1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548 | // *****************************************************************************
/*!
\file src/PDE/MultiMat/DGMultiMat.hpp
\copyright 2012-2015 J. Bakosi,
2016-2018 Los Alamos National Security, LLC.,
2019-2021 Triad National Security, LLC.
All rights reserved. See the LICENSE file for details.
\brief Compressible multi-material flow using discontinuous Galerkin
finite elements
\details This file implements calls to the physics operators governing
compressible multi-material flow (with velocity equilibrium) using
discontinuous Galerkin discretizations.
*/
// *****************************************************************************
#ifndef DGMultiMat_h
#define DGMultiMat_h
#include <cmath>
#include <algorithm>
#include <unordered_set>
#include <map>
#include <array>
#include "Macro.hpp"
#include "Exception.hpp"
#include "Vector.hpp"
#include "ContainerUtil.hpp"
#include "UnsMesh.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Integrate/Basis.hpp"
#include "Integrate/Quadrature.hpp"
#include "Integrate/Initialize.hpp"
#include "Integrate/Mass.hpp"
#include "Integrate/Surface.hpp"
#include "Integrate/Boundary.hpp"
#include "Integrate/Volume.hpp"
#include "Integrate/MultiMatTerms.hpp"
#include "Integrate/Source.hpp"
#include "Integrate/SolidTerms.hpp"
#include "RiemannChoice.hpp"
#include "MultiMat/MultiMatIndexing.hpp"
#include "Reconstruction.hpp"
#include "Limiter.hpp"
#include "Problem/FieldOutput.hpp"
#include "Problem/BoxInitialization.hpp"
#include "PrefIndicator.hpp"
#include "MultiMat/BCFunctions.hpp"
#include "MultiMat/MiscMultiMatFns.hpp"
#include "EoS/GetMatProp.hpp"
namespace inciter {
extern ctr::InputDeck g_inputdeck;
namespace dg {
//! \brief MultiMat used polymorphically with tk::DGPDE
//! \details The template arguments specify policies and are used to configure
//! the behavior of the class. The policies are:
//! - Physics - physics configuration, see PDE/MultiMat/Physics.h
//! - Problem - problem configuration, see PDE/MultiMat/Problem.h
//! \note The default physics is Euler, set in inciter::deck::check_multimat()
template< class Physics, class Problem >
class MultiMat {
private:
using eq = tag::multimat;
public:
//! Constructor
explicit MultiMat() :
m_ncomp( g_inputdeck.get< tag::ncomp >() ),
m_nprim(nprim()),
m_riemann( multimatRiemannSolver(
g_inputdeck.get< tag::flux >() ) )
{
// associate boundary condition configurations with state functions
brigand::for_each< ctr::bclist::Keys >( ConfigBC( m_bc,
// BC State functions
{ dirichlet
, symmetry
, invalidBC // Inlet BC not implemented
, invalidBC // Outlet BC not implemented
, farfield
, extrapolate
, noslipwall },
// BC Gradient functions
{ noOpGrad
, symmetryGrad
, noOpGrad
, noOpGrad
, noOpGrad
, noOpGrad
, noOpGrad }
) );
// EoS initialization
initializeMaterialEoS( m_mat_blk );
}
//! Find the number of primitive quantities required for this PDE system
//! \return The number of primitive quantities required to be stored for
//! this PDE system
std::size_t nprim() const<--- Shadowed declaration<--- Shadowed declaration
{
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto& solidx = inciter::g_inputdeck.get<
tag::matidxmap, tag::solidx >();
// individual material pressures and three velocity components
std::size_t np(nmat+3);
for (std::size_t k=0; k<nmat; ++k) {
if (solidx[k] > 0) {
// individual material Cauchy stress tensor components
np += 6;
}
}
return np;
}
//! Find the number of materials set up for this PDE system
//! \return The number of materials set up for this PDE system
std::size_t nmat() const<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration<--- Shadowed declaration
{
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();
return nmat;
}
//! Assign number of DOFs per equation in the PDE system
//! \param[in,out] numEqDof Array storing number of Dofs for each PDE
//! equation
void numEquationDofs(std::vector< std::size_t >& numEqDof) const
{
// all equation-dofs initialized to ndofs first
for (std::size_t i=0; i<m_ncomp; ++i) {
numEqDof.push_back(g_inputdeck.get< tag::ndof >());
}
// volume fractions are P0Pm (ndof = 1) for multi-material simulations
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
if(nmat > 1)
for (std::size_t k=0; k<nmat; ++k)
numEqDof[volfracIdx(nmat, k)] = 1;
}
//! Determine elements that lie inside the user-defined IC box
//! \param[in] geoElem Element geometry array
//! \param[in] nielem Number of internal elements
//! \param[in,out] inbox List of nodes at which box user ICs are set for
//! each IC box
void IcBoxElems( const tk::Fields& geoElem,
std::size_t nielem,
std::vector< std::unordered_set< std::size_t > >& inbox ) const
{
tk::BoxElems< eq >(geoElem, nielem, inbox);
}
//! Find how many 'stiff equations', which are the inverse
//! deformation equations because of plasticity
//! \return number of stiff equations
std::size_t nstiffeq() const
{
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
return 9*numSolids(nmat, solidx);
}
//! Find how many 'non-stiff equations', which are the inverse
//! deformation equations because of plasticity
//! \return number of stiff equations
std::size_t nnonstiffeq() const
{
return m_ncomp-nstiffeq();
}
//! Locate the stiff equations.
//! \param[out] stiffEqIdx list with pointers to stiff equations
void setStiffEqIdx( std::vector< std::size_t >& stiffEqIdx ) const
{
stiffEqIdx.resize(nstiffeq(), 0);
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
std::size_t icnt = 0;
for (std::size_t k=0; k<nmat; ++k)
if (solidx[k] > 0)
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
{
stiffEqIdx[icnt] =
inciter::deformIdx(nmat, solidx[k], i, j);
icnt++;
}
}
//! Locate the nonstiff equations.
//! \param[out] nonStiffEqIdx list with pointers to nonstiff equations
void setNonStiffEqIdx( std::vector< std::size_t >& nonStiffEqIdx ) const
{
nonStiffEqIdx.resize(nnonstiffeq(), 0);
for (std::size_t icomp=0; icomp<nnonstiffeq(); icomp++)
nonStiffEqIdx[icomp] = icomp;
}
//! Initialize the compressible flow equations, prepare for time integration
//! \param[in] L Block diagonal mass matrix
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] inbox List of elements at which box user ICs are set for
//! each IC box
//! \param[in] elemblkid Element ids associated with mesh block ids where
//! user ICs are set
//! \param[in,out] unk Array of unknowns
//! \param[in] t Physical time
//! \param[in] nielem Number of internal elements
void initialize( const tk::Fields& L,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::unordered_set< std::size_t > >& inbox,
const std::unordered_map< std::size_t, std::set< std::size_t > >&
elemblkid,
tk::Fields& unk,
tk::real t,
const std::size_t nielem ) const
{
tk::initialize( m_ncomp, m_mat_blk, L, inpoel, coord,
Problem::initialize, unk, t, nielem );
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto& ic = g_inputdeck.get< tag::ic >();
const auto& icbox = ic.get< tag::box >();
const auto& icmbk = ic.get< tag::meshblock >();
const auto& bgpre = ic.get< tag::pressure >();
const auto& bgtemp = ic.get< tag::temperature >();
// Set initial conditions inside user-defined IC boxes and mesh blocks
std::vector< tk::real > s(m_ncomp, 0.0);
for (std::size_t e=0; e<nielem; ++e) {
// inside user-defined box
if (!icbox.empty()) {
std::size_t bcnt = 0;
for (const auto& b : icbox) { // for all boxes
if (inbox.size() > bcnt && inbox[bcnt].find(e) != inbox[bcnt].end())
{
std::vector< tk::real > box
{ b.template get< tag::xmin >(), b.template get< tag::xmax >(),
b.template get< tag::ymin >(), b.template get< tag::ymax >(),
b.template get< tag::zmin >(), b.template get< tag::zmax >() };
auto V_ex = (box[1]-box[0]) * (box[3]-box[2]) * (box[5]-box[4]);
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
s[c] = unk(e,mark);
// set high-order DOFs to zero
for (std::size_t i=1; i<rdof; ++i)
unk(e,mark+i) = 0.0;
}
initializeBox<ctr::boxList>( m_mat_blk, V_ex, t, b, bgpre,
bgtemp, s );
// store box-initialization in solution vector
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
unk(e,mark) = s[c];
}
}
++bcnt;
}
}
// inside user-specified mesh blocks
if (!icmbk.empty()) {
for (const auto& b : icmbk) { // for all blocks
auto blid = b.get< tag::blockid >();
auto V_ex = b.get< tag::volume >();
if (elemblkid.find(blid) != elemblkid.end()) {
const auto& elset = tk::cref_find(elemblkid, blid);
if (elset.find(e) != elset.end()) {
initializeBox<ctr::meshblockList>( m_mat_blk, V_ex, t, b,
bgpre, bgtemp, s );
// store initialization in solution vector
for (std::size_t c=0; c<m_ncomp; ++c) {
auto mark = c*rdof;
unk(e,mark) = s[c];
}
}
}
}
}
}
}
//! Compute density constraint for a given material
//! \param[in] nelem Number of elements
//! \param[in] unk Array of unknowns
//! \param[out] densityConstr Density Constraint: rho/(rho0*det(g))
void computeDensityConstr( std::size_t nelem,
tk::Fields& unk,<--- Parameter 'unk' can be declared with const
std::vector< tk::real >& densityConstr) const
{
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
std::size_t rdof = g_inputdeck.get< tag::rdof >();
std::size_t nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
for (std::size_t e=0; e<nelem; ++e)
densityConstr[e] = 0.0;
for (std::size_t imat=0; imat<nmat; ++imat)
if (solidx[imat] > 0)
{
for (std::size_t e=0; e<nelem; ++e)
{
// Retrieve unknowns
tk::real arho = unk(e, densityDofIdx(nmat, imat, rdof, 0));
std::array< std::array< tk::real, 3 >, 3 > g;
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
g[i][j] = unk(e, deformDofIdx(nmat, solidx[imat], i, j, rdof, 0));
// Compute determinant of g
tk::real detg = tk::determinant(g);
// Compute constraint measure
densityConstr[e] += arho/(m_mat_blk[imat].compute< EOS::rho0 >()*detg);
}
}
else
{
for (std::size_t e=0; e<nelem; ++e)
{
// Retrieve alpha and add it to the constraint measure
tk::real alpha = unk(e, volfracDofIdx(nmat, imat, rdof, 0));
densityConstr[e] += alpha;
}
}
}
//! Compute the left hand side block-diagonal mass matrix
//! \param[in] geoElem Element geometry array
//! \param[in,out] l Block diagonal mass matrix
void lhs( const tk::Fields& geoElem, tk::Fields& l ) const {
const auto ndof = g_inputdeck.get< tag::ndof >();
// Unlike Compflow and Transport, there is a weak reconstruction about
// conservative variable after limiting function which will require the
// size of left hand side vector to be rdof
tk::mass( m_ncomp, ndof, geoElem, l );
}
//! Update the interface cells to first order dofs
//! \param[in] unk Array of unknowns
//! \param[in] nielem Number of internal elements
//! \param[in,out] ndofel Array of dofs
//! \param[in,out] interface Vector of interface marker
//! \details This function resets the high-order terms in interface cells.
void updateInterfaceCells( tk::Fields& unk,<--- Parameter 'unk' can be declared with const
std::size_t nielem,
std::vector< std::size_t >& ndofel,
std::vector< std::size_t >& interface ) const
{
auto intsharp =
g_inputdeck.get< tag::multimat, tag::intsharp >();
// If this cell is not material interface, return this function
if(not intsharp) return;
auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto& solidx = g_inputdeck.get<
tag::matidxmap, tag::solidx >();
for (std::size_t e=0; e<nielem; ++e) {
std::vector< std::size_t > matInt(nmat, 0);
std::vector< tk::real > alAvg(nmat, 0.0);
for (std::size_t k=0; k<nmat; ++k)
alAvg[k] = unk(e, volfracDofIdx(nmat,k,rdof,0));
auto intInd = interfaceIndicator(nmat, alAvg, matInt);
// interface cells cannot be high-order
if (intInd) {
interface[e] = 1;
for (std::size_t k=0; k<nmat; ++k) {
if (matInt[k]) {
for (std::size_t i=1; i<rdof; ++i) {
unk(e, densityDofIdx(nmat,k,rdof,i)) = 0.0;
unk(e, energyDofIdx(nmat,k,rdof,i)) = 0.0;
}
if (solidx[k] > 0) {
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
for (std::size_t idof=1; idof<rdof; ++idof) {
unk(e, deformDofIdx(nmat,solidx[k],i,j,rdof,idof)) = 0.0;
}
}
}
}
for (std::size_t idir=0; idir<3; ++idir) {
for (std::size_t i=1; i<rdof; ++i) {
unk(e, momentumDofIdx(nmat,idir,rdof,i)) = 0.0;
}
}
} else {
// If the cell is marked as interface cell in the previous timestep
// and does not marked as interface for the current timestep, DGP2
// will be applied for the current timestep in p-adaptive process
// Please note this block is added since the spectral decay indicator
// does not applied to P0 cells.
if (interface[e] == 1) {
if(ndofel[e] < 10 && rdof == 10) {
ndofel[e] = 10;
for (std::size_t k=0; k<nmat; ++k) {
for (std::size_t i=1; i<rdof; ++i) {
unk(e, densityDofIdx(nmat,k,rdof,i)) = 0.0;
unk(e, energyDofIdx(nmat,k,rdof,i)) = 0.0;
}
}
for (std::size_t idir=0; idir<3; ++idir) {
for (std::size_t i=1; i<rdof; ++i) {
unk(e, momentumDofIdx(nmat,idir,rdof,i)) = 0.0;
}
}
}
}
interface[e] = 0;
}
}
}
//! Update the primitives for this PDE system
//! \param[in] unk Array of unknowns
//! \param[in] L The left hand side block-diagonal mass matrix
//! \param[in] geoElem Element geometry array
//! \param[in,out] prim Array of primitives
//! \param[in] nielem Number of internal elements
//! \param[in] ndofel Array of dofs
//! \details This function computes and stores the dofs for primitive
//! quantities, which are required for obtaining reconstructed states used
//! in the Riemann solver. See /PDE/Riemann/AUSM.hpp, where the
//! normal velocity for advection is calculated from independently
//! reconstructed velocities.
void updatePrimitives( const tk::Fields& unk,
const tk::Fields& L,
const tk::Fields& geoElem,
tk::Fields& prim,<--- Parameter 'prim' can be declared with const
std::size_t nielem,
std::vector< std::size_t >& ndofel ) const<--- Parameter 'ndofel' can be declared with const
{
const auto rdof = g_inputdeck.get< tag::rdof >();<--- Variable 'rdof' is assigned a value that is never used.
const auto ndof = g_inputdeck.get< tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
"primitive quantities must equal "+ std::to_string(rdof*m_nprim) );
for (std::size_t e=0; e<nielem; ++e)
{
std::vector< tk::real > R(m_nprim*ndof, 0.0);
auto ng = tk::NGvol(ndof);
// arrays for quadrature points
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
// Local degree of freedom
auto dof_el = ndofel[e];
// Loop over quadrature points in element e
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the basis function
auto B =
tk::eval_basis( dof_el, coordgp[0][igp], coordgp[1][igp], coordgp[2][igp] );
auto w = wgp[igp] * geoElem(e, 0);
auto state = tk::eval_state( m_ncomp, rdof, dof_el, e, unk, B );
// bulk density at quadrature point
tk::real rhob(0.0);
for (std::size_t k=0; k<nmat; ++k)
rhob += state[densityIdx(nmat, k)];
// velocity vector at quadrature point
std::array< tk::real, 3 >
vel{ state[momentumIdx(nmat, 0)]/rhob,
state[momentumIdx(nmat, 1)]/rhob,
state[momentumIdx(nmat, 2)]/rhob };
std::vector< tk::real > pri(m_nprim, 0.0);
// Evaluate material pressure at quadrature point
for(std::size_t imat = 0; imat < nmat; imat++)
{
auto alphamat = state[volfracIdx(nmat, imat)];
auto arhomat = state[densityIdx(nmat, imat)];
auto arhoemat = state[energyIdx(nmat, imat)];
auto gmat = getDeformGrad(nmat, imat, state);
pri[pressureIdx(nmat,imat)] = m_mat_blk[imat].compute<
EOS::pressure >( arhomat, vel[0], vel[1], vel[2], arhoemat,
alphamat, imat, gmat );
pri[pressureIdx(nmat,imat)] = constrain_pressure( m_mat_blk,
pri[pressureIdx(nmat,imat)], arhomat, alphamat, imat);
if (solidx[imat] > 0) {
auto asigmat = m_mat_blk[imat].computeTensor< EOS::CauchyStress >(
arhomat, vel[0], vel[1], vel[2], arhoemat,
alphamat, imat, gmat );
pri[stressIdx(nmat,solidx[imat],0)] = asigmat[0][0];
pri[stressIdx(nmat,solidx[imat],1)] = asigmat[1][1];
pri[stressIdx(nmat,solidx[imat],2)] = asigmat[2][2];
pri[stressIdx(nmat,solidx[imat],3)] = asigmat[0][1];
pri[stressIdx(nmat,solidx[imat],4)] = asigmat[0][2];
pri[stressIdx(nmat,solidx[imat],5)] = asigmat[1][2];
}
}
// Evaluate bulk velocity at quadrature point
for (std::size_t idir=0; idir<3; ++idir) {
pri[velocityIdx(nmat,idir)] = vel[idir];
}
for(std::size_t k = 0; k < m_nprim; k++)
{
auto mark = k * ndof;
for(std::size_t idof = 0; idof < dof_el; idof++)
R[mark+idof] += w * pri[k] * B[idof];
}
}
// Update the DG solution of primitive variables
for(std::size_t k = 0; k < m_nprim; k++)
{
auto mark = k * ndof;
auto rmark = k * rdof;
for(std::size_t idof = 0; idof < dof_el; idof++)
{
prim(e, rmark+idof) = R[mark+idof] / L(e, mark+idof);
if(fabs(prim(e, rmark+idof)) < 1e-16)
prim(e, rmark+idof) = 0;
}
}
}
}
//! Clean up the state of trace materials for this PDE system
//! \param[in] t Physical time
//! \param[in] geoElem Element geometry array
//! \param[in,out] unk Array of unknowns
//! \param[in,out] prim Array of primitives
//! \param[in] nielem Number of internal elements
//! \details This function cleans up the state of materials present in trace
//! quantities in each cell. Specifically, the state of materials with
//! very low volume-fractions in a cell is replaced by the state of the
//! material which is present in the largest quantity in that cell. This
//! becomes necessary when shocks pass through cells which contain a very
//! small amount of material. The state of that tiny material might
//! become unphysical and cause solution to diverge; thus requiring such
//! a "reset".
void cleanTraceMaterial( tk::real t,
const tk::Fields& geoElem,
tk::Fields& unk,
tk::Fields& prim,
std::size_t nielem ) const
{
[[maybe_unused]] const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
"primitive quantities must equal "+ std::to_string(rdof*m_nprim) );
auto neg_density = cleanTraceMultiMat(t, nielem, m_mat_blk, geoElem, nmat,
unk, prim);
if (neg_density) Throw("Negative partial density.");
}
//! Reconstruct second-order solution from first-order
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] esup Elements-surrounding-nodes connectivity
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] U Solution vector at recent time step
//! \param[in,out] P Vector of primitives at recent time step
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] ndofel Vector of local number of degrees of freedome
void reconstruct( tk::real,
const tk::Fields&,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >&
esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
tk::Fields& U,
tk::Fields& P,
const bool pref,
const std::vector< std::size_t >& ndofel ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto ndof = g_inputdeck.get< tag::ndof >();
bool is_p0p1(false);<--- Variable 'is_p0p1' is assigned a value that is never used.
if (rdof == 4 && ndof == 1)
is_p0p1 = true;<--- Variable 'is_p0p1' is assigned a value that is never used.
const auto nelem = fd.Esuel().size()/4;<--- Variable 'nelem' is assigned a value that is never used.
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
//----- reconstruction of conserved quantities -----
//--------------------------------------------------
for (std::size_t e=0; e<nelem; ++e)
{
// 1. specify how many variables need to be reconstructed
std::vector< std::size_t > vars;
// for p-adaptive DG
if (pref) {
// If DG is applied, reconstruct only volume fractions
if(ndofel[e] > 1) {
for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat, k));
}
else // If P0P1 is applied for this element
for (std::size_t c=0; c<m_ncomp; ++c) vars.push_back(c);
}
else {
// for P0P1, reconstruct all variables
if (is_p0p1)
for (std::size_t c=0; c<m_ncomp; ++c) vars.push_back(c);
// for high-order DG, reconstruct only volume fractions
else if (ndof > 1)
for (std::size_t k=0; k<nmat; ++k) vars.push_back(volfracIdx(nmat, k));
}
// 2. solve 3x3 least-squares system
// Reconstruct second-order dofs of volume-fractions in Taylor space
// using nodal-stencils, for a good interface-normal estimate
tk::recoLeastSqExtStencil( rdof, e, esup, inpoel, geoElem, U, vars );
// 3. transform reconstructed derivatives to Dubiner dofs
tk::transform_P0P1( rdof, e, inpoel, coord, U, vars );
}
//----- reconstruction of primitive quantities -----
//--------------------------------------------------
// For multimat, conserved and primitive quantities are reconstructed
// separately.
for (std::size_t e=0; e<nelem; ++e)
{
// There are two conditions that requires the reconstruction of the
// primitive variables:
// 1. p-adaptive is triggered and P0P1 scheme is applied to specific
// elements
// 2. p-adaptive is not triggered and P0P1 scheme is applied to the
// whole computation domain
if ((pref && ndofel[e] == 1) || (!pref && is_p0p1)) {
std::vector< std::size_t > vars;
for (std::size_t c=0; c<m_nprim; ++c) vars.push_back(c);
// 1.
// Reconstruct second-order dofs of volume-fractions in Taylor space
// using nodal-stencils, for a good interface-normal estimate
tk::recoLeastSqExtStencil( rdof, e, esup, inpoel, geoElem, P, vars );
// 2.
tk::transform_P0P1(rdof, e, inpoel, coord, P, vars);
}
}
}
//! Limit second-order solution, and primitive quantities separately
//! \param[in] t Physical time
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] esup Elements-surrounding-nodes connectivity
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//! global node ids (key)
//! \param[in] uNodalExtrm Chare-boundary nodal extrema for conservative
//! variables
//! \param[in] pNodalExtrm Chare-boundary nodal extrema for primitive
//! variables
//! \param[in] mtInv Inverse of Taylor mass matrix
//! \param[in,out] U Solution vector at recent time step
//! \param[in,out] P Vector of primitives at recent time step
//! \param[in,out] shockmarker Vector of shock-marker values
void limit( [[maybe_unused]] tk::real t,
const bool pref,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::map< std::size_t, std::vector< std::size_t > >& esup,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const std::vector< std::size_t >& ndofel,
const std::vector< std::size_t >& gid,
const std::unordered_map< std::size_t, std::size_t >& bid,
const std::vector< std::vector<tk::real> >& uNodalExtrm,
const std::vector< std::vector<tk::real> >& pNodalExtrm,
const std::vector< std::vector<tk::real> >& mtInv,
tk::Fields& U,
tk::Fields& P,
std::vector< std::size_t >& shockmarker ) const
{
Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
const auto limiter = g_inputdeck.get< tag::limiter >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto& solidx = g_inputdeck.get<
tag::matidxmap, tag::solidx >();
// limit vectors of conserved and primitive quantities
if (limiter == ctr::LimiterType::SUPERBEEP1)
{
SuperbeeMultiMat_P1( fd.Esuel(), inpoel, ndofel,
coord, solidx, U, P, nmat );
}
else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 4)
{
VertexBasedMultiMat_P1( esup, inpoel, ndofel, fd.Esuel().size()/4,
m_mat_blk, fd, geoFace, geoElem, coord, flux, solidx, U, P,
nmat, shockmarker );
}
else if (limiter == ctr::LimiterType::VERTEXBASEDP1 && rdof == 10)
{
VertexBasedMultiMat_P2( pref, esup, inpoel, ndofel, fd.Esuel().size()/4,
m_mat_blk, fd, geoFace, geoElem, coord, gid, bid,
uNodalExtrm, pNodalExtrm, mtInv, flux, solidx, U, P, nmat,
shockmarker );
}
else if (limiter != ctr::LimiterType::NOLIMITER)
{
Throw("Limiter type not configured for multimat.");
}
}
//! Apply CPL to the conservative variable solution for this PDE system
//! \param[in] prim Array of primitive variables
//! \param[in] geoElem Element geometry array
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in,out] unk Array of conservative variables
//! \param[in] nielem Number of internal elements
//! \details This function applies CPL to obtain consistent dofs for
//! conservative quantities based on the limited primitive quantities.
//! See Pandare et al. (2023). On the Design of Stable,
//! Consistent, and Conservative High-Order Methods for Multi-Material
//! Hydrodynamics. J Comp Phys, 112313.
void CPL( const tk::Fields& prim,
const tk::Fields& geoElem,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
tk::Fields& unk,
std::size_t nielem ) const
{
[[maybe_unused]] const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
Assert( unk.nunk() == prim.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( unk.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( prim.nprop() == rdof*m_nprim, "Number of components in vector of "
"primitive quantities must equal "+ std::to_string(rdof*m_nprim) );
correctLimConservMultiMat(nielem, m_mat_blk, nmat, inpoel,
coord, geoElem, prim, unk);
}
//! Return cell-average deformation gradient tensor
//! \param[in] unk Solution vector at recent time step
//! \param[in] nielem Number of internal elements
//! \details This function returns the bulk cell-average inverse
//! deformation gradient tensor
std::array< std::vector< tk::real >, 9 > cellAvgDeformGrad(
const tk::Fields& unk,
std::size_t nielem ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
std::array< std::vector< tk::real >, 9 > gb;
if (inciter::haveSolid(nmat, solidx)) {
for (auto& gij : gb)
gij.resize(nielem, 0.0);
for (std::size_t e=0; e<nielem; ++e) {
for (std::size_t k=0; k<nmat; ++k) {
if (solidx[k] > 0) {
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
gb[3*i+j][e] += unk(e, volfracDofIdx(nmat,k,rdof,0)) *
unk(e,deformDofIdx(nmat,solidx[k],i,j,rdof,0));
}
}
}
}
return gb;
}
//! Reset the high order solution for p-adaptive scheme
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in,out] unk Solution vector at recent time step
//! \param[in,out] prim Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedome
//! \details This function reset the high order coefficient for p-adaptive
//! solution polynomials. Unlike compflow class, the high order of fv
//! solution will not be reset since p0p1 is the base scheme for
//! multi-material p-adaptive DG method.
void resetAdapSol( const inciter::FaceData& fd,
tk::Fields& unk,
tk::Fields& prim,
const std::vector< std::size_t >& ndofel ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
const auto ncomp = unk.nprop() / rdof;
const auto nprim = prim.nprop() / rdof;<--- Shadow variable
for(std::size_t e = 0; e < fd.Esuel().size()/4; e++)
{
if(ndofel[e] < 10)
{
for (std::size_t c=0; c<ncomp; ++c)
{
auto mark = c*rdof;
unk(e, mark+4) = 0.0;
unk(e, mark+5) = 0.0;
unk(e, mark+6) = 0.0;
unk(e, mark+7) = 0.0;
unk(e, mark+8) = 0.0;
unk(e, mark+9) = 0.0;
}
for (std::size_t c=0; c<nprim; ++c)
{
auto mark = c*rdof;
prim(e, mark+4) = 0.0;
prim(e, mark+5) = 0.0;
prim(e, mark+6) = 0.0;
prim(e, mark+7) = 0.0;
prim(e, mark+8) = 0.0;
prim(e, mark+9) = 0.0;
}
}
}
}
//! Compute right hand side
//! \param[in] t Physical time
//! \param[in] pref Indicator for p-adaptive algorithm
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Solution vector at recent time step
//! \param[in] P Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] dt Delta time
//! \param[in,out] R Right-hand side vector computed
void rhs( tk::real t,
const bool pref,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const inciter::FaceData& fd,
const std::vector< std::size_t >& inpoel,
const std::vector< std::unordered_set< std::size_t > >&,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& P,
const std::vector< std::size_t >& ndofel,
const tk::real dt,
tk::Fields& R ) const
{
const auto ndof = g_inputdeck.get< tag::ndof >();
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto intsharp =
g_inputdeck.get< tag::multimat, tag::intsharp >();
const auto& solidx = inciter::g_inputdeck.get<
tag::matidxmap, tag::solidx >();
auto nsld = numSolids(nmat, solidx);
const auto nelem = fd.Esuel().size()/4;
Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( U.nunk() == R.nunk(), "Number of unknowns in solution "
"vector and right-hand side at recent time step incorrect" );
Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( P.nprop() == rdof*m_nprim, "Number of components in primitive "
"vector must equal "+ std::to_string(rdof*m_nprim) );
Assert( R.nprop() == ndof*m_ncomp, "Number of components in right-hand "
"side vector must equal "+ std::to_string(ndof*m_ncomp) );
Assert( fd.Inpofa().size()/3 == fd.Esuf().size()/2,
"Mismatch in inpofa size" );
// set rhs to zero
R.fill(0.0);
// Allocate space for Riemann derivatives used in non-conservative terms.
// The following Riemann derivatives are stored, in order:
// 1) 3*nmat terms: derivatives of partial pressure of each material,
// for the energy equations.
// 2) ndof terms: derivatives of Riemann velocity times the basis
// function, for the volume fraction equations.
// 3) nmat*3*3*9 terms: 3 derivatives of u_l*g_ij for each material, for
// the deformation gradient equations.
// 4) 3*nsld terms: 3 derivatives of \alpha \sigma_ij for each solid
// material, for the energy equations.
std::vector< std::vector< tk::real > >
riemannDeriv(3*nmat+ndof+3*nsld, std::vector<tk::real>(U.nunk(),0.0));
// configure a no-op lambda for prescribed velocity
auto velfn = []( ncomp_t, tk::real, tk::real, tk::real, tk::real ){
return tk::VelFn::result_type(); };
// compute internal surface flux integrals
tk::surfInt( pref, nmat, m_mat_blk, t, ndof, rdof, inpoel, solidx,
coord, fd, geoFace, geoElem, m_riemann, velfn, U, P, ndofel,
dt, R, riemannDeriv, intsharp );
// compute optional source term
tk::srcInt( m_mat_blk, t, ndof, fd.Esuel().size()/4, inpoel,
coord, geoElem, Problem::src, ndofel, R, nmat );
if(ndof > 1)
// compute volume integrals
tk::volInt( nmat, t, m_mat_blk, ndof, rdof, nelem,
inpoel, coord, geoElem, flux, velfn, U, P, ndofel, R,
intsharp );
// compute boundary surface flux integrals
for (const auto& b : m_bc)
tk::bndSurfInt( pref, nmat, m_mat_blk, ndof, rdof,
std::get<0>(b), fd, geoFace, geoElem, inpoel, coord, t,
m_riemann, velfn, std::get<1>(b), U, P, ndofel, R,
riemannDeriv, intsharp );
Assert( riemannDeriv.size() == 3*nmat+ndof+3*nsld, "Size of "
"Riemann derivative vector incorrect" );
// get derivatives from riemannDeriv
for (std::size_t k=0; k<riemannDeriv.size(); ++k)
{
Assert( riemannDeriv[k].size() == U.nunk(), "Riemann derivative vector "
"for non-conservative terms has incorrect size" );
for (std::size_t e=0; e<U.nunk(); ++e)
riemannDeriv[k][e] /= geoElem(e, 0);
}
// compute volume integrals of non-conservative terms
tk::nonConservativeInt( pref, nmat, m_mat_blk, ndof, rdof, nelem,
inpoel, coord, geoElem, U, P, riemannDeriv,
ndofel, R, intsharp );
// Compute integrals for inverse deformation correction in solid materials
if (inciter::haveSolid(nmat, solidx) &&
g_inputdeck.get< tag::multimat, tag::rho0constraint >())
tk::solidTermsVolInt( nmat, m_mat_blk, ndof, rdof, nelem,
inpoel, coord, geoElem, U, P, ndofel,
dt, R);
// compute finite pressure relaxation terms
if (g_inputdeck.get< tag::multimat, tag::prelax >())
{
const auto ct = g_inputdeck.get< tag::multimat,
tag::prelax_timescale >();
tk::pressureRelaxationInt( pref, nmat, m_mat_blk, ndof,
rdof, nelem, inpoel, coord, geoElem, U, P,
ndofel, ct, R, intsharp );
}
}
//! Evaluate the adaptive indicator and mark the ndof for each element
//! \param[in] nunk Number of unknowns
//! \param[in] coord Array of nodal coordinates
//! \param[in] inpoel Element-node connectivity
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] unk Array of unknowns
//! \param[in] prim Array of primitive quantities
//! \param[in] indicator p-refinement indicator type
//! \param[in] ndof Number of degrees of freedom in the solution
//! \param[in] ndofmax Max number of degrees of freedom for p-refinement
//! \param[in] tolref Tolerance for p-refinement
//! \param[in,out] ndofel Vector of local number of degrees of freedome
void eval_ndof( std::size_t nunk,
[[maybe_unused]] const tk::UnsMesh::Coords& coord,
[[maybe_unused]] const std::vector< std::size_t >& inpoel,
const inciter::FaceData& fd,
const tk::Fields& unk,
[[maybe_unused]] const tk::Fields& prim,
inciter::ctr::PrefIndicatorType indicator,
std::size_t ndof,
std::size_t ndofmax,
tk::real tolref,
std::vector< std::size_t >& ndofel ) const
{
const auto& esuel = fd.Esuel();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
if(indicator == inciter::ctr::PrefIndicatorType::SPECTRAL_DECAY)
spectral_decay(nmat, nunk, esuel, unk, ndof, ndofmax, tolref, ndofel);
else
Throw( "No such adaptive indicator type" );
}
//! Compute the minimum time step size
//! \param[in] fd Face connectivity and boundary conditions object
//! \param[in] geoFace Face geometry array
//! \param[in] geoElem Element geometry array
// //! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in] U Solution vector at recent time step
//! \param[in] P Vector of primitive quantities at recent time step
//! \param[in] nielem Number of internal elements
//! \return Minimum time step size
//! \details The allowable dt is calculated by looking at the maximum
//! wave-speed in elements surrounding each face, times the area of that
//! face. Once the maximum of this quantity over the mesh is determined,
//! the volume of each cell is divided by this quantity. A minimum of this
//! ratio is found over the entire mesh, which gives the allowable dt.
tk::real dt( const std::array< std::vector< tk::real >, 3 >&,
const std::vector< std::size_t >&,
const inciter::FaceData& fd,
const tk::Fields& geoFace,
const tk::Fields& geoElem,
const std::vector< std::size_t >& /*ndofel*/,
const tk::Fields& U,
const tk::Fields& P,
const std::size_t nielem ) const
{
const auto ndof = g_inputdeck.get< tag::ndof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
auto mindt = timeStepSizeMultiMat( m_mat_blk, fd.Esuf(), geoFace, geoElem,
nielem, nmat, U, P);
tk::real dgp = 0.0;
if (ndof == 4)
{
dgp = 1.0;
}
else if (ndof == 10)
{
dgp = 2.0;
}
// Scale smallest dt with CFL coefficient and the CFL is scaled by (2*p+1)
// where p is the order of the DG polynomial by linear stability theory.
mindt /= (2.0*dgp + 1.0);
return mindt;
}
//! Compute stiff terms for a single element
//! \param[in] e Element number
//! \param[in] geoElem Element geometry array
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Solution vector at recent time step
//! \param[in] P Primitive vector at recent time step
//! \param[in] ndofel Vector of local number of degrees of freedom
//! \param[in,out] R Right-hand side vector computed
void stiff_rhs( std::size_t e,
const tk::Fields& geoElem,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& P,
const std::vector< std::size_t >& ndofel,
tk::Fields& R ) const<--- Parameter 'R' can be declared with const
{
const auto ndof = g_inputdeck.get< tag::ndof >();<--- Variable 'ndof' is assigned a value that is never used.
const auto rdof = g_inputdeck.get< tag::rdof >();<--- Variable 'rdof' is assigned a value that is never used.
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable<--- Variable 'nmat' is assigned a value that is never used.
const auto intsharp =<--- Variable 'intsharp' is assigned a value that is never used.
g_inputdeck.get< tag::multimat, tag::intsharp >();
const auto& solidx = inciter::g_inputdeck.get<
tag::matidxmap, tag::solidx >();
Assert( U.nunk() == P.nunk(), "Number of unknowns in solution "
"vector and primitive vector at recent time step incorrect" );
Assert( U.nprop() == rdof*m_ncomp, "Number of components in solution "
"vector must equal "+ std::to_string(rdof*m_ncomp) );
Assert( P.nprop() == rdof*m_nprim, "Number of components in primitive "
"vector must equal "+ std::to_string(rdof*m_nprim) );
Assert( R.nprop() == ndof*nstiffeq(), "Number of components in "
"right-hand side must equal "+ std::to_string(ndof*nstiffeq()) );
// set rhs to zero for element e
for (std::size_t i=0; i<ndof*nstiffeq(); ++i)
R(e, i) = 0.0;
const auto& cx = coord[0];
const auto& cy = coord[1];
const auto& cz = coord[2];
auto ncomp = U.nprop()/rdof;
auto nprim = P.nprop()/rdof;<--- Shadow variable
auto ng = tk::NGvol(ndofel[e]);
// arrays for quadrature points
std::array< std::vector< tk::real >, 3 > coordgp;
std::vector< tk::real > wgp;
coordgp[0].resize( ng );
coordgp[1].resize( ng );
coordgp[2].resize( ng );
wgp.resize( ng );
tk::GaussQuadratureTet( ng, coordgp, wgp );
// Extract the element coordinates
std::array< std::array< tk::real, 3>, 4 > coordel {{
{{ cx[ inpoel[4*e ] ], cy[ inpoel[4*e ] ], cz[ inpoel[4*e ] ] }},
{{ cx[ inpoel[4*e+1] ], cy[ inpoel[4*e+1] ], cz[ inpoel[4*e+1] ] }},
{{ cx[ inpoel[4*e+2] ], cy[ inpoel[4*e+2] ], cz[ inpoel[4*e+2] ] }},
{{ cx[ inpoel[4*e+3] ], cy[ inpoel[4*e+3] ], cz[ inpoel[4*e+3] ] }}
}};
// Gaussian quadrature
for (std::size_t igp=0; igp<ng; ++igp)
{
// Compute the coordinates of quadrature point at physical domain
auto gp = tk::eval_gp( igp, coordel, coordgp );
// Compute the basis function
auto B = tk::eval_basis( ndofel[e], coordgp[0][igp], coordgp[1][igp],
coordgp[2][igp] );
auto state = tk::evalPolynomialSol(m_mat_blk, intsharp, ncomp, nprim,
rdof, nmat, e, ndofel[e], inpoel, coord, geoElem, gp, B, U, P);
// compute source
// Loop through materials
std::size_t ksld = 0;
for (std::size_t k=0; k<nmat; ++k)
{
if (solidx[k] > 0)
{
tk::real alpha = state[inciter::volfracIdx(nmat, k)];
std::array< std::array< tk::real, 3 >, 3 > g;
// Compute the source terms
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
g[i][j] = state[inciter::deformIdx(nmat,solidx[k],i,j)];
// Compute Lp
// Reference: Ortega, A. L., Lombardini, M., Pullin, D. I., &
// Meiron, D. I. (2014). Numerical simulation of elastic–plastic
// solid mechanics using an Eulerian stretch tensor approach and
// HLLD Riemann solver. Journal of Computational Physics, 257,
// 414-441
std::array< std::array< tk::real, 3 >, 3 > Lp;
// 1. Compute dev(sigma)
auto sigma_dev = m_mat_blk[k].computeTensor< EOS::CauchyStress >(
0.0, 0.0, 0.0, 0.0, 0.0, alpha, k, g );
tk::real apr = state[ncomp+inciter::pressureIdx(nmat, k)];
for (std::size_t i=0; i<3; ++i) sigma_dev[i][i] -= apr;
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
sigma_dev[i][j] /= alpha;
tk::real sigma_trace =
sigma_dev[0][0]+sigma_dev[1][1]+sigma_dev[2][2];
for (std::size_t i=0; i<3; ++i)
sigma_dev[i][i] -= sigma_trace/3.0;
// 2. Compute inv(g)
double ginv[9];
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
ginv[3*i+j] = g[i][j];
lapack_int ipiv[3];
#ifndef NDEBUG
lapack_int ierr =
#endif
LAPACKE_dgetrf(LAPACK_ROW_MAJOR, 3, 3, ginv, 3, ipiv);
Assert(ierr==0, "Lapack error in LU factorization of g");
#ifndef NDEBUG
lapack_int jerr =
#endif
LAPACKE_dgetri(LAPACK_ROW_MAJOR, 3, ginv, 3, ipiv);
Assert(jerr==0, "Lapack error in inverting g");
// 3. Compute dev(sigma)*inv(g)
std::array< std::array< tk::real, 3 >, 3 > aux_mat;
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
{
tk::real sum = 0.0;
for (std::size_t l=0; l<3; ++l)
sum += sigma_dev[i][l]*ginv[3*l+j];
aux_mat[i][j] = sum;
}
// 4. Compute g*(dev(sigma)*inv(g))
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
{
tk::real sum = 0.0;
for (std::size_t l=0; l<3; ++l)
sum += g[i][l]*aux_mat[l][j];
Lp[i][j] = sum;
}
// 5. Divide by 2*mu*tau
// 'Perfect' plasticity
tk::real yield_stress = getmatprop< tag::yield_stress >(k);
tk::real equiv_stress = 0.0;
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
equiv_stress += sigma_dev[i][j]*sigma_dev[i][j];
equiv_stress = std::sqrt(3.0*equiv_stress/2.0);
// rel_factor = 1/tau <- Perfect plasticity for now.
tk::real rel_factor = 0.0;
if (equiv_stress >= yield_stress)
rel_factor = 1.0e07;
tk::real mu = getmatprop< tag::mu >(k);
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
Lp[i][j] *= rel_factor/(2.0*mu);
// Compute the source terms
std::vector< tk::real > s(9*ndof, 0.0);
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
for (std::size_t idof=0; idof<ndof; ++idof)
{
s[(i*3+j)*ndof+idof] = B[idof] * (Lp[i][0]*g[0][j]
+Lp[i][1]*g[1][j]
+Lp[i][2]*g[2][j]);
}
auto wt = wgp[igp] * geoElem(e, 0);
// Contribute to the right-hand-side
for (std::size_t i=0; i<3; ++i)
for (std::size_t j=0; j<3; ++j)
for (std::size_t idof=0; idof<ndof; ++idof)
{
std::size_t srcId = (i*3+j)*ndof+idof;
std::size_t dofId = solidTensorIdx(ksld,i,j)*ndof+idof;
R(e, dofId) += wt * s[srcId];
}
ksld++;
}
}
}
}
//! Extract the velocity field at cell nodes. Currently unused.
//! \param[in] U Solution vector at recent time step
//! \param[in] N Element node indices
//! \return Array of the four values of the velocity field
std::array< std::array< tk::real, 4 >, 3 >
velocity( const tk::Fields& U,
const std::array< std::vector< tk::real >, 3 >&,
const std::array< std::size_t, 4 >& N ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
std::array< std::array< tk::real, 4 >, 3 > v;
v[0] = U.extract( momentumDofIdx(nmat, 0, rdof, 0), N );
v[1] = U.extract( momentumDofIdx(nmat, 1, rdof, 0), N );
v[2] = U.extract( momentumDofIdx(nmat, 2, rdof, 0), N );
std::vector< std::array< tk::real, 4 > > ar;
ar.resize(nmat);
for (std::size_t k=0; k<nmat; ++k)
ar[k] = U.extract( densityDofIdx(nmat, k, rdof, 0), N );
std::array< tk::real, 4 > r{{ 0.0, 0.0, 0.0, 0.0 }};
for (std::size_t i=0; i<r.size(); ++i) {
for (std::size_t k=0; k<nmat; ++k)
r[i] += ar[k][i];
}
std::transform( r.begin(), r.end(), v[0].begin(), v[0].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
std::transform( r.begin(), r.end(), v[1].begin(), v[1].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
std::transform( r.begin(), r.end(), v[2].begin(), v[2].begin(),
[]( tk::real s, tk::real& d ){ return d /= s; } );
return v;
}
//! Return a map that associates user-specified strings to functions
//! \return Map that associates user-specified strings to functions that
//! compute relevant quantities to be output to file
std::map< std::string, tk::GetVarFn > OutVarFn() const
{ return MultiMatOutVarFn(); }
//! Return analytic field names to be output to file
//! \return Vector of strings labelling analytic fields output in file
std::vector< std::string > analyticFieldNames() const {
auto nmat = g_inputdeck.get< eq, tag::nmat >();<--- Shadow variable
return MultiMatFieldNames(nmat);
}
//! Return time history field names to be output to file
//! \return Vector of strings labelling time history fields output in file
std::vector< std::string > histNames() const {
return MultiMatHistNames();
}
//! Return surface field output going to file
std::vector< std::vector< tk::real > >
surfOutput( const std::map< int, std::vector< std::size_t > >&,
tk::Fields& ) const
{
std::vector< std::vector< tk::real > > s; // punt for now
return s;
}
//! Return time history field output evaluated at time history points
//! \param[in] h History point data
//! \param[in] inpoel Element-node connectivity
//! \param[in] coord Array of nodal coordinates
//! \param[in] U Array of unknowns
//! \param[in] P Array of primitive quantities
//! \return Vector of time history output of bulk flow quantities (density,
//! velocity, total energy, and pressure) evaluated at time history points
std::vector< std::vector< tk::real > >
histOutput( const std::vector< HistData >& h,
const std::vector< std::size_t >& inpoel,
const tk::UnsMesh::Coords& coord,
const tk::Fields& U,
const tk::Fields& P ) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto& x = coord[0];
const auto& y = coord[1];
const auto& z = coord[2];
std::vector< std::vector< tk::real > > Up(h.size());
std::size_t j = 0;
for (const auto& p : h) {
auto e = p.get< tag::elem >();
auto chp = p.get< tag::coord >();
// Evaluate inverse Jacobian
std::array< std::array< tk::real, 3>, 4 > cp{{
{{ x[inpoel[4*e ]], y[inpoel[4*e ]], z[inpoel[4*e ]] }},
{{ x[inpoel[4*e+1]], y[inpoel[4*e+1]], z[inpoel[4*e+1]] }},
{{ x[inpoel[4*e+2]], y[inpoel[4*e+2]], z[inpoel[4*e+2]] }},
{{ x[inpoel[4*e+3]], y[inpoel[4*e+3]], z[inpoel[4*e+3]] }} }};
auto J = tk::inverseJacobian( cp[0], cp[1], cp[2], cp[3] );
// evaluate solution at history-point
std::array< tk::real, 3 > dc{{chp[0]-cp[0][0], chp[1]-cp[0][1],
chp[2]-cp[0][2]}};
auto B = tk::eval_basis(rdof, tk::dot(J[0],dc), tk::dot(J[1],dc),
tk::dot(J[2],dc));
auto uhp = eval_state(m_ncomp, rdof, rdof, e, U, B);
auto php = eval_state(m_nprim, rdof, rdof, e, P, B);
// store solution in history output vector
Up[j].resize(6, 0.0);
for (std::size_t k=0; k<nmat; ++k) {
Up[j][0] += uhp[densityIdx(nmat,k)];
Up[j][4] += uhp[energyIdx(nmat,k)];
Up[j][5] += php[pressureIdx(nmat,k)];
}
Up[j][1] = php[velocityIdx(nmat,0)];
Up[j][2] = php[velocityIdx(nmat,1)];
Up[j][3] = php[velocityIdx(nmat,2)];
++j;
}
return Up;
}
//! Return names of integral variables to be output to diagnostics file
//! \return Vector of strings labelling integral variables output
std::vector< std::string > names() const
{
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
return MultiMatDiagNames(nmat);
}
//! Return analytic solution (if defined by Problem) at xi, yi, zi, t
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
analyticSolution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::analyticSolution( m_ncomp, m_mat_blk, xi, yi, zi, t ); }
//! Return analytic solution for conserved variables
//! \param[in] xi X-coordinate at which to evaluate the analytic solution
//! \param[in] yi Y-coordinate at which to evaluate the analytic solution
//! \param[in] zi Z-coordinate at which to evaluate the analytic solution
//! \param[in] t Physical time at which to evaluate the analytic solution
//! \return Vector of analytic solution at given location and time
std::vector< tk::real >
solution( tk::real xi, tk::real yi, tk::real zi, tk::real t ) const
{ return Problem::initialize( m_ncomp, m_mat_blk, xi, yi, zi, t ); }
//! Return cell-averaged specific total energy for an element
//! \param[in] e Element id for which total energy is required
//! \param[in] unk Vector of conserved quantities
//! \return Cell-averaged specific total energy for given element
tk::real sp_totalenergy(std::size_t e, const tk::Fields& unk) const
{
const auto rdof = g_inputdeck.get< tag::rdof >();
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
tk::real sp_te(0.0);
// sum each material total energy
for (std::size_t k=0; k<nmat; ++k) {
sp_te += unk(e, energyDofIdx(nmat,k,rdof,0));
}
return sp_te;
}
private:
//! Number of components in this PDE system
const ncomp_t m_ncomp;
//! Number of primitive quantities stored in this PDE system
const ncomp_t m_nprim;
//! Riemann solver
tk::RiemannFluxFn m_riemann;
//! BC configuration
BCStateFn m_bc;
//! EOS material block
std::vector< EOS > m_mat_blk;
//! Evaluate conservative part of physical flux function for this PDE system
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] ugp Numerical solution at the Gauss point at which to
//! evaluate the flux
//! \return Flux vectors for all components in this PDE system
//! \note The function signature must follow tk::FluxFn
static tk::FluxFn::result_type
flux( ncomp_t ncomp,
const std::vector< EOS >& mat_blk,
const std::vector< tk::real >& ugp,
const std::vector< std::array< tk::real, 3 > >& )
{
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
return tk::fluxTerms(ncomp, nmat, mat_blk, ugp);
}
//! \brief Boundary state function providing the left and right state of a
//! face at Dirichlet boundaries
//! \param[in] ncomp Number of scalar components in this PDE system
//! \param[in] mat_blk EOS material block
//! \param[in] ul Left (domain-internal) state
//! \param[in] x X-coordinate at which to compute the states
//! \param[in] y Y-coordinate at which to compute the states
//! \param[in] z Z-coordinate at which to compute the states
//! \param[in] t Physical time
//! \return Left and right states for all scalar components in this PDE
//! system
//! \note The function signature must follow tk::StateFn. For multimat, the
//! left or right state is the vector of conserved quantities, followed by
//! the vector of primitive quantities appended to it.
static tk::StateFn::result_type
dirichlet( ncomp_t ncomp,
const std::vector< EOS >& mat_blk,
const std::vector< tk::real >& ul, tk::real x, tk::real y,
tk::real z, tk::real t, const std::array< tk::real, 3 >& )
{
auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();<--- Shadow variable
const auto& solidx = g_inputdeck.get<
tag::matidxmap, tag::solidx >();
[[maybe_unused]] auto nsld = numSolids(nmat, solidx);
auto ur = Problem::initialize( ncomp, mat_blk, x, y, z, t );
Assert( ur.size() == ncomp, "Incorrect size for boundary state vector" );
ur.resize(ul.size());
tk::real rho(0.0);
for (std::size_t k=0; k<nmat; ++k)
rho += ur[densityIdx(nmat, k)];
// get primitives in boundary state
// velocity
ur[ncomp+velocityIdx(nmat, 0)] = ur[momentumIdx(nmat, 0)] / rho;
ur[ncomp+velocityIdx(nmat, 1)] = ur[momentumIdx(nmat, 1)] / rho;
ur[ncomp+velocityIdx(nmat, 2)] = ur[momentumIdx(nmat, 2)] / rho;
// material pressures
for (std::size_t k=0; k<nmat; ++k)
{
auto gk = getDeformGrad(nmat, k, ur);
ur[ncomp+pressureIdx(nmat, k)] = mat_blk[k].compute< EOS::pressure >(
ur[densityIdx(nmat, k)], ur[ncomp+velocityIdx(nmat, 0)],
ur[ncomp+velocityIdx(nmat, 1)], ur[ncomp+velocityIdx(nmat, 2)],
ur[energyIdx(nmat, k)], ur[volfracIdx(nmat, k)], k, gk );
}
Assert( ur.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
"boundary state vector" );
return {{ std::move(ul), std::move(ur) }};
}
// Other boundary condition types that do not depend on "Problem" should be
// added in BCFunctions.hpp
};
} // dg::
} // inciter::
#endif // DGMultiMat_h
|