrema
//! \param[in] VarList List of variable indices that need to be limited
//! \param[out] phi Limiter function for solution in element e
//! \details This function limits the P2 dofs of P2 solution in a hierachical
//! way to P1 dof limiting. Here we treat the first order derivatives the same
//! way as cell average while second order derivatives represent the gradients
//! to be limited in the P1 limiting procedure.
// *****************************************************************************
{
const auto nelem = inpoel.size() / 4;
std::vector< std::vector< tk::real > > uMin, uMax;
uMin.resize( VarList.size(), std::vector<tk::real>(3, 0.0) );
uMax.resize( VarList.size(), std::vector<tk::real>(3, 0.0) );
// The coordinates of centroid in the reference domain
std::array< std::vector< tk::real >, 3 > center;
center[0].resize(1, 0.25);
center[1].resize(1, 0.25);
center[2].resize(1, 0.25);
std::array< std::array< tk::real, 4 >, 3 > cnodes{{
{{0, 1, 0, 0}},
{{0, 0, 1, 0}},
{{0, 0, 0, 1}} }};
// loop over all nodes of the element e
for (std::size_t lp=0; lp<4; ++lp)
{
// Find the max/min first-order derivatives for internal element
for (std::size_t i=0; i<VarList.size(); ++i)
{
for (std::size_t idir=1; idir < 4; ++idir)
{
uMin[i][idir-1] = unk[VarList[i]][idir];
uMax[i][idir-1] = unk[VarList[i]][idir];
}
}
auto p = inpoel[4*e+lp];
const auto& pesup = tk::cref_find(esup, p);
// Step-1: find min/max first order derivative at the centroid in the
// neighborhood of node p
for (auto er : pesup)
{
if(er < nelem) // If this is internal element
{
// Compute the derivatives of basis function in the reference domain
auto dBdxi_er = tk::eval_dBdxi(rdof,
{{center[0][0], center[1][0], center[2][0]}});
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto mark = VarList[i]*rdof;
for (std::size_t idir = 0; idir < 3; ++idir)
{
// The first order derivative at the centroid of element er
tk::real slope_er(0.0);
for(std::size_t idof = 1; idof < rdof; idof++)
slope_er += U(er, mark+idof) * dBdxi_er[idir][idof];
uMin[i][idir] = std::min(uMin[i][idir], slope_er);
uMax[i][idir] = std::max(uMax[i][idir], slope_er);
}
}
}
}
// If node p is the chare-boundary node, find min/max by comparing with
// the chare-boundary nodal extrema from vector NodalExtrm
auto gip = bid.find( gid[p] );
if(gip != end(bid))
{
auto ndof_NodalExtrm = NodalExtrm[0].size() / (ncomp * 2);
for (std::size_t i=0; i<VarList.size(); ++i)
{
for (std::size_t idir = 0; idir < 3; idir++)
{
auto max_mark = 2*VarList[i]*ndof_NodalExtrm + 2*idir;
auto min_mark = max_mark + 1;
const auto& ex = NodalExtrm[gip->second];
uMax[i][idir] = std::max(ex[max_mark], uMax[i][idir]);
uMin[i][idir] = std::min(ex[min_mark], uMin[i][idir]);
}
}
}
//Step-2: compute the limiter function at this node
std::array< tk::real, 3 > node{cnodes[0][lp], cnodes[1][lp], cnodes[2][lp]};
// find high-order solution
std::vector< std::array< tk::real, 3 > > state;
state.resize(VarList.size());
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto dx = node[0] - center[0][0];
auto dy = node[1] - center[1][0];
auto dz = node[2] - center[2][0];
auto c = VarList[i];
state[i][0] = unk[c][1] + unk[c][4]*dx + unk[c][7]*dy + unk[c][8]*dz;
state[i][1] = unk[c][2] + unk[c][5]*dy + unk[c][7]*dx + unk[c][9]*dz;
state[i][2] = unk[c][3] + unk[c][6]*dz + unk[c][8]*dx + unk[c][9]*dy;
}
// compute the limiter function
for (std::size_t i=0; i<VarList.size(); ++i)
{
auto c = VarList[i];
tk::real phi_dir(1.0);<--- The scope of the variable 'phi_dir' can be reduced. [+]The scope of the variable 'phi_dir' can be reduced. Warning: Be careful when fixing this message, especially when there are inner loops. Here is an example where cppcheck will write that the scope for 'i' can be reduced:
void f(int x)
{
int i = 0;
if (x) {
// it's safe to move 'int i = 0;' here
for (int n = 0; n < 10; ++n) {
// it is possible but not safe to move 'int i = 0;' here
do_something(&i);
}
}
}
When you see this message it is always safe to reduce the variable scope 1 level.
for (std::size_t idir = 1; idir <= 3; ++idir)
{
phi_dir = 1.0;<--- phi_dir is assigned
auto uNeg = state[i][idir-1] - unk[c][idir];
auto uref = std::max(std::fabs(unk[c][idir]), 1e-14);
if (uNeg > 1.0e-6*uref)
{
phi_dir =<--- phi_dir is overwritten
std::min( 1.0, ( uMax[i][idir-1] - unk[c][idir])/uNeg );
}
else if (uNeg < -1.0e-6*uref)
{
phi_dir =
std::min( 1.0, ( uMin[i][idir-1] - unk[c][idir])/uNeg );
}
else
{
phi_dir = 1.0;
}
phi[c] = std::min( phi[c], phi_dir );
}
}
}
}
void consistentMultiMatLimiting_P1(
std::size_t nmat,
std::size_t rdof,
std::size_t e,
const std::vector< std::size_t >& solidx,
tk::Fields& U,<--- Parameter 'U' can be declared with const
[[maybe_unused]] tk::Fields& P,
std::vector< tk::real >& phic_p1,
std::vector< tk::real >& phic_p2 )
// *****************************************************************************
// Consistent limiter modifications for conservative variables
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] rdof Total number of reconstructed dofs
//! \param[in] e Element being checked for consistency
//! \param[in] solidx Solid material index indicator
//! \param[in] U Vector of conservative variables
//! \param[in] P Vector of primitive variables
//! \param[in,out] phic_p1 Vector of limiter functions for P1 dofs of the
//! conserved quantities
//! \param[in,out] phip_p2 Vector of limiter functions for P2 dofs of the
//! conserved quantities
// *****************************************************************************
{
// find the limiter-function for volume-fractions
auto phi_al_p1(1.0), phi_al_p2(1.0), almax(0.0), dalmax(0.0);
//std::size_t nmax(0);
for (std::size_t k=0; k<nmat; ++k)
{
phi_al_p1 = std::min( phi_al_p1, phic_p1[volfracIdx(nmat, k)] );
if(rdof > 4)
phi_al_p2 = std::min( phi_al_p2, phic_p2[volfracIdx(nmat, k)] );
if (almax < U(e,volfracDofIdx(nmat, k, rdof, 0)))
{
//nmax = k;
almax = U(e,volfracDofIdx(nmat, k, rdof, 0));
}
tk::real dmax(0.0);
dmax = std::max(
std::max(
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 1))),
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 2))) ),
std::abs(U(e,volfracDofIdx(nmat, k, rdof, 3))) );
dalmax = std::max( dalmax, dmax );
}
auto al_band = 1e-4;
//phi_al = phic[nmax];
// determine if cell is a material-interface cell based on ad-hoc tolerances.
// if interface-cell, then modify high-order dofs of conserved unknowns
// consistently and use same limiter for all equations.
// Slopes of solution variables \alpha_k \rho_k and \alpha_k \rho_k E_k need
// to be modified in interface cells, such that slopes in the \rho_k and
// \rho_k E_k part are ignored and only slopes in \alpha_k are considered.
// Ideally, we would like to not do this, but this is a necessity to avoid
// limiter-limiter interactions in multiphase CFD (see "K.-M. Shyue, F. Xiao,
// An Eulerian interface sharpening algorithm for compressible two-phase flow:
// the algebraic THINC approach, Journal of Computational Physics 268, 2014,
// 326–354. doi:10.1016/j.jcp.2014.03.010." and "A. Chiapolino, R. Saurel,
// B. Nkonga, Sharpening diffuse interfaces with compressible fluids on
// unstructured meshes, Journal of Computational Physics 340 (2017) 389–417.
// doi:10.1016/j.jcp.2017.03.042."). This approximation should be applied in
// as narrow a band of interface-cells as possible. The following if-test
// defines this band of interface-cells. This tests checks the value of the
// maximum volume-fraction in the cell (almax) and the maximum change in
// volume-fraction in the cell (dalmax, calculated from second-order DOFs),
// to determine the band of interface-cells where the aforementioned fix needs
// to be applied. This if-test says that, the fix is applied when the change
// in volume-fraction across a cell is greater than 0.1, *and* the
// volume-fraction is between 0.1 and 0.9.
if ( //dalmax > al_band &&
(almax > al_band && almax < (1.0-al_band)) )
{
// 1. consistent high-order dofs
for (std::size_t k=0; k<nmat; ++k)
{
auto alk =
std::max( 1.0e-14, U(e,volfracDofIdx(nmat, k, rdof, 0)) );
auto rhok = U(e,densityDofIdx(nmat, k, rdof, 0)) / alk;
auto rhoE = U(e,energyDofIdx(nmat, k, rdof, 0)) / alk;
for (std::size_t idof=1; idof<rdof; ++idof)
{
U(e,densityDofIdx(nmat, k, rdof, idof)) = rhok *
U(e,volfracDofIdx(nmat, k, rdof, idof));
U(e,energyDofIdx(nmat, k, rdof, idof)) = rhoE *
U(e,volfracDofIdx(nmat, k, rdof, idof));
}
if (solidx[k] > 0)
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
{
for (std::size_t idof=1; idof<rdof; ++idof)
U(e,deformDofIdx(nmat,solidx[k],i,j,rdof,idof)) = 0.0;
}
}
// 2. same limiter for all volume-fractions and densities
for (std::size_t k=0; k<nmat; ++k)
{
phic_p1[volfracIdx(nmat, k)] = phi_al_p1;
phic_p1[densityIdx(nmat, k)] = phi_al_p1;
phic_p1[energyIdx(nmat, k)] = phi_al_p1;
if (solidx[k] > 0)
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
phic_p1[deformIdx(nmat,solidx[k],i,j)] = phi_al_p1;
}
if(rdof > 4)
{
for (std::size_t k=0; k<nmat; ++k)
{
phic_p2[volfracIdx(nmat, k)] = phi_al_p2;
phic_p2[densityIdx(nmat, k)] = phi_al_p2;
phic_p2[energyIdx(nmat, k)] = phi_al_p2;
if (solidx[k] > 0)
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
phic_p2[deformIdx(nmat,solidx[k],i,j)] = phi_al_p2;
}
}
}
else
{
// same limiter for all volume-fractions
for (std::size_t k=0; k<nmat; ++k)
phic_p1[volfracIdx(nmat, k)] = phi_al_p1;
if(rdof > 4)
for (std::size_t k=0; k<nmat; ++k)
phic_p2[volfracIdx(nmat, k)] = phi_al_p2;
}
}
void BoundPreservingLimiting( std::size_t nmat,
std::size_t ndof,
std::size_t e,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
std::vector< tk::real >& phic_p1,
std::vector< tk::real >& phic_p2 )
// *****************************************************************************
// Bound preserving limiter for volume fractions when MulMat scheme is selected
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] ndof Total number of reconstructed dofs
//! \param[in] e Element being checked for consistency
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U Second-order solution vector which gets modified near
//! material interfaces for consistency
//! \param[in] unk Vector of conservative variables based on Taylor basis
//! \param[in,out] phic_p1 Vector of limiter functions for P1 dofs of the
//! conserved quantities
//! \param[in,out] phic_p2 Vector of limiter functions for P2 dofs of the
//! conserved quantities
//! \details This bound-preserving limiter is specifically meant to enforce
//! bounds [0,1], but it does not suppress oscillations like the other 'TVD'
//! limiters. TVD limiters on the other hand, do not preserve such bounds. A
//! combination of oscillation-suppressing and bound-preserving limiters can
//! obtain a non-oscillatory and bounded solution.
// *****************************************************************************
{
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > phi_bound(nmat, 1.0);
// Compute the upper and lower bound for volume fraction
const tk::real min = 1e-14;
const tk::real max = 1.0 - min * static_cast<tk::real>(nmat - 1);
// loop over all faces of the element e
for (std::size_t lf=0; lf<4; ++lf)
{
// Extract the face coordinates
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
auto ng = tk::NGfa(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
// get quadrature point weights and coordinates for triangle
tk::GaussQuadratureTri( ng, coordgp, wgp );
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordfa, coordgp );
//Compute the basis functions
auto B = tk::eval_basis( ndof,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
auto state = eval_state( U.nprop()/ndof, ndof, ndof, e, U, B );
for(std::size_t imat = 0; imat < nmat; imat++)
{
auto phi = BoundPreservingLimitingFunction( min, max,
state[volfracIdx(nmat, imat)],
U(e,volfracDofIdx(nmat, imat, ndof, 0)) );
phi_bound[imat] = std::min( phi_bound[imat], phi );
}
}
}
// If DG(P2), the bound-preserving limiter should also be applied to the gauss
// point within the element
if(ndof > 4)
{
auto ng = tk::NGvol(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the basis function
auto B = tk::eval_basis( ndof, coordgp[0][igp], coordgp[1][igp],
coordgp[2][igp] );
auto state = tk::eval_state(U.nprop()/ndof, ndof, ndof, e, U, B);
for(std::size_t imat = 0; imat < nmat; imat++)
{
auto phi = BoundPreservingLimitingFunction(min, max,
state[volfracIdx(nmat, imat)],
U(e,volfracDofIdx(nmat, imat, ndof, 0)) );
phi_bound[imat] = std::min( phi_bound[imat], phi );
}
}
}
for(std::size_t k=0; k<nmat; k++)
phic_p1[volfracIdx(nmat, k)] = std::min(phi_bound[k],
phic_p1[volfracIdx(nmat, k)]);
if(ndof > 4)
for(std::size_t k=0; k<nmat; k++)
phic_p2[volfracIdx(nmat, k)] = std::min(phi_bound[k],
phic_p2[volfracIdx(nmat, k)]);
}
tk::real
BoundPreservingLimitingFunction( const tk::real min,
const tk::real max,
const tk::real al_gp,
const tk::real al_avg )
// *****************************************************************************
// Bound-preserving limiter function for the volume fractions
//! \param[in] min Minimum bound for volume fraction
//! \param[in] max Maximum bound for volume fraction
//! \param[in] al_gp Volume fraction at the quadrature point
//! \param[in] al_avg Cell-average volume fraction
//! \return The limiting coefficient from the bound-preserving limiter function
// *****************************************************************************
{
tk::real phi(1.0), al_diff(0.0);
al_diff = al_gp - al_avg;
if(al_gp > max && fabs(al_diff) > 1e-15)
phi = std::fabs( (max - al_avg) / al_diff );
else if(al_gp < min && fabs(al_diff) > 1e-15)
phi = std::fabs( (min - al_avg) / al_diff );
return phi;
}
void PositivityLimitingMultiMat( std::size_t nmat,
const std::vector< inciter::EOS >& mat_blk,
std::size_t rdof,
std::size_t ndof_el,
const std::vector< std::size_t >& ndofel,
std::size_t e,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< int >& esuel,
const tk::Fields& U,
const tk::Fields& P,
std::vector< tk::real >& phic_p1,
std::vector< tk::real >& phic_p2,
std::vector< tk::real >& phip_p1,
std::vector< tk::real >& phip_p2 )
// *****************************************************************************
// Positivity preserving limiter for multi-material solver
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] rdof Total number of reconstructed dofs
//! \param[in] ndof_el Number of dofs for element e
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] e Element being checked for consistency
//! \param[in] inpoel Element connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] esuel Elements surrounding elements
//! \param[in] U Vector of conservative variables
//! \param[in] P Vector of primitive variables
//! \param[in,out] phic_p1 Vector of limiter functions for P1 dofs of the
//! conserved quantities
//! \param[in,out] phic_p2 Vector of limiter functions for P2 dofs of the
//! conserved quantities
//! \param[in,out] phip_p1 Vector of limiter functions for P1 dofs of the
//! primitive quantities
//! \param[in,out] phip_p2 Vector of limiter functions for P2 dofs of the
//! primitive quantities
// *****************************************************************************
{
const auto ncomp = U.nprop() / rdof;
const auto nprim = P.nprop() / rdof;
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > phic_bound(ncomp, 1.0);
std::vector< tk::real > phip_bound(nprim, 1.0);
const tk::real min = 1e-15;
for (std::size_t lf=0; lf<4; ++lf)
{
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
std::size_t nel;
if (esuel[4*e+lf] == -1) nel = e;
else nel = static_cast< std::size_t >(esuel[4*e+lf]);
auto ng = tk::NGfa(std::max(ndofel[e], ndofel[nel]));
std::array< std::vector< tk::real >, 2 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTri( ng, coordgp, wgp );
for (std::size_t igp=0; igp<ng; ++igp)
{
auto gp = tk::eval_gp( igp, coordfa, coordgp );
auto B = tk::eval_basis( ndof_el,
tk::Jacobian( coordel[0], gp, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], gp, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], gp ) / detT );
auto state = eval_state(ncomp, rdof, ndof_el, e, U, B);
auto sprim = eval_state(nprim, rdof, ndof_el, e, P, B);
for(std::size_t imat = 0; imat < nmat; imat++)
{
tk::real phi_rho(1.0), phi_rhoe(1.0), phi_pre(1.0);<--- phi_rho is assigned<--- phi_rhoe is assigned<--- phi_pre is assigned
// Evaluate the limiting coefficient for material density
auto rho = state[densityIdx(nmat, imat)];
auto rho_avg = U(e, densityDofIdx(nmat, imat, rdof, 0));
phi_rho = PositivityLimiting(min, rho, rho_avg);<--- phi_rho is overwritten
phic_bound[densityIdx(nmat, imat)] =
std::min(phic_bound[densityIdx(nmat, imat)], phi_rho);
// Evaluate the limiting coefficient for material energy
auto rhoe = state[energyIdx(nmat, imat)];
auto rhoe_avg = U(e, energyDofIdx(nmat, imat, rdof, 0));
phi_rhoe = PositivityLimiting(min, rhoe, rhoe_avg);<--- phi_rhoe is overwritten
phic_bound[energyIdx(nmat, imat)] =
std::min(phic_bound[energyIdx(nmat, imat)], phi_rhoe);
// Evaluate the limiting coefficient for material pressure
auto min_pre = std::max(min, state[volfracIdx(nmat, imat)] *
mat_blk[imat].compute< EOS::min_eff_pressure >(min, rho,
state[volfracIdx(nmat, imat)]));
auto pre = sprim[pressureIdx(nmat, imat)];
auto pre_avg = P(e, pressureDofIdx(nmat, imat, rdof, 0));
phi_pre = PositivityLimiting(min_pre, pre, pre_avg);<--- phi_pre is overwritten
phip_bound[pressureIdx(nmat, imat)] =
std::min(phip_bound[pressureIdx(nmat, imat)], phi_pre);
}
}
}
if(ndofel[e] > 4)
{
auto ng = tk::NGvol(ndof_el);
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
for (std::size_t igp=0; igp<ng; ++igp)
{
auto B = tk::eval_basis( ndof_el, coordgp[0][igp], coordgp[1][igp],
coordgp[2][igp] );
auto state = eval_state(ncomp, rdof, ndof_el, e, U, B);
auto sprim = eval_state(nprim, rdof, ndof_el, e, P, B);
for(std::size_t imat = 0; imat < nmat; imat++)
{
tk::real phi_rho(1.0), phi_rhoe(1.0), phi_pre(1.0);<--- phi_rho is assigned<--- phi_rhoe is assigned<--- phi_pre is assigned
// Evaluate the limiting coefficient for material density
auto rho = state[densityIdx(nmat, imat)];
auto rho_avg = U(e, densityDofIdx(nmat, imat, rdof, 0));
phi_rho = PositivityLimiting(min, rho, rho_avg);<--- phi_rho is overwritten
phic_bound[densityIdx(nmat, imat)] =
std::min(phic_bound[densityIdx(nmat, imat)], phi_rho);
// Evaluate the limiting coefficient for material energy
auto rhoe = state[energyIdx(nmat, imat)];
auto rhoe_avg = U(e, energyDofIdx(nmat, imat, rdof, 0));
phi_rhoe = PositivityLimiting(min, rhoe, rhoe_avg);<--- phi_rhoe is overwritten
phic_bound[energyIdx(nmat, imat)] =
std::min(phic_bound[energyIdx(nmat, imat)], phi_rhoe);
// Evaluate the limiting coefficient for material pressure
auto min_pre = std::max(min, state[volfracIdx(nmat, imat)] *
mat_blk[imat].compute< EOS::min_eff_pressure >(min, rho,
state[volfracIdx(nmat, imat)]));
auto pre = sprim[pressureIdx(nmat, imat)];
auto pre_avg = P(e, pressureDofIdx(nmat, imat, rdof, 0));
phi_pre = PositivityLimiting(min_pre, pre, pre_avg);<--- phi_pre is overwritten
phip_bound[pressureIdx(nmat, imat)] =
std::min(phip_bound[pressureIdx(nmat, imat)], phi_pre);
}
}
}
// apply new bounds to material quantities
for (std::size_t k=0; k<nmat; ++k) {
// mat density
phic_p1[densityIdx(nmat, k)] = std::min( phic_bound[densityIdx(nmat, k)],
phic_p1[densityIdx(nmat, k)] );
// mat energy
phic_p1[energyIdx(nmat, k)] = std::min( phic_bound[energyIdx(nmat, k)],
phic_p1[energyIdx(nmat, k)] );
// mat pressure
phip_p1[pressureIdx(nmat, k)] = std::min( phip_bound[pressureIdx(nmat, k)],
phip_p1[pressureIdx(nmat, k)] );
// for dgp2
if (ndof_el > 4) {
// mat density
phic_p2[densityIdx(nmat, k)] = std::min( phic_bound[densityIdx(nmat, k)],
phic_p2[densityIdx(nmat, k)] );
// mat energy
phic_p2[energyIdx(nmat, k)] = std::min( phic_bound[energyIdx(nmat, k)],
phic_p2[energyIdx(nmat, k)] );
// mat pressure
phip_p2[pressureIdx(nmat, k)] = std::min( phip_bound[pressureIdx(nmat, k)],
phip_p2[pressureIdx(nmat, k)] );
}
}
}
void PositivityPreservingMultiMat_FV(
const std::vector< std::size_t >& inpoel,
std::size_t nelem,
std::size_t nmat,
const std::vector< inciter::EOS >& mat_blk,
const tk::UnsMesh::Coords& coord,
const tk::Fields& /*geoFace*/,
tk::Fields& U,
tk::Fields& P )
// *****************************************************************************
// Positivity preserving limiter for the FV multi-material solver
//! \param[in] inpoel Element connectivity
//! \param[in] nelem Number of elements
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk Material EOS block
//! \param[in] coord Array of nodal coordinates
////! \param[in] geoFace Face geometry array
//! \param[in,out] U High-order solution vector which gets limited
//! \param[in,out] P High-order vector of primitives which gets limited
//! \details This positivity preserving limiter function should be called for
//! FV multimat.
// *****************************************************************************
{
const auto rdof = inciter::g_inputdeck.get< tag::rdof >();
const auto ncomp = U.nprop() / rdof;
const auto nprim = P.nprop() / rdof;
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
for (std::size_t e=0; e<nelem; ++e)
{
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT =
tk::Jacobian( coordel[0], coordel[1], coordel[2], coordel[3] );
std::vector< tk::real > phic(ncomp, 1.0);
std::vector< tk::real > phip(nprim, 1.0);
const tk::real min = 1e-15;
// 1. Enforce positive density (total energy will be positive if pressure
// and density are positive)
for (std::size_t lf=0; lf<4; ++lf)
{
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
// face coordinates
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
// face centroid
std::array< tk::real, 3 > fc{{
(coordfa[0][0]+coordfa[1][0]+coordfa[2][0])/3.0 ,
(coordfa[0][1]+coordfa[1][1]+coordfa[2][1])/3.0 ,
(coordfa[0][2]+coordfa[1][2]+coordfa[2][2])/3.0 }};
auto B = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], fc, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], fc, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], fc ) / detT );
auto state = eval_state(ncomp, rdof, rdof, e, U, B);
for(std::size_t i=0; i<nmat; i++)
{
// Evaluate the limiting coefficient for material density
auto rho = state[densityIdx(nmat, i)];
auto rho_avg = U(e, densityDofIdx(nmat, i, rdof, 0));
auto phi_rho = PositivityLimiting(min, rho, rho_avg);
phic[densityIdx(nmat, i)] =
std::min(phic[densityIdx(nmat, i)], phi_rho);
}
}
// apply limiter coefficient
for(std::size_t i=0; i<nmat; i++)
{
U(e, densityDofIdx(nmat,i,rdof,1)) *= phic[densityIdx(nmat,i)];
U(e, densityDofIdx(nmat,i,rdof,2)) *= phic[densityIdx(nmat,i)];
U(e, densityDofIdx(nmat,i,rdof,3)) *= phic[densityIdx(nmat,i)];
}
// 2. Enforce positive pressure (assuming density is positive)
for (std::size_t lf=0; lf<4; ++lf)
{
std::array< std::size_t, 3 > inpofa_l {{ inpoel[4*e+tk::lpofa[lf][0]],
inpoel[4*e+tk::lpofa[lf][1]],
inpoel[4*e+tk::lpofa[lf][2]] }};
// face coordinates
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa_l[0] ], cy[ inpofa_l[0] ], cz[ inpofa_l[0] ] }},
{{ cx[ inpofa_l[1] ], cy[ inpofa_l[1] ], cz[ inpofa_l[1] ] }},
{{ cx[ inpofa_l[2] ], cy[ inpofa_l[2] ], cz[ inpofa_l[2] ] }} }};
// face centroid
std::array< tk::real, 3 > fc{{
(coordfa[0][0]+coordfa[1][0]+coordfa[2][0])/3.0 ,
(coordfa[0][1]+coordfa[1][1]+coordfa[2][1])/3.0 ,
(coordfa[0][2]+coordfa[1][2]+coordfa[2][2])/3.0 }};
auto B = tk::eval_basis( rdof,
tk::Jacobian( coordel[0], fc, coordel[2], coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], fc, coordel[3] ) / detT,
tk::Jacobian( coordel[0], coordel[1], coordel[2], fc ) / detT );
auto state = eval_state(ncomp, rdof, rdof, e, U, B);
auto sprim = eval_state(nprim, rdof, rdof, e, P, B);
for(std::size_t i=0; i<nmat; i++)
{
tk::real phi_pre(1.0);<--- phi_pre is assigned
// Evaluate the limiting coefficient for material pressure
auto rho = state[densityIdx(nmat, i)];
auto min_pre = std::max(min, U(e,volfracDofIdx(nmat,i,rdof,0)) *
mat_blk[i].compute< EOS::min_eff_pressure >(min, rho,
U(e,volfracDofIdx(nmat,i,rdof,0))));
auto pre = sprim[pressureIdx(nmat, i)];
auto pre_avg = P(e, pressureDofIdx(nmat, i, rdof, 0));
phi_pre = PositivityLimiting(min_pre, pre, pre_avg);<--- phi_pre is overwritten
phip[pressureIdx(nmat, i)] =
std::min(phip[pressureIdx(nmat, i)], phi_pre);
}
}
// apply limiter coefficient
for(std::size_t i=0; i<nmat; i++)
{
P(e, pressureDofIdx(nmat,i,rdof,1)) *= phip[pressureIdx(nmat,i)];
P(e, pressureDofIdx(nmat,i,rdof,2)) *= phip[pressureIdx(nmat,i)];
P(e, pressureDofIdx(nmat,i,rdof,3)) *= phip[pressureIdx(nmat,i)];
}
}
}
tk::real
PositivityLimiting( const tk::real min,
const tk::real u_gp,
const tk::real u_avg )
// *****************************************************************************
// Positivity-preserving limiter function
//! \param[in] min Minimum bound for volume fraction
//! \param[in] u_gp Variable quantity at the quadrature point
//! \param[in] u_avg Cell-average variable quantitiy
//! \return The limiting coefficient from the positivity-preserving limiter
//! function
// *****************************************************************************
{
tk::real phi(1.0);
tk::real diff = u_gp - u_avg;
// Only when u_gp is less than minimum threshold and the high order
// contribution is not zero, the limiting function will be applied
if(u_gp < min)
phi = std::fabs( (min - u_avg) / (diff+std::copysign(1e-15,diff)) );
return phi;
}
bool
interfaceIndicator( std::size_t nmat,
const std::vector< tk::real >& al,
std::vector< std::size_t >& matInt )
// *****************************************************************************
// Interface indicator function, which checks element for material interface
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] al Cell-averaged volume fractions
//! \param[in] matInt Array indicating which material has an interface
//! \return Boolean which indicates if the element contains a material interface
// *****************************************************************************
{
bool intInd = false;
// limits under which compression is to be performed
auto al_eps = 1e-08;
auto loLim = 2.0 * al_eps;
auto hiLim = 1.0 - loLim;
auto almax = 0.0;
for (std::size_t k=0; k<nmat; ++k)
{
almax = std::max(almax, al[k]);
matInt[k] = 0;
if ((al[k] > loLim) && (al[k] < hiLim)) matInt[k] = 1;
}
if ((almax > loLim) && (almax < hiLim)) intInd = true;
return intInd;
}
void MarkShockCells ( const bool pref,
const std::size_t nelem,
const std::size_t nmat,
const std::size_t ndof,
const std::size_t rdof,
const std::vector< inciter::EOS >& mat_blk,
const std::vector< std::size_t >& ndofel,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const inciter::FaceData& fd,
[[maybe_unused]] const tk::Fields& geoFace,
const tk::Fields& geoElem,
const tk::FluxFn& flux,
const std::vector< std::size_t >& solidx,
const tk::Fields& U,
const tk::Fields& P,
std::vector< std::size_t >& shockmarker )
// *****************************************************************************
// Mark the cells that contain discontinuity according to the interface
// condition
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] nelem Number of elements
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] mat_blk EOS material block
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] flux Flux function to use
//! \param[in] solidx Solid material index indicator
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in, out] shockmarker Vector of the shock indicator
//! \details This function computes the discontinuity indicator based on
//! interface conditon. It is based on the following paper:
//! Hong L., Gianni A., Robert N. (2021) A moving discontinuous Galerkin
//! finite element method with interface condition enforcement for
//! compressible flows. Journal of Computational Physics,
//! doi: https://doi.org/10.1016/j.jcp.2021.110618
// *****************************************************************************
{
const auto coeff = g_inputdeck.get< tag::shock_detector_coeff >();
std::vector< tk::real > IC(U.nunk(), 0.0);
const auto& esuf = fd.Esuf();
const auto& inpofa = fd.Inpofa();
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.
// The interface-conservation based indicator will only evaluate the flux jump
// for the momentum equations
std::set< std::size_t > vars;
if(nmat > 1) { // multi-material flow
for (std::size_t i=0; i<3; ++i) vars.insert(momentumIdx(nmat, i));
} else { // single-material flow
for (std::size_t i=1; i<=3; ++i) vars.insert(i);
}
// Loop over faces
for (auto f=fd.Nbfac(); f<esuf.size()/2; ++f) {
Assert( esuf[2*f] > -1 && esuf[2*f+1] > -1, "Interior element detected "
"as -1" );
std::size_t el = static_cast< std::size_t >(esuf[2*f]);
std::size_t er = static_cast< std::size_t >(esuf[2*f+1]);
// When the number of gauss points for the left and right element are
// different, choose the larger ng
auto ng_l = tk::NGfa(ndofel[el]);
auto ng_r = tk::NGfa(ndofel[er]);
auto ng = std::max( ng_l, ng_r );
std::array< std::vector< tk::real >, 2 > coordgp
{ std::vector<tk::real>(ng), std::vector<tk::real>(ng) };
std::vector< tk::real > wgp( ng );
tk::GaussQuadratureTri( ng, coordgp, wgp );
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel_l {{
{{ cx[ inpoel[4*el ] ], cy[ inpoel[4*el ] ], cz[ inpoel[4*el ] ] }},
{{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
{{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
{{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};
std::array< std::array< tk::real, 3>, 4 > coordel_r {{
{{ cx[ inpoel[4*er ] ], cy[ inpoel[4*er ] ], cz[ inpoel[4*er ] ] }},
{{ cx[ inpoel[4*er+1] ], cy[ inpoel[4*er+1] ], cz[ inpoel[4*er+1] ] }},
{{ cx[ inpoel[4*er+2] ], cy[ inpoel[4*er+2] ], cz[ inpoel[4*er+2] ] }},
{{ cx[ inpoel[4*er+3] ], cy[ inpoel[4*er+3] ], cz[ inpoel[4*er+3] ] }} }};
// Compute the determinant of Jacobian matrix
auto detT_l =
tk::Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );
auto detT_r =
tk::Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], coordel_r[3] );
std::array< std::array< tk::real, 3>, 3 > coordfa {{
{{ cx[ inpofa[3*f ] ], cy[ inpofa[3*f ] ], cz[ inpofa[3*f ] ] }},
{{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
{{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }} }};
std::array< tk::real, 3 >
fn{{ geoFace(f,1), geoFace(f,2), geoFace(f,3) }};
// Numerator and denominator of the shock indicator
tk::real numer(0.0), denom(0.0);
std::vector< tk::real > fl_jump, fl_avg;
fl_jump.resize(3, 0.0);
fl_avg.resize(3, 0.0);
for (std::size_t igp=0; igp<ng; ++igp) {
auto gp = tk::eval_gp( igp, coordfa, coordgp );
std::size_t dof_el, dof_er;
if (rdof > ndof)
{
dof_el = rdof;
dof_er = rdof;
}
else
{
dof_el = ndofel[el];
dof_er = ndofel[er];
}
std::array< tk::real, 3> ref_gp_l{
tk::Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
tk::Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
tk::Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };
std::array< tk::real, 3> ref_gp_r{
tk::Jacobian( coordel_r[0], gp, coordel_r[2], coordel_r[3] ) / detT_r,
tk::Jacobian( coordel_r[0], coordel_r[1], gp, coordel_r[3] ) / detT_r,
tk::Jacobian( coordel_r[0], coordel_r[1], coordel_r[2], gp ) / detT_r };
auto B_l = tk::eval_basis( dof_el, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );
auto B_r = tk::eval_basis( dof_er, ref_gp_r[0], ref_gp_r[1], ref_gp_r[2] );
std::array< std::vector< tk::real >, 2 > state;
// Evaluate the high order solution at the qudrature point
state[0] = tk::evalPolynomialSol(mat_blk, 0, ncomp, nprim, rdof,
nmat, el, dof_el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P);
state[1] = tk::evalPolynomialSol(mat_blk, 0, ncomp, nprim, rdof,
nmat, er, dof_er, inpoel, coord, geoElem, ref_gp_r, B_r, U, P);
Assert( state[0].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
Assert( state[1].size() == ncomp+nprim, "Incorrect size for "
"appended boundary state vector" );
// Force deformation unknown to first order
for (std::size_t k=0; k<nmat; ++k)
if (solidx[k] > 0)
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
{
state[0][deformIdx(nmat, solidx[k], i, j)] = U(el,deformDofIdx(
nmat, solidx[k], i, j, rdof, 0));
state[1][deformIdx(nmat, solidx[k], i, j)] = U(er,deformDofIdx(
nmat, solidx[k], i, j, rdof, 0));
}
// Evaluate the flux
auto fl = flux( ncomp, mat_blk, state[0], {} );
auto fr = flux( ncomp, mat_blk, state[1], {} );
std::size_t i(0);
for (const auto& c : vars) {
tk::real fn_l(0.0), fn_r(0.0);
for(std::size_t idir = 0; idir < 3; idir++) {
fn_l += fl[c][idir] * fn[idir];
fn_r += fr[c][idir] * fn[idir];
}
fl_jump[i] += wgp[igp] * (fn_l - fn_r) * (fn_l - fn_r);
fl_avg[i] += wgp[igp] * (fn_l + fn_r) * (fn_l + fn_r) * 0.25;
++i;
}
}
// Evaluate the numerator and denominator
for(std::size_t idir = 0; idir < 3; idir++) {
numer += std::sqrt(fl_jump[idir]);
denom += std::sqrt(fl_avg[idir]);
}
tk::real Ind(0.0);
if(denom > 1e-8)
Ind = numer / denom;
IC[el] = std::max(IC[el], Ind);
IC[er] = std::max(IC[er], Ind);
}
// Loop over element to mark shock cell
for (std::size_t e=0; e<nelem; ++e) {
std::size_t dof_el = pref ? ndofel[e] : rdof;
tk::real power = 0.0;
if(dof_el == 10) power = 1.5;
else power = 1.0;
// Evaluate the threshold
auto thres = coeff * std::pow(geoElem(e, 4), power);
if(IC[e] > thres)
shockmarker[e] = 1;
else
shockmarker[e] = 0;
}
}
void
correctLimConservMultiMat(
std::size_t nelem,
const std::vector< EOS >& mat_blk,
std::size_t nmat,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& geoElem,
const tk::Fields& prim,
tk::Fields& unk )
// *****************************************************************************
// Update the conservative quantities after limiting for multi-material systems
//! \param[in] nelem Number of internal elements
//! \param[in] mat_blk EOS material block
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] geoElem Element geometry array
//! \param[in] prim Array of primitive variables
//! \param[in,out] unk Array of conservative variables
//! \details This function computes the updated dofs for conservative
//! quantities based on the limited primitive quantities, to re-instate
//! consistency between the limited primitive and evolved quantities. For
//! further details, see Pandare et al. (2023). On the Design of Stable,
//! Consistent, and Conservative High-Order Methods for Multi-Material
//! Hydrodynamics. J Comp Phys, 112313.
// *****************************************************************************
{
const auto rdof = g_inputdeck.get< tag::rdof >();
std::size_t ncomp = unk.nprop()/rdof;
std::size_t nprim = prim.nprop()/rdof;
const auto intsharp = inciter::g_inputdeck.get< tag::multimat,
tag::intsharp >();
for (std::size_t e=0; e<nelem; ++e) {
// Here we pre-compute the right-hand-side vector. The reason that the
// lhs in DG.cpp is not used is that the size of this vector in this
// projection procedure should be rdof instead of ndof.
auto L = tk::massMatrixDubiner(rdof, geoElem(e,0));
// The right-hand side vector is sized as nprim, i.e. the primitive quantity
// vector. However, it stores the consistently obtained values of evolved
// quantities, since nprim is the number of evolved quantities that need to
// be evaluated consistently. For this reason, accessing R will require
// the primitive quantity accessors. But this access is intended to give
// the corresponding evolved quantites, as follows:
// pressureIdx() - mat. total energy
// velocityIdx() - bulk momentum components
// stressIdx() - mat. inverse deformation gradient tensor components
std::vector< tk::real > R(nprim*rdof, 0.0);
auto ng = tk::NGvol(rdof);
// Arrays for quadrature points
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
// Loop over quadrature points in element e
for (std::size_t igp=0; igp<ng; ++igp) {
// Compute the basis function
auto B = tk::eval_basis( rdof, coordgp[0][igp], coordgp[1][igp],
coordgp[2][igp] );
auto w = wgp[igp] * geoElem(e, 0);
// Evaluate the solution at quadrature point
auto state = evalPolynomialSol(mat_blk, intsharp, ncomp, nprim,
rdof, nmat, e, rdof, inpoel, coord, geoElem,
{{coordgp[0][igp], coordgp[1][igp], coordgp[2][igp]}}, B, unk, prim);
// Solution vector that stores the material energy and bulk momentum
std::vector< tk::real > s(nprim, 0.0);
// Bulk density at quadrature point
tk::real rhob(0.0);
for (std::size_t k=0; k<nmat; ++k)
rhob += state[densityIdx(nmat, k)];
// Velocity vector at quadrature point
std::array< tk::real, 3 >
vel{ state[ncomp+velocityIdx(nmat, 0)],
state[ncomp+velocityIdx(nmat, 1)],
state[ncomp+velocityIdx(nmat, 2)] };
// Compute and store the bulk momentum
for(std::size_t idir = 0; idir < 3; idir++)
s[velocityIdx(nmat, idir)] = rhob * vel[idir];
// Compute and store material energy at quadrature point
for(std::size_t imat = 0; imat < nmat; imat++) {
auto alphamat = state[volfracIdx(nmat, imat)];
auto rhomat = state[densityIdx(nmat, imat)]/alphamat;
auto premat = state[ncomp+pressureIdx(nmat, imat)]/alphamat;
auto gmat = getDeformGrad(nmat, imat, state);
s[pressureIdx(nmat,imat)] = alphamat *
mat_blk[imat].compute< EOS::totalenergy >( rhomat, vel[0], vel[1],
vel[2], premat, gmat );
}
// Evaluate the righ-hand-side vector
for(std::size_t k = 0; k < nprim; k++) {
auto mark = k * rdof;
for(std::size_t idof = 0; idof < rdof; idof++)
R[mark+idof] += w * s[k] * B[idof];
}
}
// Update the high order dofs of the material energy
for(std::size_t imat = 0; imat < nmat; imat++) {
for(std::size_t idof = 1; idof < rdof; idof++)
unk(e, energyDofIdx(nmat, imat, rdof, idof)) =
R[pressureDofIdx(nmat,imat,rdof,idof)] / L[idof];
}
// Update the high order dofs of the bulk momentum
for(std::size_t idir = 0; idir < 3; idir++) {
for(std::size_t idof = 1; idof < rdof; idof++)
unk(e, momentumDofIdx(nmat, idir, rdof, idof)) =
R[velocityDofIdx(nmat,idir,rdof,idof)] / L[idof];
}
}
}
tk::real
constrain_pressure( const std::vector< EOS >& mat_blk,
tk::real apr,
tk::real arho,
tk::real alpha=1.0,
std::size_t imat=0 )
// *****************************************************************************
// Constrain material partial pressure (alpha_k * p_k)
//! \param[in] apr Material partial pressure (alpha_k * p_k)
//! \param[in] arho Material partial density (alpha_k * rho_k)
//! \param[in] alpha Material volume fraction. Default is 1.0, so that for the
//! single-material system, this argument can be left unspecified by the
//! calling code
//! \param[in] imat Material-id who's EoS is required. Default is 0, so that
//! for the single-material system, this argument can be left unspecified by
//! the calling code
//! \return Constrained material partial pressure (alpha_k * p_k)
// *****************************************************************************
{
return std::max(apr, alpha*mat_blk[imat].compute<
EOS::min_eff_pressure >(1e-12, arho, alpha));
}
} // inciter::
|