1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
// *****************************************************************************
/*!
  \file      src/PDE/Integrate/Boundary.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     Functions for computing physical boundary surface integrals of a
     system of PDEs in DG methods
  \details   This file contains functionality for computing physical boundary
     surface integrals of a system of PDEs used in discontinuous Galerkin
     methods for various orders of numerical representation.
*/
// *****************************************************************************

#include <array>

#include "Basis.hpp"
#include "Boundary.hpp"
#include "Vector.hpp"
#include "Quadrature.hpp"
#include "MultiMatTerms.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
#include "Reconstruction.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"

namespace inciter {
extern ctr::InputDeck g_inputdeck;
}

namespace tk {

void
bndSurfInt( const bool pref,
            std::size_t nmat,
            const std::vector< inciter::EOS >& mat_blk,
            const std::size_t ndof,
            const std::size_t rdof,
            const std::vector< std::size_t >& bcconfig,
            const inciter::FaceData& fd,
            const Fields& geoFace,
            const Fields& geoElem,
            const std::vector< std::size_t >& inpoel,
            const UnsMesh::Coords& coord,
            real t,
            const RiemannFluxFn& flux,
            const VelFn& vel,
            const StateFn& state,
            const Fields& U,
            const Fields& P,
            const std::vector< std::size_t >& ndofel,
            Fields& R,
            std::vector< std::vector< tk::real > >& riemannDeriv,
            int intsharp )
// *****************************************************************************
//! Compute boundary surface flux integrals for a given boundary type for DG
//! \details This function computes contributions from surface integrals along
//!   all faces for a particular boundary condition type, configured by the state
//!   function
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] bcconfig BC configuration vector for multiple side sets
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] t Physical time
//! \param[in] flux Riemann flux function to use
//! \param[in] vel Function to use to query prescribed velocity (if any)
//! \param[in] state Function to evaluate the left and right solution state at
//!   boundaries
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in,out] R Right-hand side vector computed
//! \param[in,out] riemannDeriv Derivatives of partial-pressures and velocities
//!   computed from the Riemann solver for use in the non-conservative terms.
//!   These derivatives are used only for multi-material hydro and unused for
//!   single-material compflow and linear transport.
//! \param[in] intsharp Interface compression tag, an optional argument, with
//!   default 0, so that it is unused for single-material and transport.
// *****************************************************************************
{
  const auto& bface = fd.Bface();
  const auto& esuf = fd.Esuf();
  const auto& inpofa = fd.Inpofa();

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
  auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.

  //Assert( (nmat==1 ? riemannDeriv.empty() : true), "Non-empty Riemann "
  //        "derivative vector for single material compflow" );

  for (const auto& s : bcconfig) {       // for all bc sidesets
    auto bc = bface.find(static_cast<int>(s));// faces for side set
    if (bc != end(bface))
    {
      for (const auto& f : bc->second)
      {
        Assert( esuf[2*f+1] == -1, "outside boundary element not -1" );

        std::size_t el = static_cast< std::size_t >(esuf[2*f]);

        auto ng = tk::NGfa(ndofel[el]);

        // arrays for quadrature points
        std::array< std::vector< real >, 2 > coordgp;
        std::vector< real > wgp;

        coordgp[0].resize( ng );
        coordgp[1].resize( ng );
        wgp.resize( ng );

        // get quadrature point weights and coordinates for triangle
        GaussQuadratureTri( ng, coordgp, wgp );

        // Extract the left element coordinates
        std::array< std::array< tk::real, 3>, 4 > coordel_l {{
        {{ cx[ inpoel[4*el  ] ], cy[ inpoel[4*el  ] ], cz[ inpoel[4*el  ] ] }},
        {{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
        {{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
        {{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};

        // Compute the determinant of Jacobian matrix
        auto detT_l =
          Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );

        // Extract the face coordinates
        std::array< std::array< tk::real, 3>, 3 > coordfa {{
          {{ cx[ inpofa[3*f  ] ], cy[ inpofa[3*f  ] ], cz[ inpofa[3*f  ] ] }},
          {{ cx[ inpofa[3*f+1] ], cy[ inpofa[3*f+1] ], cz[ inpofa[3*f+1] ] }},
          {{ cx[ inpofa[3*f+2] ], cy[ inpofa[3*f+2] ], cz[ inpofa[3*f+2] ] }} }};

        std::array< real, 3 >
          fn{{ geoFace(f,1), geoFace(f,2), geoFace(f,3) }};

        // Gaussian quadrature
        for (std::size_t igp=0; igp<ng; ++igp)
        {
          // Compute the coordinates of quadrature point at physical domain
          auto gp = eval_gp( igp, coordfa, coordgp );

          // If an rDG method is set up (P0P1), then, currently we compute the P1
          // basis functions and solutions by default. This implies that P0P1 is
          // unsupported in the p-adaptive DG (PDG). This is a workaround until
          // we have rdofel, which is needed to distinguish between ndofs and
          // rdofs per element for pDG.
          std::size_t dof_el;
          if (rdof > ndof)
          {
            dof_el = rdof;
          }
          else
          {
            dof_el = ndofel[el];
          }

          // For multi-material p-adaptive simulation, when dofel = 1, p0p1 is applied and ndof
          // for solution evaluation should be 4
          if(ncomp > 5 && dof_el == 1 && pref)
            dof_el = 4;

          std::array< tk::real, 3> ref_gp_l{
            Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
            Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
            Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };

          //Compute the basis functions for the left element
          auto B_l = eval_basis( dof_el, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );

          auto wt = wgp[igp] * geoFace(f,0);<--- Variable 'wt' is assigned a value that is never used.

          // Compute the state variables at the left element
          auto ugp = evalPolynomialSol(mat_blk, intsharp, ncomp, nprim,
            rdof, nmat, el, dof_el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P);

          Assert( ugp.size() == ncomp+nprim, "Incorrect size for "
                  "appended boundary state vector" );

          auto var = state( ncomp, mat_blk, ugp, gp[0], gp[1], gp[2], t, fn );

          // Compute the numerical flux
          auto fl = flux(mat_blk, fn, var, vel(ncomp, gp[0], gp[1], gp[2], t));

          // Code below commented until details about the form of these terms in
          // the \alpha_k g_k equations are sorted out.
          // // Add RHS inverse deformation terms if necessary
          // if (haveSolid)
          //   solidTermsSurfInt( nmat, ndof, rdof, fn, el, er, solidx, geoElem, U,
          //                      coordel_l, coordel_r, igp, coordgp, dt, fl );

          // Add the surface integration term to the rhs
          update_rhs_bc( ncomp, nmat, ndof, ndofel[el], wt, fn, el, fl,
                         B_l, R, riemannDeriv );
        }
      }
    }
  }
}

void
update_rhs_bc ( ncomp_t ncomp,
                std::size_t nmat,
                const std::size_t ndof,
                const std::size_t ndof_l,
                const tk::real wt,
                const std::array< tk::real, 3 >& fn,
                const std::size_t el,
                const std::vector< tk::real >& fl,
                const std::vector< tk::real >& B_l,
                Fields& R,<--- Parameter 'R' can be declared with const
                std::vector< std::vector< tk::real > >& riemannDeriv )
// *****************************************************************************
//  Update the rhs by adding the boundary surface integration term
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] ndof Maximum number of degrees of freedom
//! \param[in] ndof_l Number of degrees of freedom for the left element
//! \param[in] wt Weight of gauss quadrature point
//! \param[in] fn Face/Surface normal
//! \param[in] el Left element index
//! \param[in] fl Surface flux
//! \param[in] B_l Basis function for the left element
//! \param[in,out] R Right-hand side vector computed
//! \param[in,out] riemannDeriv Derivatives of partial-pressures and velocities
//!   computed from the Riemann solver for use in the non-conservative terms.
//!   These derivatives are used only for multi-material hydro and unused for
//!   single-material compflow and linear transport.
// *****************************************************************************
{
  // following line commented until rdofel is made available.
  //Assert( B_l.size() == ndof_l, "Size mismatch" );

  using inciter::newSolidsAccFn;

  const auto& solidx =
    inciter::g_inputdeck.get< tag::matidxmap, tag::solidx >();

  for (ncomp_t c=0; c<ncomp; ++c)
  {
    auto mark = c*ndof;
    R(el, mark) -= wt * fl[c];

    if(ndof_l > 1)          //DG(P1)
    {
      R(el, mark+1) -= wt * fl[c] * B_l[1];
      R(el, mark+2) -= wt * fl[c] * B_l[2];
      R(el, mark+3) -= wt * fl[c] * B_l[3];
    }

    if(ndof_l > 4)          //DG(P2)
    {
      R(el, mark+4) -= wt * fl[c] * B_l[4];
      R(el, mark+5) -= wt * fl[c] * B_l[5];
      R(el, mark+6) -= wt * fl[c] * B_l[6];
      R(el, mark+7) -= wt * fl[c] * B_l[7];
      R(el, mark+8) -= wt * fl[c] * B_l[8];
      R(el, mark+9) -= wt * fl[c] * B_l[9];
    }
  }

  // Prep for non-conservative terms in multimat
  if (fl.size() > ncomp)
  {
    // Gradients of partial pressures
    for (std::size_t k=0; k<nmat; ++k)
    {
      for (std::size_t idir=0; idir<3; ++idir)
        riemannDeriv[3*k+idir][el] += wt * fl[ncomp+k] * fn[idir];
    }

    // Divergence of velocity multiples basis fucntion( d(uB) / dx )
    for(std::size_t idof = 0; idof < ndof_l; idof++)
      riemannDeriv[3*nmat+idof][el] += wt * fl[ncomp+nmat] * B_l[idof];

    // Divergence of asigma: d(asig_ij)/dx_j
    for (std::size_t k=0; k<nmat; ++k)
      if (solidx[k] > 0)
      {
        std::size_t mark = ncomp+nmat+1+3*(solidx[k]-1);

        for (std::size_t i=0; i<3; ++i)
          riemannDeriv[3*nmat+ndof+3*(solidx[k]-1)+i][el] -=
            wt * fl[mark+i];
      }
  }
}

void
bndSurfIntFV(
  std::size_t nmat,
  const std::vector< inciter::EOS >& mat_blk,
  const std::size_t rdof,
  const std::vector< std::size_t >& bcconfig,
  const inciter::FaceData& fd,
  const Fields& geoFace,
  const Fields& geoElem,
  const std::vector< std::size_t >& inpoel,
  const UnsMesh::Coords& coord,
  real t,
  const RiemannFluxFn& flux,
  const VelFn& vel,
  const StateFn& state,
  const Fields& U,
  const Fields& P,
  const std::vector< int >& srcFlag,
  Fields& R,
  int intsharp )
// *****************************************************************************
//! Compute boundary surface flux integrals for a given boundary type for FV
//! \details This function computes contributions from surface integrals along
//!   all faces for a particular boundary condition type, configured by the state
//!   function
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] bcconfig BC configuration vector for multiple side sets
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] t Physical time
//! \param[in] flux Riemann flux function to use
//! \param[in] vel Function to use to query prescribed velocity (if any)
//! \param[in] state Function to evaluate the left and right solution state at
//!   boundaries
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in] srcFlag Whether the energy source was added
//! \param[in,out] R Right-hand side vector computed
//! \param[in] intsharp Interface compression tag, an optional argument, with
//!   default 0, so that it is unused for single-material and transport.
// *****************************************************************************
{
  const auto& bface = fd.Bface();
  const auto& esuf = fd.Esuf();

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
  auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.

  for (const auto& s : bcconfig) {       // for all bc sidesets
    auto bc = bface.find(static_cast<int>(s));// faces for side set
    if (bc != end(bface))
    {
      for (const auto& f : bc->second)
      {
        Assert( esuf[2*f+1] == -1, "outside boundary element not -1" );

        std::size_t el = static_cast< std::size_t >(esuf[2*f]);

        // Extract the left element coordinates
        std::array< std::array< tk::real, 3>, 4 > coordel_l {{
        {{ cx[ inpoel[4*el  ] ], cy[ inpoel[4*el  ] ], cz[ inpoel[4*el  ] ] }},
        {{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
        {{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
        {{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};

        // Compute the determinant of Jacobian matrix
        auto detT_l =
          Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );

        // face normal
        std::array< real, 3 >
          fn{{ geoFace(f,1), geoFace(f,2), geoFace(f,3) }};

        // face centroid
        std::array< real, 3 >
          gp{{ geoFace(f,4), geoFace(f,5), geoFace(f,6) }};

        std::array< tk::real, 3> ref_gp_l{
          Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
          Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
          Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };

        //Compute the basis functions for the left element
        auto B_l = eval_basis( rdof, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );

        // Compute the state variables at the left element
        auto ugp = evalFVSol(mat_blk, intsharp, ncomp, nprim,
          rdof, nmat, el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P,
          srcFlag[el]);

        Assert( ugp.size() == ncomp+nprim, "Incorrect size for "
                "appended boundary state vector" );

        auto var = state( ncomp, mat_blk, ugp, gp[0], gp[1], gp[2], t, fn );

        // Compute the numerical flux
        auto fl = flux( mat_blk, fn, var, vel(ncomp, gp[0], gp[1], gp[2], t) );

        // compute non-conservative terms
        std::vector< tk::real > var_riemann(nmat+1, 0.0);
        for (std::size_t k=0; k<nmat+1; ++k) var_riemann[k] = fl[ncomp+k];

        auto ncf_l = nonConservativeIntFV(nmat, rdof, el, fn, U, P, var_riemann);

        // Add the surface integration term to the rhs
        for (ncomp_t c=0; c<ncomp; ++c)
        {
          R(el, c) -= geoFace(f,0) * (fl[c] - ncf_l[c]);
        }
      }
    }
  }
}

void
bndSurfIntViscousFV(
  std::size_t nmat,
  const std::vector< inciter::EOS >& mat_blk,
  const std::size_t rdof,
  const std::vector< std::size_t >& bcconfig,
  const inciter::FaceData& fd,
  const Fields& geoFace,
  const Fields& geoElem,
  const std::vector< std::size_t >& inpoel,
  const UnsMesh::Coords& coord,
  real t,
  const StateFn& state,
  const StateFn& gradFn,
  const Fields& U,
  const Fields& P,
  const Fields& T,
  const std::vector< int >& srcFlag,
  Fields& R,
  int intsharp )
// *****************************************************************************
//! Compute boundary surface flux integrals for a given boundary type for FV
//! \details This function computes contributions from surface integrals along
//!   all faces for a particular boundary condition type, configured by the state
//!   function
//! \param[in] nmat Number of materials in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] rdof Maximum number of reconstructed degrees of freedom
//! \param[in] bcconfig BC configuration vector for multiple side sets
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] t Physical time
//! \param[in] state Function to evaluate the left and right solution state at
//!   boundaries
//! \param[in] gradFn Function to evaluate the left and right solution gradients
//!   at boundaries
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitives at recent time step
//! \param[in] T Vector of temperatures at recent time step
//! \param[in] srcFlag Whether the energy source was added
//! \param[in,out] R Right-hand side vector computed
//! \param[in] intsharp Interface compression tag, an optional argument, with
//!   default 0, so that it is unused for single-material and transport.
// *****************************************************************************
{
  using inciter::velocityDofIdx;

  const auto& bface = fd.Bface();
  const auto& esuf = fd.Esuf();

  const auto& cx = coord[0];
  const auto& cy = coord[1];
  const auto& cz = coord[2];

  auto ncomp = U.nprop()/rdof;<--- Variable 'ncomp' is assigned a value that is never used.
  auto nprim = P.nprop()/rdof;<--- Variable 'nprim' is assigned a value that is never used.

  for (const auto& s : bcconfig) {       // for all bc sidesets
    auto bc = bface.find(static_cast<int>(s));// faces for side set
    if (bc != end(bface))
    {
      for (const auto& f : bc->second)
      {
        Assert( esuf[2*f+1] == -1, "outside boundary element not -1" );

        std::size_t el = static_cast< std::size_t >(esuf[2*f]);

        // Extract the left element coordinates
        std::array< std::array< tk::real, 3>, 4 > coordel_l {{
        {{ cx[ inpoel[4*el  ] ], cy[ inpoel[4*el  ] ], cz[ inpoel[4*el  ] ] }},
        {{ cx[ inpoel[4*el+1] ], cy[ inpoel[4*el+1] ], cz[ inpoel[4*el+1] ] }},
        {{ cx[ inpoel[4*el+2] ], cy[ inpoel[4*el+2] ], cz[ inpoel[4*el+2] ] }},
        {{ cx[ inpoel[4*el+3] ], cy[ inpoel[4*el+3] ], cz[ inpoel[4*el+3] ] }} }};

        // Compute the determinant of Jacobian matrix
        auto detT_l =
          Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], coordel_l[3] );

        // face normal
        std::array< real, 3 >
          fn{{ geoFace(f,1), geoFace(f,2), geoFace(f,3) }};

        // face centroid
        std::array< real, 3 >
          gp{{ geoFace(f,4), geoFace(f,5), geoFace(f,6) }};

        std::array< tk::real, 3> ref_gp_l{
          Jacobian( coordel_l[0], gp, coordel_l[2], coordel_l[3] ) / detT_l,
          Jacobian( coordel_l[0], coordel_l[1], gp, coordel_l[3] ) / detT_l,
          Jacobian( coordel_l[0], coordel_l[1], coordel_l[2], gp ) / detT_l };

        //Compute the basis functions for the left element
        auto B_l = eval_basis( rdof, ref_gp_l[0], ref_gp_l[1], ref_gp_l[2] );

        // Compute the state variables at the left element
        auto ugp = evalFVSol(mat_blk, intsharp, ncomp, nprim,
          rdof, nmat, el, inpoel, coord, geoElem, ref_gp_l, B_l, U, P,
          srcFlag[el]);

        Assert( ugp.size() == ncomp+nprim, "Incorrect size for "
                "appended boundary state vector" );

        auto var = state( ncomp, mat_blk, ugp, gp[0], gp[1], gp[2], t, fn );<--- Variable 'var' is assigned a value that is never used.

        // cell averaged state for computing the diffusive flux
        std::vector< tk::real > Bcc(rdof, 0.0);
        Bcc[0] = 1.0;

        auto ucc = evalFVSol(mat_blk, 0, ncomp, nprim, rdof,
          nmat, el, inpoel, coord, geoElem, {{0.25, 0.25, 0.25}}, Bcc, U, P,
          srcFlag[el]);

        Assert( ucc.size() == ncomp+nprim, "Incorrect size for "
                "appended cell-averaged state vector" );

        // Cell centroids- [0]: left cell, [1]: ghost cell
        // The ghost-cell is a 'reflection' of the boundary cell about the
        // boundary-face. i.e. the vector pointing from the internal-cell
        // centroid to the ghost-cell centroid is normal to the face (aligned
        // with the face-normal), and has length 2*d. d is the distance between
        // the internal-cell centroid and the boundary-face. Based on this
        // information, the centroid of the ghost-cell can be computed using
        // vector algebra.
        std::array< std::array< tk::real, 3 >, 2 > centroids;
        centroids[0] = {{geoElem(el,1), geoElem(el,2), geoElem(el,3)}};
        tk::real d = std::abs( tk::dot(fn,centroids[0]) + tk::dot(fn,gp) ) /
          std::sqrt(tk::dot(fn,fn));
        for (std::size_t i=0; i<3; ++i)
          centroids[1][i] = centroids[0][i] + 2.0*d*fn[i];

        // Get BC for cell-averaged state
        auto varcc = state( ncomp, mat_blk, ucc,
          centroids[1][0], centroids[1][1], centroids[1][2], t, fn );
        // Hard-coded temperature BC- only works for adiabatic 'noslipwall',
        // 'symmetry', 'extrapolate' bc
        std::array< std::vector< real >, 2 > Tcc{{
          std::vector<real>(nmat), std::vector<real>(nmat) }};
        for (std::size_t k=0; k<nmat; ++k) {
          Tcc[0][k] = T(el, k*rdof);
          Tcc[1][k] = Tcc[0][k];  // actual bc
        }

        // Numerical viscous flux
        // ---------------------------------------------------------------------

        // 1. Get spatial gradient from Dubiner dofs
        auto jacInv_l = tk::inverseJacobian( coordel_l[0], coordel_l[1],
          coordel_l[2], coordel_l[3] );
        auto dBdx_l = tk::eval_dBdx_p1( rdof, jacInv_l );

        std::vector< real > dudx_l(9,0.0);
        for (std::size_t i=0; i<3; ++i)
          for (std::size_t j=0; j<3; ++j)
            dudx_l[3*i+j] =
                dBdx_l[j][1] * P(el, velocityDofIdx(nmat,i,rdof,1))
              + dBdx_l[j][2] * P(el, velocityDofIdx(nmat,i,rdof,2))
              + dBdx_l[j][3] * P(el, velocityDofIdx(nmat,i,rdof,3));

        // 2. Average du_i/dx_j
        auto grad = gradFn( 3, mat_blk, dudx_l, gp[0], gp[2], gp[2], t, fn );
        std::array< std::array< tk::real, 3 >, 3 > dudx;
        for (std::size_t i=0; i<3; ++i)
          for (std::size_t j=0; j<3; ++j)
            dudx[i][j] = 0.5 * (grad[0][3*i+j] + grad[1][3*i+j]);

        // 3. average dT/dx_j
        std::vector< std::array< real, 3 > > dTdx(nmat,
          std::array< real, 3 >{{0, 0, 0}});

        // 4. Compute flux
        auto fl = modifiedGradientViscousFlux(nmat, ncomp, fn, centroids, var,
          varcc, Tcc, dudx, dTdx);

        // Add the surface integration term to the rhs
        for (ncomp_t c=0; c<ncomp; ++c)
        {
          R(el, c) += geoFace(f,0) * fl[c];
        }
      }
    }
  }
}

} // tk::