1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
// *****************************************************************************
/*!
  \file      src/Inciter/DG.cpp
  \copyright 2012-2015 J. Bakosi,
             2016-2018 Los Alamos National Security, LLC.,
             2019-2021 Triad National Security, LLC.
             All rights reserved. See the LICENSE file for details.
  \brief     DG advances a system of PDEs with the discontinuous Galerkin scheme
  \details   DG advances a system of partial differential equations (PDEs) using
    discontinuous Galerkin (DG) finite element (FE) spatial discretization (on
    tetrahedron elements) combined with Runge-Kutta (RK) time stepping.
  \see The documentation in DG.h.
*/
// *****************************************************************************

#include <algorithm>
#include <numeric>
#include <sstream>

#include "DG.hpp"
#include "Discretization.hpp"
#include "DGPDE.hpp"
#include "DiagReducer.hpp"
#include "DerivedData.hpp"
#include "ElemDiagnostics.hpp"
#include "Inciter/InputDeck/InputDeck.hpp"
#include "Refiner.hpp"
#include "Limiter.hpp"
#include "Reorder.hpp"
#include "Vector.hpp"
#include "Around.hpp"
#include "Integrate/Basis.hpp"
#include "FieldOutput.hpp"
#include "ChareStateCollector.hpp"
#include "PDE/MultiMat/MultiMatIndexing.hpp"

namespace inciter {

extern ctr::InputDeck g_inputdeck;
extern std::vector< DGPDE > g_dgpde;

//! Runge-Kutta coefficients
static const std::array< std::array< tk::real, 3 >, 2 >
  rkcoef{{ {{ 0.0, 3.0/4.0, 1.0/3.0 }}, {{ 1.0, 1.0/4.0, 2.0/3.0 }} }};

//! Implicit-Explicit Runge-Kutta Coefficients
static const tk::real rk_gamma = (2.0-std::sqrt(2.0))/2.0;
static const tk::real rk_delta = -2.0*std::sqrt(2.0)/3.0;
static const tk::real c2 =
  (27.0 + std::pow(2187.0-1458.0*std::sqrt(2.0),1.0/3.0)
   + 9.0*std::pow(3.0+2.0*std::sqrt(2.0),1.0/3.0))/54.0;
static const tk::real c3 = c2/(6.0*std::pow(c2,2.0)-3.0*c2+1.0);
static const tk::real b2 = (3.0*c2-1.0)/(6.0*std::pow(c2,2.0));
static const tk::real b3 =
  (6.0*std::pow(c2,2.0)-3.0*c2+1.0)/(6.0*std::pow(c2,2.0));
static const tk::real a22_impl = c2;
static const tk::real a21_expl = c2;
static const tk::real a32_expl = c3;
static const tk::real a33_impl =
  (1.0/6.0-b2*std::pow(c2,2.0)-b3*c2*c3)/(b3*(c3-c2));
static const tk::real a32_impl = a33_impl-c3;
static const std::array< std::array< tk::real, 3 >, 2 >
  expl_rkcoef{{ {{ 0.0, 0.0, b2 }},
                {{ a21_expl, a32_expl, b3 }} }};
static const std::array< std::array< tk::real, 3 >, 2>
  impl_rkcoef{{ {{ 0.0, a32_impl, b2 }},
                {{ a22_impl, a33_impl, b3}} }};

} // inciter::

extern tk::CProxy_ChareStateCollector stateProxy;

using inciter::DG;

DG::DG( const CProxy_Discretization& disc,
        const CProxy_Ghosts& ghostsproxy,
        const std::map< int, std::vector< std::size_t > >& bface,
        const std::map< int, std::vector< std::size_t > >& /* bnode */,
        const std::vector< std::size_t >& triinpoel ) :
  m_disc( disc ),
  m_ghosts( ghostsproxy ),
  m_ndof_NodalExtrm( 3 ), // for the first order derivatives in 3 directions
  m_nsol( 0 ),
  m_ninitsol( 0 ),
  m_nlim( 0 ),
  m_nnod( 0 ),
  m_nrefine( 0 ),
  m_nsmooth( 0 ),
  m_nreco( 0 ),
  m_nnodalExtrema( 0 ),
  m_nstiffeq( g_dgpde[Disc()->MeshId()].nstiffeq() ),
  m_nnonstiffeq( g_dgpde[Disc()->MeshId()].nnonstiffeq() ),
  m_u( Disc()->Inpoel().size()/4,
       g_inputdeck.get< tag::rdof >()*
       g_inputdeck.get< tag::ncomp >() ),
  m_un( m_u.nunk(), m_u.nprop() ),
  m_p( m_u.nunk(), g_inputdeck.get< tag::rdof >()*
    g_dgpde[Disc()->MeshId()].nprim() ),
  m_lhs( m_u.nunk(),
         g_inputdeck.get< tag::ndof >()*
         g_inputdeck.get< tag::ncomp >() ),
  m_rhs( m_u.nunk(), m_lhs.nprop() ),
  m_rhsprev( m_u.nunk(), m_lhs.nprop() ),
  m_stiffrhs( m_u.nunk(), g_inputdeck.get< tag::ndof >()*
              g_dgpde[Disc()->MeshId()].nstiffeq() ),
  m_stiffrhsprev( m_u.nunk(), g_inputdeck.get< tag::ndof >()*
                  g_dgpde[Disc()->MeshId()].nstiffeq() ),
  m_stiffEqIdx( g_dgpde[Disc()->MeshId()].nstiffeq() ),
  m_nonStiffEqIdx( g_dgpde[Disc()->MeshId()].nnonstiffeq() ),
  m_mtInv(
    tk::invMassMatTaylorRefEl(g_inputdeck.get< tag::rdof >()) ),
  m_uNodalExtrm(),
  m_pNodalExtrm(),
  m_uNodalExtrmc(),
  m_pNodalExtrmc(),
  m_npoin( Disc()->Coord()[0].size() ),
  m_diag(),
  m_stage( 0 ),
  m_ndof(),
  m_interface(),
  m_numEqDof(),
  m_uc(),
  m_pc(),
  m_ndofc(),
  m_interfacec(),
  m_initial( 1 ),
  m_uElemfields( m_u.nunk(),
                 g_inputdeck.get< tag::ncomp >() ),
  m_pElemfields( m_u.nunk(),
                 m_p.nprop() / g_inputdeck.get< tag::rdof >() ),
  m_uNodefields( m_npoin,
                 g_inputdeck.get< tag::ncomp >() ),
  m_pNodefields( m_npoin,
                 m_p.nprop() / g_inputdeck.get< tag::rdof >() ),
  m_uNodefieldsc(),
  m_pNodefieldsc(),
  m_outmesh(),
  m_boxelems(),
  m_shockmarker(m_u.nunk(), 1)
// *****************************************************************************
//  Constructor
//! \param[in] disc Discretization proxy
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "DG", thisIndex, CkMyPe(), Disc()->It(),
                                        "DG" );

  // assign number of dofs for each equation in all pde systems
  g_dgpde[Disc()->MeshId()].numEquationDofs(m_numEqDof);

  // Allocate storage for the vector of nodal extrema
  m_uNodalExtrm.resize( Disc()->Bid().size(),
    std::vector<tk::real>( 2 * m_ndof_NodalExtrm *
    g_inputdeck.get< tag::ncomp >() ) );
  m_pNodalExtrm.resize( Disc()->Bid().size(),
    std::vector<tk::real>( 2 * m_ndof_NodalExtrm *
    m_p.nprop() / g_inputdeck.get< tag::rdof >() ) );

  // Initialization for the buffer vector of nodal extrema
  resizeNodalExtremac();

  usesAtSync = true;    // enable migration at AtSync

  // Enable SDAG wait for initially building the solution vector and limiting
  if (m_initial) {
    thisProxy[ thisIndex ].wait4sol();
    thisProxy[ thisIndex ].wait4refine();
    thisProxy[ thisIndex ].wait4smooth();
    thisProxy[ thisIndex ].wait4lim();
    thisProxy[ thisIndex ].wait4nod();
    thisProxy[ thisIndex ].wait4reco();
    thisProxy[ thisIndex ].wait4nodalExtrema();
  }

  m_ghosts[thisIndex].insert(m_disc, bface, triinpoel, m_u.nunk(),
    CkCallback(CkIndex_DG::resizeSolVectors(), thisProxy[thisIndex]));

  // global-sync to call doneInserting on m_ghosts
  auto meshid = Disc()->MeshId();
  contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
    CkCallback(CkReductionTarget(Transporter,doneInsertingGhosts),
    Disc()->Tr()) );
}

void
DG::registerReducers()
// *****************************************************************************
//  Configure Charm++ reduction types
//! \details Since this is a [initnode] routine, the runtime system executes the
//!   routine exactly once on every logical node early on in the Charm++ init
//!   sequence. Must be static as it is called without an object. See also:
//!   Section "Initializations at Program Startup" at in the Charm++ manual
//!   http://charm.cs.illinois.edu/manuals/html/charm++/manual.html.
// *****************************************************************************
{
  ElemDiagnostics::registerReducers();
}

void
DG::ResumeFromSync()
// *****************************************************************************
//  Return from migration
//! \details This is called when load balancing (LB) completes. The presence of
//!   this function does not affect whether or not we block on LB.
// *****************************************************************************
{
  if (Disc()->It() == 0) Throw( "it = 0 in ResumeFromSync()" );

  if (!g_inputdeck.get< tag::cmd, tag::nonblocking >()) next();
}

void
DG::resizeSolVectors()
// *****************************************************************************
// Resize solution vectors after extension due to Ghosts and continue with setup
// *****************************************************************************
{
  // Resize solution vectors, lhs and rhs by the number of ghost tets
  m_u.resize( myGhosts()->m_nunk );
  m_un.resize( myGhosts()->m_nunk );
  m_p.resize( myGhosts()->m_nunk );
  m_lhs.resize( myGhosts()->m_nunk );
  m_rhs.resize( myGhosts()->m_nunk );
  m_rhsprev.resize( myGhosts()->m_nunk );
  m_stiffrhs.resize( myGhosts()->m_nunk );
  m_stiffrhsprev.resize( myGhosts()->m_nunk );

  // Size communication buffer for solution and number of degrees of freedom
  for (auto& n : m_ndofc) n.resize( myGhosts()->m_bid.size() );
  for (auto& u : m_uc) u.resize( myGhosts()->m_bid.size() );
  for (auto& p : m_pc) p.resize( myGhosts()->m_bid.size() );
  for (auto& i : m_interfacec) i.resize( myGhosts()->m_bid.size() );

  // Initialize number of degrees of freedom in mesh elements
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();
  if( pref )
  {
    const auto ndofmax = g_inputdeck.get< tag::pref, tag::ndofmax >();
    m_ndof.resize( myGhosts()->m_nunk, ndofmax );
  }
  else
  {
    const auto ndof = g_inputdeck.get< tag::ndof >();
    m_ndof.resize( myGhosts()->m_nunk, ndof );
  }
  m_interface.resize( myGhosts()->m_nunk, 0 );

  // Ensure that we also have all the geometry and connectivity data
  // (including those of ghosts)
  Assert( myGhosts()->m_geoElem.nunk() == m_u.nunk(),
    "GeoElem unknowns size mismatch" );

  // Signal the runtime system that all workers have received their adjacency
  std::vector< std::size_t > meshdata{ myGhosts()->m_initial, Disc()->MeshId() };
  contribute( meshdata, CkReduction::sum_ulong,
    CkCallback(CkReductionTarget(Transporter,comfinal), Disc()->Tr()) );
}

void
DG::setup()
// *****************************************************************************
// Set initial conditions, generate lhs, output mesh
// *****************************************************************************
{
  if (g_inputdeck.get< tag::cmd, tag::chare >() ||
      g_inputdeck.get< tag::cmd, tag::quiescence >())
    stateProxy.ckLocalBranch()->insert( "DG", thisIndex, CkMyPe(), Disc()->It(),
                                        "setup" );

  auto d = Disc();<--- Variable 'd' is assigned a value that is never used.

  // Basic error checking on sizes of element geometry data and connectivity
  Assert( myGhosts()->m_geoElem.nunk() == m_lhs.nunk(),
    "Size mismatch in DG::setup()" );

  // Compute left-hand side of discrete PDEs
  lhs();

  // Determine elements inside user-defined IC box
  g_dgpde[d->MeshId()].IcBoxElems( myGhosts()->m_geoElem,
    myGhosts()->m_fd.Esuel().size()/4, m_boxelems );

  // Compute volume of user-defined box IC
  d->boxvol( {}, {}, 0 );      // punt for now

  // Query time history field output labels from all PDEs integrated
  const auto& hist_points = g_inputdeck.get< tag::history_output, tag::point >();
  if (!hist_points.empty()) {
    std::vector< std::string > histnames;
    auto n = g_dgpde[d->MeshId()].histNames();
    histnames.insert( end(histnames), begin(n), end(n) );
    d->histheader( std::move(histnames) );
  }

  // If working with IMEX-RK, Store stiff equations into m_stiffEqIdx
  if (g_inputdeck.get< tag::imex_runge_kutta >())
  {
    g_dgpde[Disc()->MeshId()].setStiffEqIdx(m_stiffEqIdx);
    g_dgpde[Disc()->MeshId()].setNonStiffEqIdx(m_nonStiffEqIdx);
  }
}

void
DG::box( tk::real v, const std::vector< tk::real >& )
// *****************************************************************************
// Receive total box IC volume and set conditions in box
//! \param[in] v Total volume within user-specified box
// *****************************************************************************
{
  auto d = Disc();

  // Store user-defined box IC volume
  d->Boxvol() = v;

  // Set initial conditions for all PDEs
  g_dgpde[d->MeshId()].initialize( m_lhs, myGhosts()->m_inpoel,
    myGhosts()->m_coord, m_boxelems, d->ElemBlockId(), m_u, d->T(),
    myGhosts()->m_fd.Esuel().size()/4 );
  g_dgpde[d->MeshId()].updatePrimitives( m_u, m_lhs, myGhosts()->m_geoElem, m_p,
    myGhosts()->m_fd.Esuel().size()/4, m_ndof );

  m_un = m_u;

  // Output initial conditions to file (regardless of whether it was requested)
  startFieldOutput( CkCallback(CkIndex_DG::start(), thisProxy[thisIndex]) );
}

void
DG::start()
// *****************************************************************************
//  Start time stepping
// *****************************************************************************
{
  // Free memory storing output mesh
  m_outmesh.destroy();

  // Start timer measuring time stepping wall clock time
  Disc()->Timer().zero();
  // Zero grind-timer
  Disc()->grindZero();
  // Start time stepping by computing the size of the next time step)
  next();
}

void
DG::startFieldOutput( CkCallback c )
// *****************************************************************************
// Start preparing fields for output to file
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
  // No field output in benchmark mode or if field output frequency not hit
  if (g_inputdeck.get< tag::cmd, tag::benchmark >() || !fieldOutput()) {

    c.send();

  } else {

    // Optionally refine mesh for field output
    auto d = Disc();

    if (refinedOutput()) {

      const auto& tr = tk::remap( myGhosts()->m_fd.Triinpoel(), d->Gid() );
      d->Ref()->outref( myGhosts()->m_fd.Bface(), {}, tr, c );

    } else {

      // cut off ghosts from mesh connectivity and coordinates
      const auto& tr = tk::remap( myGhosts()->m_fd.Triinpoel(), d->Gid() );
      extractFieldOutput( {}, d->Chunk(), d->Coord(), {}, {},
                          d->NodeCommMap(), myGhosts()->m_fd.Bface(), {}, tr, c );

    }

  }
}

void
DG::next()
// *****************************************************************************
// Advance equations to next time step
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  auto d = Disc();

  if (pref && m_stage == 0 && d->T() > 0)
    g_dgpde[d->MeshId()].eval_ndof( myGhosts()->m_nunk, myGhosts()->m_coord,
                  myGhosts()->m_inpoel,
                  myGhosts()->m_fd, m_u, m_p,
                  g_inputdeck.get< tag::pref, tag::indicator >(),
                  g_inputdeck.get< tag::ndof >(),
                  g_inputdeck.get< tag::pref, tag::ndofmax >(),
                  g_inputdeck.get< tag::pref, tag::tolref >(),
                  m_ndof );

  // communicate solution ghost data (if any)
  if (myGhosts()->m_sendGhost.empty())
    comsol_complete();
  else
    for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
      std::vector< std::size_t > tetid( ghostdata.size() );
      std::vector< std::vector< tk::real > > u( ghostdata.size() ),
                                             prim( ghostdata.size() );
      std::vector< std::size_t > interface( ghostdata.size() );
      std::vector< std::size_t > ndof( ghostdata.size() );
      std::size_t j = 0;
      for(const auto& i : ghostdata) {
        Assert( i < myGhosts()->m_fd.Esuel().size()/4,
          "Sending solution ghost data" );
        tetid[j] = i;
        u[j] = m_u[i];
        prim[j] = m_p[i];
        if (pref && m_stage == 0) {
          ndof[j] = m_ndof[i];
          interface[j] = m_interface[i];
        }
        ++j;
      }
      thisProxy[ cid ].comsol( thisIndex, m_stage, tetid, u, prim, interface, ndof );
    }

  ownsol_complete();
}

void
DG::comsol( int fromch,
            std::size_t fromstage,
            const std::vector< std::size_t >& tetid,
            const std::vector< std::vector< tk::real > >& u,
            const std::vector< std::vector< tk::real > >& prim,
            const std::vector< std::size_t >& interface,
            const std::vector< std::size_t >& ndof )
// *****************************************************************************
//  Receive chare-boundary solution ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] fromstage Sender chare time step stage
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] u Solution ghost data
//! \param[in] prim Primitive variables in ghost cells
//! \param[in] interface Interface marker in ghost cells
//! \param[in] ndof Number of degrees of freedom for chare-boundary elements
//! \details This function receives contributions to the unlimited solution
//!   from fellow chares.
// *****************************************************************************
{
  Assert( u.size() == tetid.size(), "Size mismatch in DG::comsol()" );
  Assert( prim.size() == tetid.size(), "Size mismatch in DG::comsol()" );

  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  if (pref && fromstage == 0) {
    Assert( ndof.size() == tetid.size(), "Size mismatch in DG::comsol()" );
    Assert( interface.size() == tetid.size(), "Size mismatch in DG::comsol()" );
  }

  // Find local-to-ghost tet id map for sender chare
  const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );

  for (std::size_t i=0; i<tetid.size(); ++i) {
    auto j = tk::cref_find( n, tetid[i] );
    Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
      "Receiving solution non-ghost data" );
    auto b = tk::cref_find( myGhosts()->m_bid, j );
    Assert( b < m_uc[0].size(), "Indexing out of bounds" );
    m_uc[0][b] = u[i];
    m_pc[0][b] = prim[i];
    if (pref && fromstage == 0) {
      Assert( b < m_ndofc[0].size(), "Indexing out of bounds" );
      m_ndofc[0][b] = ndof[i];
      Assert( b < m_interfacec[0].size(), "Indexing out of bounds" );
      m_interfacec[0][b] = interface[i];
    }
  }

  // if we have received all solution ghost contributions from neighboring
  // chares (chares we communicate along chare-boundary faces with), and
  // contributed our solution to these neighbors, proceed to reconstructions
  if (++m_nsol == myGhosts()->m_sendGhost.size()) {
    m_nsol = 0;
    comsol_complete();
  }
}

void
DG::extractFieldOutput(
  const std::vector< std::size_t >& /*ginpoel*/,
  const tk::UnsMesh::Chunk& chunk,
  const tk::UnsMesh::Coords& coord,
  const std::unordered_map< std::size_t, tk::UnsMesh::Edge >& /*addedNodes*/,
  const std::unordered_map< std::size_t, std::size_t >& addedTets,
  const tk::NodeCommMap& nodeCommMap,
  const std::map< int, std::vector< std::size_t > >& bface,
  const std::map< int, std::vector< std::size_t > >& /* bnode */,
  const std::vector< std::size_t >& triinpoel,
  CkCallback c )
// *****************************************************************************
// Extract field output going to file
//! \param[in] chunk Field-output mesh chunk (connectivity and global<->local
//!    id maps)
//! \param[in] coord Field-output mesh node coordinates
//! \param[in] addedTets Field-output mesh cells and their parents (local ids)
//! \param[in] nodeCommMap Field-output mesh node communication map
//! \param[in] bface Field-output meshndary-faces mapped to side set ids
//! \param[in] triinpoel Field-output mesh boundary-face connectivity
//! \param[in] c Function to continue with after the write
// *****************************************************************************
{
  m_outmesh.chunk = chunk;
  m_outmesh.coord = coord;
  m_outmesh.triinpoel = triinpoel;
  m_outmesh.bface = bface;
  m_outmesh.nodeCommMap = nodeCommMap;

  const auto& inpoel = std::get< 0 >( chunk );

  // Evaluate element solution on incoming mesh
  evalSolution( *Disc(), inpoel, coord, addedTets, m_ndof, m_u, m_p,
    m_uElemfields, m_pElemfields, m_uNodefields, m_pNodefields );

  // Send node fields contributions to neighbor chares
  if (nodeCommMap.empty())
    comnodeout_complete();
  else {
    const auto& lid = std::get< 2 >( chunk );
    auto esup = tk::genEsup( inpoel, 4 );
    for(const auto& [ch,nodes] : nodeCommMap) {
      // Pack node field data in chare boundary nodes
      std::vector< std::vector< tk::real > >
        lu( m_uNodefields.nprop(), std::vector< tk::real >( nodes.size() ) );
      std::vector< std::vector< tk::real > >
        lp( m_pNodefields.nprop(), std::vector< tk::real >( nodes.size() ) );
      for (std::size_t f=0; f<m_uNodefields.nprop(); ++f) {
        std::size_t j = 0;
        for (auto g : nodes)
          lu[f][j++] = m_uNodefields(tk::cref_find(lid,g),f);
      }
      for (std::size_t f=0; f<m_pNodefields.nprop(); ++f) {
        std::size_t j = 0;
        for (auto g : nodes)
          lp[f][j++] = m_pNodefields(tk::cref_find(lid,g),f);
      }
      // Pack (partial) number of elements surrounding chare boundary nodes
      std::vector< std::size_t > nesup( nodes.size() );
      std::size_t j = 0;
      for (auto g : nodes) {
        auto i = tk::cref_find( lid, g );
        nesup[j++] = esup.second[i+1] - esup.second[i];
      }
      thisProxy[ch].comnodeout(
        std::vector<std::size_t>(begin(nodes),end(nodes)), nesup, lu, lp );
    }
  }

  ownnod_complete( c, addedTets );
}

void
DG::lhs()
// *****************************************************************************
// Compute left-hand side of discrete transport equations
// *****************************************************************************
{
  g_dgpde[Disc()->MeshId()].lhs( myGhosts()->m_geoElem, m_lhs );

  if (!m_initial) stage();
}

void DG::refine()
// *****************************************************************************
// Add the protective layer for ndof refinement
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  // Combine own and communicated contributions of unreconstructed solution and
  // degrees of freedom in cells (if p-adaptive)
  for (const auto& b : myGhosts()->m_bid) {
    Assert( m_uc[0][b.second].size() == m_u.nprop(), "ncomp size mismatch" );
    Assert( m_pc[0][b.second].size() == m_p.nprop(), "ncomp size mismatch" );
    for (std::size_t c=0; c<m_u.nprop(); ++c) {
      m_u(b.first,c) = m_uc[0][b.second][c];
    }
    for (std::size_t c=0; c<m_p.nprop(); ++c) {
      m_p(b.first,c) = m_pc[0][b.second][c];
    }
    if (pref && m_stage == 0) {
      m_ndof[ b.first ] = m_ndofc[0][ b.second ];
      m_interface[ b.first ] = m_interfacec[0][ b.second ];
    }
  }

  if (pref && m_stage==0) refine_ndof();

  if (myGhosts()->m_sendGhost.empty())
    comrefine_complete();
  else
    for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
      std::vector< std::size_t > tetid( ghostdata.size() );
      std::vector< std::vector< tk::real > > u( ghostdata.size() ),
                                             prim( ghostdata.size() );
      std::vector< std::size_t > ndof( ghostdata.size() );
      std::size_t j = 0;
      for(const auto& i : ghostdata) {
        Assert( i < myGhosts()->m_fd.Esuel().size()/4, "Sending refined ndof  "
          "data" );
        tetid[j] = i;
        if (pref && m_stage == 0) ndof[j] = m_ndof[i];
        ++j;
      }
      thisProxy[ cid ].comrefine( thisIndex, tetid, ndof );
    }

  ownrefine_complete();
}

void
DG::comrefine( int fromch,
               const std::vector< std::size_t >& tetid,
               const std::vector< std::size_t >& ndof )
// *****************************************************************************
//  Receive chare-boundary ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] ndof Number of degrees of freedom for chare-boundary elements
//! \details This function receives contributions to the refined ndof data
//!   from fellow chares.
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  if (pref && m_stage == 0)
    Assert( ndof.size() == tetid.size(), "Size mismatch in DG::comrefine()" );

  // Find local-to-ghost tet id map for sender chare
  const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );

  for (std::size_t i=0; i<tetid.size(); ++i) {
    auto j = tk::cref_find( n, tetid[i] );
    Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
      "Receiving solution non-ghost data" );
    auto b = tk::cref_find( myGhosts()->m_bid, j );
    if (pref && m_stage == 0) {
      Assert( b < m_ndofc[1].size(), "Indexing out of bounds" );
      m_ndofc[1][b] = ndof[i];
    }
  }

  // if we have received all solution ghost contributions from neighboring
  // chares (chares we communicate along chare-boundary faces with), and
  // contributed our solution to these neighbors, proceed to limiting
  if (++m_nrefine == myGhosts()->m_sendGhost.size()) {
    m_nrefine = 0;
    comrefine_complete();
  }
}

void
DG::smooth()
// *****************************************************************************
// Smooth the refined ndof distribution
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  for (const auto& b : myGhosts()->m_bid) {
    if (pref && m_stage == 0)
      m_ndof[ b.first ] = m_ndofc[1][ b.second ];
  }

  if (pref && m_stage==0) smooth_ndof();

  if (myGhosts()->m_sendGhost.empty())
    comsmooth_complete();
  else
    for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
      std::vector< std::size_t > tetid( ghostdata.size() );
      std::vector< std::size_t > ndof;
      std::size_t j = 0;
      for(const auto& i : ghostdata) {
        Assert( i < myGhosts()->m_fd.Esuel().size()/4, "Sending ndof data" );
        tetid[j] = i;
        if (pref && m_stage == 0) ndof.push_back( m_ndof[i] );
        ++j;
      }
      thisProxy[ cid ].comsmooth( thisIndex, tetid, ndof );
    }

  ownsmooth_complete();
}

void
DG::comsmooth( int fromch,
               const std::vector< std::size_t >& tetid,
               const std::vector< std::size_t >& ndof )
// *****************************************************************************
//  Receive chare-boundary ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] ndof Number of degrees of freedom for chare-boundary elements
//! \details This function receives contributions to the smoothed ndof data
//!   from fellow chares.
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  if (pref && m_stage == 0)
    Assert( ndof.size() == tetid.size(), "Size mismatch in DG::comsmooth()" );

  const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );

  for (std::size_t i=0; i<tetid.size(); ++i) {
    auto j = tk::cref_find( n, tetid[i] );
    Assert( j >= myGhosts()->m_fd.Esuel().size()/4, "Receiving ndof data" );
    auto b = tk::cref_find( myGhosts()->m_bid, j );
    if (pref && m_stage == 0) {
      Assert( b < m_ndofc[2].size(), "Indexing out of bounds" );
      m_ndofc[2][b] = ndof[i];
    }
  }

  if (++m_nsmooth == myGhosts()->m_sendGhost.size()) {
    m_nsmooth = 0;
    comsmooth_complete();
  }
}

void
DG::reco()
// *****************************************************************************
// Compute reconstructions
// *****************************************************************************
{
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();
  const auto rdof = g_inputdeck.get< tag::rdof >();

  // Combine own and communicated contributions of unreconstructed solution and
  // degrees of freedom in cells (if p-adaptive)
  for (const auto& b : myGhosts()->m_bid) {
    if (pref && m_stage == 0) {
      m_ndof[ b.first ] = m_ndofc[2][ b.second ];
    }
  }

  auto d = Disc();
  if (pref && m_stage==0) {
    g_dgpde[d->MeshId()].resetAdapSol( myGhosts()->m_fd, m_u, m_p, m_ndof );
  }

  if (rdof > 1)
    // Reconstruct second-order solution and primitive quantities
    g_dgpde[d->MeshId()].reconstruct( d->T(), myGhosts()->m_geoFace,
      myGhosts()->m_geoElem,
      myGhosts()->m_fd, myGhosts()->m_esup, myGhosts()->m_inpoel,
      myGhosts()->m_coord, m_u, m_p, pref, m_ndof );

  // Send reconstructed solution to neighboring chares
  if (myGhosts()->m_sendGhost.empty())
    comreco_complete();
  else
    for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
      std::vector< std::size_t > tetid( ghostdata.size() );
      std::vector< std::vector< tk::real > > u( ghostdata.size() ),
                                             prim( ghostdata.size() );
      std::size_t j = 0;
      for(const auto& i : ghostdata) {
        Assert( i < myGhosts()->m_fd.Esuel().size()/4, "Sending reconstructed ghost "
          "data" );
        tetid[j] = i;
        u[j] = m_u[i];
        prim[j] = m_p[i];
        ++j;
      }
      thisProxy[ cid ].comreco( thisIndex, tetid, u, prim );
    }

  ownreco_complete();
}

void
DG::comreco( int fromch,
             const std::vector< std::size_t >& tetid,
             const std::vector< std::vector< tk::real > >& u,
             const std::vector< std::vector< tk::real > >& prim )
// *****************************************************************************
//  Receive chare-boundary reconstructed ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] u Reconstructed high-order solution
//! \param[in] prim Limited high-order primitive quantities
//! \details This function receives contributions to the reconstructed solution
//!   from fellow chares.
// *****************************************************************************
{
  Assert( u.size() == tetid.size(), "Size mismatch in DG::comreco()" );
  Assert( prim.size() == tetid.size(), "Size mismatch in DG::comreco()" );

  // Find local-to-ghost tet id map for sender chare
  const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );

  for (std::size_t i=0; i<tetid.size(); ++i) {
    auto j = tk::cref_find( n, tetid[i] );
    Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
      "Receiving solution non-ghost data" );
    auto b = tk::cref_find( myGhosts()->m_bid, j );
    Assert( b < m_uc[1].size(), "Indexing out of bounds" );
    Assert( b < m_pc[1].size(), "Indexing out of bounds" );
    m_uc[1][b] = u[i];
    m_pc[1][b] = prim[i];
  }

  // if we have received all solution ghost contributions from neighboring
  // chares (chares we communicate along chare-boundary faces with), and
  // contributed our solution to these neighbors, proceed to limiting
  if (++m_nreco == myGhosts()->m_sendGhost.size()) {
    m_nreco = 0;
    comreco_complete();
  }
}

void
DG::nodalExtrema()
// *****************************************************************************
// Compute nodal extrema at chare-boundary nodes. Extrema at internal nodes
// are calculated in limiter function.
// *****************************************************************************
{
  auto d = Disc();
  auto gid = d->Gid();
  auto bid = d->Bid();
  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto ncomp = m_u.nprop() / rdof;
  const auto nprim = m_p.nprop() / rdof;

  // Combine own and communicated contributions of unlimited solution, and
  // if a p-adaptive algorithm is used, degrees of freedom in cells
  for (const auto& [boundary, localtet] : myGhosts()->m_bid) {
    Assert( m_uc[1][localtet].size() == m_u.nprop(), "ncomp size mismatch" );
    Assert( m_pc[1][localtet].size() == m_p.nprop(), "ncomp size mismatch" );
    for (std::size_t c=0; c<m_u.nprop(); ++c) {
      m_u(boundary,c) = m_uc[1][localtet][c];
    }
    for (std::size_t c=0; c<m_p.nprop(); ++c) {
      m_p(boundary,c) = m_pc[1][localtet][c];
    }
  }

  // Initialize nodal extrema vector
  auto large = std::numeric_limits< tk::real >::max();
  for(std::size_t i = 0; i<bid.size(); i++)
  {
    for (std::size_t c=0; c<ncomp; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        m_uNodalExtrm[i][max_mark] = -large;
        m_uNodalExtrm[i][min_mark] =  large;
      }
    }
    for (std::size_t c=0; c<nprim; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        m_pNodalExtrm[i][max_mark] = -large;
        m_pNodalExtrm[i][min_mark] =  large;
      }
    }
  }

  // Evaluate the max/min value for the chare-boundary nodes
  if(rdof > 4) {
      evalNodalExtrmRefEl(ncomp, nprim, m_ndof_NodalExtrm, d->bndel(),
        myGhosts()->m_inpoel, gid, bid, m_u, m_p, m_uNodalExtrm, m_pNodalExtrm);
  }

  // Communicate extrema at nodes to other chares on chare-boundary
  if (d->NodeCommMap().empty())        // in serial we are done
    comnodalExtrema_complete();
  else  // send nodal extrema to chare-boundary nodes to fellow chares
  {
    for (const auto& [c,n] : d->NodeCommMap()) {
      std::vector< std::vector< tk::real > > g1( n.size() ), g2( n.size() );
      std::size_t j = 0;
      for (auto i : n)
      {
        auto p = tk::cref_find(d->Bid(),i);
        g1[ j   ] = m_uNodalExtrm[ p ];
        g2[ j++ ] = m_pNodalExtrm[ p ];
      }
      thisProxy[c].comnodalExtrema( std::vector<std::size_t>(begin(n),end(n)),
        g1, g2 );
    }
  }
  ownnodalExtrema_complete();
}

void
DG::comnodalExtrema( const std::vector< std::size_t >& gid,
                     const std::vector< std::vector< tk::real > >& G1,
                     const std::vector< std::vector< tk::real > >& G2 )
// *****************************************************************************
//  Receive contributions to nodal extrema on chare-boundaries
//! \param[in] gid Global mesh node IDs at which we receive grad contributions
//! \param[in] G1 Partial contributions of extrema for conservative variables to
//!   chare-boundary nodes
//! \param[in] G2 Partial contributions of extrema for primitive variables to
//!   chare-boundary nodes
//! \details This function receives contributions to m_uNodalExtrm/m_pNodalExtrm
//!   , which stores nodal extrems at mesh chare-boundary nodes. While
//!   m_uNodalExtrm/m_pNodalExtrm stores own contributions, m_uNodalExtrmc
//!   /m_pNodalExtrmc collects the neighbor chare contributions during
//!   communication.
// *****************************************************************************
{
  Assert( G1.size() == gid.size(), "Size mismatch" );
  Assert( G2.size() == gid.size(), "Size mismatch" );

  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto ncomp = m_u.nprop() / rdof;
  const auto nprim = m_p.nprop() / rdof;

  for (std::size_t i=0; i<gid.size(); ++i)
  {
    auto& u = m_uNodalExtrmc[gid[i]];
    auto& p = m_pNodalExtrmc[gid[i]];
    for (std::size_t c=0; c<ncomp; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        u[max_mark] = std::max( G1[i][max_mark], u[max_mark] );
        u[min_mark] = std::min( G1[i][min_mark], u[min_mark] );
      }
    }
    for (std::size_t c=0; c<nprim; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        p[max_mark] = std::max( G2[i][max_mark], p[max_mark] );
        p[min_mark] = std::min( G2[i][min_mark], p[min_mark] );
      }
    }
  }

  if (++m_nnodalExtrema == Disc()->NodeCommMap().size())
  {
    m_nnodalExtrema = 0;
    comnodalExtrema_complete();
  }
}

void DG::resizeNodalExtremac()
// *****************************************************************************
//  Resize the buffer vector of nodal extrema
// *****************************************************************************
{
  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto ncomp = m_u.nprop() / rdof;
  const auto nprim = m_p.nprop() / rdof;

  auto large = std::numeric_limits< tk::real >::max();
  for (const auto& [c,n] : Disc()->NodeCommMap())
  {
    for (auto i : n) {
      auto& u = m_uNodalExtrmc[i];
      auto& p = m_pNodalExtrmc[i];
      u.resize( 2*m_ndof_NodalExtrm*ncomp, large );
      p.resize( 2*m_ndof_NodalExtrm*nprim, large );

      // Initialize the minimum nodal extrema
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        for(std::size_t k = 0; k < ncomp; k++)
          u[2*k*m_ndof_NodalExtrm+2*idof] = -large;
        for(std::size_t k = 0; k < nprim; k++)
          p[2*k*m_ndof_NodalExtrm+2*idof] = -large;
      }
    }
  }
}

void DG::evalNodalExtrmRefEl(
  const std::size_t ncomp,
  const std::size_t nprim,
  const std::size_t ndof_NodalExtrm,
  const std::vector< std::size_t >& bndel,
  const std::vector< std::size_t >& inpoel,
  const std::vector< std::size_t >& gid,
  const std::unordered_map< std::size_t, std::size_t >& bid,
  const tk::Fields& U,
  const tk::Fields& P,
  std::vector< std::vector<tk::real> >& uNodalExtrm,
  std::vector< std::vector<tk::real> >& pNodalExtrm )
// *****************************************************************************
//  Compute the nodal extrema of ref el derivatives for chare-boundary nodes
//! \param[in] ncomp Number of conservative variables
//! \param[in] nprim Number of primitive variables
//! \param[in] ndof_NodalExtrm Degree of freedom for nodal extrema
//! \param[in] bndel List of elements contributing to chare-boundary nodes
//! \param[in] inpoel Element-node connectivity for element e
//! \param[in] gid Local->global node id map
//! \param[in] bid Local chare-boundary node ids (value) associated to
//!   global node ids (key)
//! \param[in] U Vector of conservative variables
//! \param[in] P Vector of primitive variables
//! \param[in,out] uNodalExtrm Chare-boundary nodal extrema for conservative
//!   variables
//! \param[in,out] pNodalExtrm Chare-boundary nodal extrema for primitive
//!   variables
// *****************************************************************************
{
  const auto rdof = g_inputdeck.get< tag::rdof >();

  for (auto e : bndel)
  {
    // access node IDs
    const std::vector<std::size_t> N
      { inpoel[e*4+0], inpoel[e*4+1], inpoel[e*4+2], inpoel[e*4+3] };

    // Loop over nodes of element e
    for(std::size_t ip=0; ip<4; ++ip)
    {
      auto i = bid.find( gid[N[ip]] );
      if (i != end(bid))      // If ip is the chare boundary point
      {
        // If DG(P2) is applied, find the nodal extrema of the gradients of
        // conservative/primitive variables in the reference element

        // Vector used to store the first order derivatives for both
        // conservative and primitive variables
        std::vector< std::array< tk::real, 3 > > gradc(ncomp, {0.0, 0.0, 0.0});
        std::vector< std::array< tk::real, 3 > > gradp(ncomp, {0.0, 0.0, 0.0});

        // Derivatives of the Dubiner basis
        std::array< tk::real, 3 > center {{0.25, 0.25, 0.25}};
        auto dBdxi = tk::eval_dBdxi(rdof, center);

        // Evaluate the first order derivative
        for(std::size_t icomp = 0; icomp < ncomp; icomp++)
        {
          auto mark = icomp * rdof;
          for(std::size_t idir = 0; idir < 3; idir++)
          {
            gradc[icomp][idir] = 0;
            for(std::size_t idof = 1; idof < rdof; idof++)
              gradc[icomp][idir] += U(e, mark+idof) * dBdxi[idir][idof];
          }
        }
        for(std::size_t icomp = 0; icomp < nprim; icomp++)
        {
          auto mark = icomp * rdof;
          for(std::size_t idir = 0; idir < 3; idir++)
          {
            gradp[icomp][idir] = 0;
            for(std::size_t idof = 1; idof < rdof; idof++)
              gradp[icomp][idir] += P(e, mark+idof) * dBdxi[idir][idof];
          }
        }

        // Store the extrema for the gradients
        for (std::size_t c=0; c<ncomp; ++c)
        {
          for (std::size_t idof = 0; idof < ndof_NodalExtrm; idof++)
          {
            auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
            auto min_mark = max_mark + 1;
            auto& ex = uNodalExtrm[i->second];
            ex[max_mark] = std::max(ex[max_mark], gradc[c][idof]);
            ex[min_mark] = std::min(ex[min_mark], gradc[c][idof]);
          }
        }
        for (std::size_t c=0; c<nprim; ++c)
        {
          for (std::size_t idof = 0; idof < ndof_NodalExtrm; idof++)
          {
            auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
            auto min_mark = max_mark + 1;
            auto& ex = pNodalExtrm[i->second];
            ex[max_mark] = std::max(ex[max_mark], gradp[c][idof]);
            ex[min_mark] = std::min(ex[min_mark], gradp[c][idof]);
          }
        }
      }
    }
  }
}

void
DG::lim()
// *****************************************************************************
// Compute limiter function
// *****************************************************************************
{
  auto d = Disc();
  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();
  const auto ncomp = m_u.nprop() / rdof;
  const auto nprim = m_p.nprop() / rdof;

  // Combine own and communicated contributions to nodal extrema
  for (const auto& [gid,g] : m_uNodalExtrmc) {
    auto bid = tk::cref_find( d->Bid(), gid );
    for (ncomp_t c=0; c<ncomp; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        m_uNodalExtrm[bid][max_mark] =
          std::max(g[max_mark], m_uNodalExtrm[bid][max_mark]);
        m_uNodalExtrm[bid][min_mark] =
          std::min(g[min_mark], m_uNodalExtrm[bid][min_mark]);
      }
    }
  }
  for (const auto& [gid,g] : m_pNodalExtrmc) {
    auto bid = tk::cref_find( d->Bid(), gid );
    for (ncomp_t c=0; c<nprim; ++c)
    {
      for(std::size_t idof=0; idof<m_ndof_NodalExtrm; idof++)
      {
        auto max_mark = 2*c*m_ndof_NodalExtrm + 2*idof;
        auto min_mark = max_mark + 1;
        m_pNodalExtrm[bid][max_mark] =
          std::max(g[max_mark], m_pNodalExtrm[bid][max_mark]);
        m_pNodalExtrm[bid][min_mark] =
          std::min(g[min_mark], m_pNodalExtrm[bid][min_mark]);
      }
    }
  }

  // clear gradients receive buffer
  tk::destroy(m_uNodalExtrmc);
  tk::destroy(m_pNodalExtrmc);

  if (rdof > 1) {
    g_dgpde[d->MeshId()].limit( d->T(), pref, myGhosts()->m_geoFace,
              myGhosts()->m_geoElem, myGhosts()->m_fd, myGhosts()->m_esup,
              myGhosts()->m_inpoel, myGhosts()->m_coord, m_ndof, d->Gid(),
              d->Bid(), m_uNodalExtrm, m_pNodalExtrm, m_mtInv, m_u, m_p,
              m_shockmarker );

    if (g_inputdeck.get< tag::limsol_projection >())
      g_dgpde[d->MeshId()].CPL(m_p, myGhosts()->m_geoElem,
        myGhosts()->m_inpoel, myGhosts()->m_coord, m_u,
        myGhosts()->m_fd.Esuel().size()/4);
  }

  // Send limited solution to neighboring chares
  if (myGhosts()->m_sendGhost.empty())
    comlim_complete();
  else
    for(const auto& [cid, ghostdata] : myGhosts()->m_sendGhost) {
      std::vector< std::size_t > tetid( ghostdata.size() );
      std::vector< std::vector< tk::real > > u( ghostdata.size() ),
                                             prim( ghostdata.size() );
      std::vector< std::size_t > ndof;<--- Unused variable: ndof
      std::size_t j = 0;
      for(const auto& i : ghostdata) {
        Assert( i < myGhosts()->m_fd.Esuel().size()/4,
          "Sending limiter ghost data" );
        tetid[j] = i;
        u[j] = m_u[i];
        prim[j] = m_p[i];
        ++j;
      }
      thisProxy[ cid ].comlim( thisIndex, tetid, u, prim );
    }

  ownlim_complete();
}

void
DG::refine_ndof()
// *****************************************************************************
//  p-refine all elements that are adjacent to p-refined elements
//! \details This function p-refines all the neighbors of an element that has
//!   been p-refined as a result of an error indicator.
// *****************************************************************************
{
  auto d = Disc();
  const auto& coord = d->Coord();
  const auto& inpoel = d->Inpoel();
  const auto npoin = coord[0].size();
  const auto nelem = myGhosts()->m_fd.Esuel().size()/4;
  std::vector<std::size_t> node_ndof(npoin, 1);

  // Mark the max ndof for each node and store in node_ndof
  for(std::size_t ip=0; ip<npoin; ip++)
  {
    const auto& pesup = tk::cref_find(myGhosts()->m_esup, ip);
    for(auto er : pesup)
      node_ndof[ip] = std::max(m_ndof[er], node_ndof[ip]);
  }

  for(std::size_t e = 0; e < nelem; e++)
  {
    // Find if any node of this element has p1/p2 ndofs
    std::size_t counter_p2(0);
    std::size_t counter_p1(0);
    for(std::size_t inode = 0; inode < 4; inode++)
    {
      auto node = inpoel[4*e+inode];
      if(node_ndof[node] == 10)
        counter_p2++;
      else if (node_ndof[node] == 4)
        counter_p1++;
    }

    // If there is at least one node with p1/p2 ndofs, all of the elements
    // around this node are refined to p1/p2.
    if(counter_p2 > 0 && m_ndof[e] < 10)
    {
      if(m_ndof[e] == 4)
        m_ndof[e] = 10;
      if(m_ndof[e] == 1)
        m_ndof[e] = 4;
    }
    else if(counter_p1 > 0 && m_ndof[e] < 4)
      m_ndof[e] = 4;
  }
}

void DG::smooth_ndof()
// *****************************************************************************
//  Smooth the refined ndof distribution to avoid zigzag refinement
// *****************************************************************************
{
  auto d = Disc();
  const auto& inpoel = d->Inpoel();
  const auto& coord = d->Coord();
  const auto npoin = coord[0].size();
  const auto nelem = myGhosts()->m_fd.Esuel().size()/4;
  std::vector<std::size_t> node_ndof(npoin, 1);

  // Mark the max ndof for each node and store in node_ndof
  for(std::size_t ip=0; ip<npoin; ip++)
  {
    const auto& pesup = tk::cref_find(myGhosts()->m_esup, ip);
    for(auto er : pesup)
      node_ndof[ip] = std::max(m_ndof[er], node_ndof[ip]);
  }

  for(std::size_t e = 0; e < nelem; e++)
  {
    // Find if any node of this element has p1/p2 ndofs
    std::size_t counter_p2(0);
    std::size_t counter_p1(0);
    for(std::size_t inode = 0; inode < 4; inode++)
    {
      auto node = inpoel[4*e+inode];
      if(node_ndof[node] == 10)
        counter_p2++;
      else if (node_ndof[node] == 4)
        counter_p1++;
    }

    // If all the nodes in the element are p1/p2, this element is refined to
    // p1/p2.
    if(counter_p2 == 4 && m_ndof[e] == 4)
      m_ndof[e] = 10;
    else if(counter_p1 == 4 && m_ndof[e] == 1)
      m_ndof[e] = 4;
  }
}

void
DG::comlim( int fromch,
            const std::vector< std::size_t >& tetid,
            const std::vector< std::vector< tk::real > >& u,
            const std::vector< std::vector< tk::real > >& prim )
// *****************************************************************************
//  Receive chare-boundary limiter ghost data from neighboring chares
//! \param[in] fromch Sender chare id
//! \param[in] tetid Ghost tet ids we receive solution data for
//! \param[in] u Limited high-order solution
//! \param[in] prim Limited high-order primitive quantities
//! \details This function receives contributions to the limited solution from
//!   fellow chares.
// *****************************************************************************
{
  Assert( u.size() == tetid.size(), "Size mismatch in DG::comlim()" );
  Assert( prim.size() == tetid.size(), "Size mismatch in DG::comlim()" );

  // Find local-to-ghost tet id map for sender chare
  const auto& n = tk::cref_find( myGhosts()->m_ghost, fromch );

  for (std::size_t i=0; i<tetid.size(); ++i) {
    auto j = tk::cref_find( n, tetid[i] );
    Assert( j >= myGhosts()->m_fd.Esuel().size()/4,
      "Receiving solution non-ghost data" );
    auto b = tk::cref_find( myGhosts()->m_bid, j );
    Assert( b < m_uc[2].size(), "Indexing out of bounds" );
    Assert( b < m_pc[2].size(), "Indexing out of bounds" );
    m_uc[2][b] = u[i];
    m_pc[2][b] = prim[i];
  }

  // if we have received all solution ghost contributions from neighboring
  // chares (chares we communicate along chare-boundary faces with), and
  // contributed our solution to these neighbors, proceed to limiting
  if (++m_nlim == myGhosts()->m_sendGhost.size()) {
    m_nlim = 0;
    comlim_complete();
  }
}

void
DG::dt()
// *****************************************************************************
// Compute time step size
// *****************************************************************************
{
  auto d = Disc();

  // Combine own and communicated contributions of limited solution and degrees
  // of freedom in cells (if p-adaptive)
  for (const auto& b : myGhosts()->m_bid) {
    Assert( m_uc[2][b.second].size() == m_u.nprop(), "ncomp size mismatch" );
    Assert( m_pc[2][b.second].size() == m_p.nprop(), "ncomp size mismatch" );
    for (std::size_t c=0; c<m_u.nprop(); ++c) {
      m_u(b.first,c) = m_uc[2][b.second][c];
    }
    for (std::size_t c=0; c<m_p.nprop(); ++c) {
      m_p(b.first,c) = m_pc[2][b.second][c];
    }
  }

  auto mindt = std::numeric_limits< tk::real >::max();

  if (m_stage == 0)
  {
    auto const_dt = g_inputdeck.get< tag::dt >();
    auto eps = std::numeric_limits< tk::real >::epsilon();

    // use constant dt if configured
    if (std::abs(const_dt) > eps) {

      mindt = const_dt;

    } else {      // compute dt based on CFL

      // find the minimum dt across all PDEs integrated
      auto eqdt =
        g_dgpde[d->MeshId()].dt( myGhosts()->m_coord, myGhosts()->m_inpoel,
          myGhosts()->m_fd,
          myGhosts()->m_geoFace, myGhosts()->m_geoElem, m_ndof, m_u, m_p,
          myGhosts()->m_fd.Esuel().size()/4 );
      if (eqdt < mindt) mindt = eqdt;

      mindt *= g_inputdeck.get< tag::cfl >();
    }
  }
  else
  {
    mindt = d->Dt();
  }

  // Resize the buffer vector of nodal extrema
  resizeNodalExtremac();

  // Contribute to minimum dt across all chares then advance to next step
  contribute( sizeof(tk::real), &mindt, CkReduction::min_double,
              CkCallback(CkReductionTarget(DG,solve), thisProxy) );
}

void
DG::solve( tk::real newdt )
// *****************************************************************************
// Compute right-hand side of discrete transport equations
//! \param[in] newdt Size of this new time step
// *****************************************************************************
{
  // Enable SDAG wait for building the solution vector during the next stage
  thisProxy[ thisIndex ].wait4sol();
  thisProxy[ thisIndex ].wait4refine();
  thisProxy[ thisIndex ].wait4smooth();
  thisProxy[ thisIndex ].wait4reco();
  thisProxy[ thisIndex ].wait4nodalExtrema();
  thisProxy[ thisIndex ].wait4lim();
  thisProxy[ thisIndex ].wait4nod();

  auto d = Disc();
  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto ndof = g_inputdeck.get< tag::ndof >();
  const auto neq = m_u.nprop()/rdof;
  const auto pref = g_inputdeck.get< tag::pref, tag::pref >();

  // Set new time step size
  if (m_stage == 0) d->setdt( newdt );

  // Update Un
  if (m_stage == 0) m_un = m_u;

  // Explicit or IMEX
  const auto imex_runge_kutta = g_inputdeck.get< tag::imex_runge_kutta >();

  // physical time at time-stage for computing exact source terms
  tk::real physT(d->T());
  if (m_stage == 1) {
    physT += d->Dt();
  }
  else if (m_stage == 2) {
    physT += 0.5*d->Dt();
  }

  if (imex_runge_kutta) {
    if (m_stage == 0)
    {
      // Save previous rhs
      m_rhsprev = m_rhs;
      // Initialize m_stiffrhs to zero
      m_stiffrhs.fill(0.0);
      m_stiffrhsprev.fill(0.0);
    }
  }

  g_dgpde[d->MeshId()].rhs( physT, pref, myGhosts()->m_geoFace,
    myGhosts()->m_geoElem, myGhosts()->m_fd, myGhosts()->m_inpoel, m_boxelems,
    myGhosts()->m_coord, m_u, m_p, m_ndof, d->Dt(), m_rhs );

  if (!imex_runge_kutta) {
    // Explicit time-stepping using RK3 to discretize time-derivative
    for(std::size_t e=0; e<myGhosts()->m_nunk; ++e)
      for(std::size_t c=0; c<neq; ++c)
      {
        for (std::size_t k=0; k<m_numEqDof[c]; ++k)
        {
          if(k < m_ndof[e]) {
            auto rmark = c*rdof+k;
            auto mark = c*ndof+k;
            m_u(e, rmark) =  rkcoef[0][m_stage] * m_un(e, rmark)
              + rkcoef[1][m_stage] * ( m_u(e, rmark)
                + d->Dt() * m_rhs(e, mark)/m_lhs(e, mark) );
            if(fabs(m_u(e, rmark)) < 1e-16)
              m_u(e, rmark) = 0;
          }
        }
      }
  }
  else {
    // Implicit-Explicit time-stepping using RK3 to discretize time-derivative
    DG::imex_integrate();
  }

  for(std::size_t e=0; e<myGhosts()->m_nunk; ++e)
    for(std::size_t c=0; c<neq; ++c)
    {
      // zero out unused/reconstructed dofs of equations using reduced dofs
      // (see DGMultiMat::numEquationDofs())
      if (m_numEqDof[c] < rdof) {
        for (std::size_t k=m_numEqDof[c]; k<rdof; ++k)
        {
          auto rmark = c*rdof+k;
          m_u(e, rmark) = 0.0;
        }
      }
    }

  // Update primitives based on the evolved solution
  g_dgpde[d->MeshId()].updateInterfaceCells( m_u,
    myGhosts()->m_fd.Esuel().size()/4, m_ndof, m_interface );
  g_dgpde[d->MeshId()].updatePrimitives( m_u, m_lhs, myGhosts()->m_geoElem, m_p,
    myGhosts()->m_fd.Esuel().size()/4, m_ndof );
  if (!g_inputdeck.get< tag::accuracy_test >()) {
    g_dgpde[d->MeshId()].cleanTraceMaterial( physT, myGhosts()->m_geoElem, m_u,
      m_p, myGhosts()->m_fd.Esuel().size()/4 );
  }

  if (m_stage < 2) {

    // continue with next time step stage
    stage();

  } else {

    // Increase number of iterations and physical time
    d->next();

    // Compute diagnostics, e.g., residuals
    auto diag_computed = m_diag.compute( *d,
      m_u.nunk()-myGhosts()->m_fd.Esuel().size()/4, myGhosts()->m_geoElem,
      m_ndof, m_u, m_un );

    // Continue to mesh refinement (if configured)
    if (!diag_computed) refine( std::vector< tk::real >( m_u.nprop(), 0.0 ) );

  }
}

void
DG::refine( [[maybe_unused]] const std::vector< tk::real >& l2res )
// *****************************************************************************
// Optionally refine/derefine mesh
//! \param[in] l2res L2-norms of the residual for each scalar component
//!   computed across the whole problem
// *****************************************************************************
{
  auto d = Disc();

  auto dtref = g_inputdeck.get< tag::amr, tag::dtref >();
  auto dtfreq = g_inputdeck.get< tag::amr, tag::dtfreq >();

  // if t>0 refinement enabled and we hit the dtref frequency
  if (dtref && !(d->It() % dtfreq)) {   // refine

    d->startvol();
    d->Ref()->dtref( myGhosts()->m_fd.Bface(), {},
      tk::remap(myGhosts()->m_fd.Triinpoel(),d->Gid()) );
    d->refined() = 1;

  } else {      // do not refine

    d->refined() = 0;
    stage();

  }
}

void
DG::resizePostAMR(
  const std::vector< std::size_t >& /*ginpoel*/,
  const tk::UnsMesh::Chunk& chunk,
  const tk::UnsMesh::Coords& coord,
  const std::unordered_map< std::size_t, tk::UnsMesh::Edge >& /*addedNodes*/,
  const std::unordered_map< std::size_t, std::size_t >& addedTets,
  const std::set< std::size_t >& removedNodes,
  const std::unordered_map< std::size_t, std::size_t >& amrNodeMap,
  const tk::NodeCommMap& nodeCommMap,
  const std::map< int, std::vector< std::size_t > >& bface,
  const std::map< int, std::vector< std::size_t > >& /* bnode */,
  const std::vector< std::size_t >& triinpoel,
  const std::unordered_map< std::size_t, std::set< std::size_t > >& elemblockid )
// *****************************************************************************
//  Receive new mesh from Refiner
//! \param[in] chunk New mesh chunk (connectivity and global<->local id maps)
//! \param[in] coord New mesh node coordinates
//! \param[in] addedTets Newly added mesh cells and their parents (local ids)
//! \param[in] removedNodes Newly removed mesh node local ids
//! \param[in] amrNodeMap Node id map after amr (local ids)
//! \param[in] nodeCommMap New node communication map
//! \param[in] bface Boundary-faces mapped to side set ids
//! \param[in] triinpoel Boundary-face connectivity
//! \param[in] elemblockid Local tet ids associated with mesh block ids
// *****************************************************************************
{
  auto d = Disc();

  // Set flag that indicates that we are during time stepping
  m_initial = 0;
  myGhosts()->m_initial = 0;

  // Zero field output iteration count between two mesh refinement steps
  d->Itf() = 0;

  // Increase number of iterations with mesh refinement
  ++d->Itr();

  // Save old number of elements
  [[maybe_unused]] auto old_nelem = myGhosts()->m_inpoel.size()/4;

  // Resize mesh data structures
  d->resizePostAMR( chunk, coord, amrNodeMap, nodeCommMap, removedNodes,
    elemblockid );

  // Update state
  myGhosts()->m_inpoel = d->Inpoel();
  myGhosts()->m_coord = d->Coord();
  auto nelem = myGhosts()->m_inpoel.size()/4;
  m_p.resize( nelem );
  m_u.resize( nelem );
  m_un.resize( nelem );
  m_lhs.resize( nelem );
  m_rhs.resize( nelem );
  m_rhsprev.resize( nelem );
  m_stiffrhs.resize( nelem );
  m_stiffrhsprev.resize( nelem );
  m_uNodalExtrm.resize( Disc()->Bid().size(), std::vector<tk::real>( 2*
    m_ndof_NodalExtrm*g_inputdeck.get< tag::ncomp >() ) );
  m_pNodalExtrm.resize( Disc()->Bid().size(), std::vector<tk::real>( 2*
    m_ndof_NodalExtrm*m_p.nprop()/g_inputdeck.get< tag::rdof >()));

  // Resize the buffer vector of nodal extrema
  resizeNodalExtremac();

  myGhosts()->m_fd = FaceData( myGhosts()->m_inpoel, bface,
    tk::remap(triinpoel,d->Lid()) );

  myGhosts()->m_geoFace =
    tk::Fields( tk::genGeoFaceTri( myGhosts()->m_fd.Nipfac(),
    myGhosts()->m_fd.Inpofa(), coord ) );
  myGhosts()->m_geoElem = tk::Fields( tk::genGeoElemTet( myGhosts()->m_inpoel,
    coord ) );

  myGhosts()->m_nfac = myGhosts()->m_fd.Inpofa().size()/3;
  myGhosts()->m_nunk = nelem;
  m_npoin = coord[0].size();
  myGhosts()->m_bndFace.clear();
  myGhosts()->m_exptGhost.clear();
  myGhosts()->m_sendGhost.clear();
  myGhosts()->m_ghost.clear();
  myGhosts()->m_esup.clear();

  // Update solution on new mesh, P0 (cell center value) only for now
  m_un = m_u;
  auto pn = m_p;<--- Variable 'pn' is assigned a value that is never used.
  auto unprop = m_u.nprop();<--- Variable 'unprop' is assigned a value that is never used.
  auto pnprop = m_p.nprop();<--- Variable 'pnprop' is assigned a value that is never used.
  for (const auto& [child,parent] : addedTets) {
    Assert( child < nelem, "Indexing out of new solution vector" );
    Assert( parent < old_nelem, "Indexing out of old solution vector" );
    for (std::size_t i=0; i<unprop; ++i) m_u(child,i) = m_un(parent,i);
    for (std::size_t i=0; i<pnprop; ++i) m_p(child,i) = pn(parent,i);
  }
  m_un = m_u;

  // Resize communication buffers
  m_ghosts[thisIndex].resizeComm();
}

bool
DG::fieldOutput() const
// *****************************************************************************
// Decide wether to output field data
//! \return True if field data is output in this step
// *****************************************************************************
{
  auto d = Disc();

  // Output field data
  return d->fielditer() or d->fieldtime() or d->fieldrange() or d->finished();
}

bool
DG::refinedOutput() const
// *****************************************************************************
// Decide if we write field output using a refined mesh
//! \return True if field output will use a refined mesh
// *****************************************************************************
{
  return g_inputdeck.get< tag::field_output, tag::refined >() &&
         g_inputdeck.get< tag::scheme >() != ctr::SchemeType::DG;
}

void
DG::writeFields(
  CkCallback c,
  const std::unordered_map< std::size_t, std::size_t >& addedTets )
// *****************************************************************************
// Output mesh field data
//! \param[in] c Function to continue with after the write
//! \param[in] addedTets Newly added mesh cells and their parents (local ids)
// *****************************************************************************
{
  auto d = Disc();

  const auto& inpoel = std::get< 0 >( m_outmesh.chunk );
  auto esup = tk::genEsup( inpoel, 4 );
  auto nelem = inpoel.size() / 4;

  // Combine own and communicated contributions and finish averaging of node
  // field output in chare boundary nodes
  const auto& lid = std::get< 2 >( m_outmesh.chunk );
  for (const auto& [g,f] : m_uNodefieldsc) {
    Assert( m_uNodefields.nprop() == f.first.size(), "Size mismatch" );
    auto p = tk::cref_find( lid, g );
    for (std::size_t i=0; i<f.first.size(); ++i) {
      m_uNodefields(p,i) += f.first[i];
      m_uNodefields(p,i) /= static_cast< tk::real >(
                              esup.second[p+1] - esup.second[p] + f.second );
    }
  }
  tk::destroy( m_uNodefieldsc );
  for (const auto& [g,f] : m_pNodefieldsc) {
    Assert( m_pNodefields.nprop() == f.first.size(), "Size mismatch" );
    auto p = tk::cref_find( lid, g );
    for (std::size_t i=0; i<f.first.size(); ++i) {
      m_pNodefields(p,i) += f.first[i];
      m_pNodefields(p,i) /= static_cast< tk::real >(
                              esup.second[p+1] - esup.second[p] + f.second );
    }
  }
  tk::destroy( m_pNodefieldsc );

  // Lambda to decide if a node (global id) is on a chare boundary of the field
  // output mesh. p - global node id, return true if node is on the chare
  // boundary.
  auto chbnd = [ this ]( std::size_t p ) {
    return
      std::any_of( m_outmesh.nodeCommMap.cbegin(), m_outmesh.nodeCommMap.cend(),
        [&](const auto& s) { return s.second.find(p) != s.second.cend(); } );
  };

  // Finish computing node field output averages in internal nodes
  auto npoin = m_outmesh.coord[0].size();
  auto& gid = std::get< 1 >( m_outmesh.chunk );
  for (std::size_t p=0; p<npoin; ++p) {
    if (!chbnd(gid[p])) {
      auto n = static_cast< tk::real >( esup.second[p+1] - esup.second[p] );
      for (std::size_t i=0; i<m_uNodefields.nprop(); ++i)
        m_uNodefields(p,i) /= n;
      for (std::size_t i=0; i<m_pNodefields.nprop(); ++i)
        m_pNodefields(p,i) /= n;
    }
  }

  // Collect field output from numerical solution requested by user
  auto elemfields = numericFieldOutput( m_uElemfields, tk::Centering::ELEM,
    g_dgpde[Disc()->MeshId()].OutVarFn(), m_pElemfields );
  auto nodefields = numericFieldOutput( m_uNodefields, tk::Centering::NODE,
    g_dgpde[Disc()->MeshId()].OutVarFn(), m_pNodefields );

  // Collect field output from analytical solutions (if exist)
  const auto& coord = m_outmesh.coord;
  auto geoElem = tk::genGeoElemTet( inpoel, coord );
  auto t = Disc()->T();
  analyticFieldOutput( g_dgpde[d->MeshId()], tk::Centering::ELEM,
    geoElem.extract_comp(1), geoElem.extract_comp(2), geoElem.extract_comp(3),
    t, elemfields );
  analyticFieldOutput( g_dgpde[d->MeshId()], tk::Centering::NODE, coord[0],
    coord[1], coord[2], t, nodefields );

  // Add adaptive indicator array to element-centered field output
  if (g_inputdeck.get< tag::pref, tag::pref >()) {
    std::vector< tk::real > ndof( begin(m_ndof), end(m_ndof) );
    ndof.resize( nelem );
    for(std::size_t k = 0; k < nelem; k++) {
      // Mark the cell with THINC reconstruction as 0 for output
      if(m_interface[k] == 1) ndof[k] = 0;
    }
    for (const auto& [child,parent] : addedTets)
      ndof[child] = static_cast< tk::real >( m_ndof[parent] );
    elemfields.push_back( ndof );
  }

  // Add shock detection marker array to element-centered field output
  std::vector< tk::real > shockmarker( begin(m_shockmarker), end(m_shockmarker) );
  // Here m_shockmarker has a size of m_u.nunk() which is the number of the
  // elements within this partition (nelem) plus the ghost partition cells. In
  // terms of output purpose, we only need the solution data within this
  // partition. Therefore, resizing it to nelem removes the extra partition
  // boundary allocations in the shockmarker vector. Since the code assumes that
  // the boundary elements are on the top, the resize operation keeps the lower
  // portion.
  shockmarker.resize( nelem );
  for (const auto& [child,parent] : addedTets)
    shockmarker[child] = static_cast< tk::real >(m_shockmarker[parent]);
  elemfields.push_back( shockmarker );

  // Add rho0*det(g)/rho to make sure it is staying close to 1,
  // averaged for all materials
  std::vector< tk::real > densityConstr(nelem);
  g_dgpde[d->MeshId()].computeDensityConstr(nelem, m_u, densityConstr);
  for (const auto& [child,parent] : addedTets)
    densityConstr[child] = 0.0;
  if (densityConstr.size() > 0) elemfields.push_back( densityConstr );

  // Query fields names requested by user
  auto elemfieldnames = numericFieldNames( tk::Centering::ELEM );
  auto nodefieldnames = numericFieldNames( tk::Centering::NODE );

  // Collect field output names for analytical solutions
  analyticFieldNames( g_dgpde[d->MeshId()], tk::Centering::ELEM, elemfieldnames );
  analyticFieldNames( g_dgpde[d->MeshId()], tk::Centering::NODE, nodefieldnames );

  if (g_inputdeck.get< tag::pref, tag::pref >()) {
    elemfieldnames.push_back( "NDOF" );
  }

  elemfieldnames.push_back( "shock_marker" );

  if (densityConstr.size() > 0)
    elemfieldnames.push_back( "density_constraint" );

  Assert( elemfieldnames.size() == elemfields.size(), "Size mismatch" );
  Assert( nodefieldnames.size() == nodefields.size(), "Size mismatch" );

  // Output chare mesh and fields metadata to file
  const auto& triinpoel = m_outmesh.triinpoel;
  d->write( inpoel, m_outmesh.coord, m_outmesh.bface, {},
            tk::remap( triinpoel, lid ), elemfieldnames, nodefieldnames,
            {}, {}, elemfields, nodefields, {}, {}, c );
}

void
DG::comnodeout( const std::vector< std::size_t >& gid,
                const std::vector< std::size_t >& nesup,
                const std::vector< std::vector< tk::real > >& Lu,
                const std::vector< std::vector< tk::real > >& Lp )
// *****************************************************************************
//  Receive chare-boundary nodal solution (for field output) contributions from
//  neighboring chares
//! \param[in] gid Global mesh node IDs at which we receive contributions
//! \param[in] nesup Number of elements surrounding points
//! \param[in] Lu Partial contributions of solution nodal fields to
//!   chare-boundary nodes
//! \param[in] Lp Partial contributions of primitive quantity nodal fields to
//!   chare-boundary nodes
// *****************************************************************************
{
  Assert( gid.size() == nesup.size(), "Size mismatch" );
  Assert(Lu.size() == m_uNodefields.nprop(), "Fields size mismatch");
  Assert(Lp.size() == m_pNodefields.nprop(), "Fields size mismatch");
  for (std::size_t f=0; f<Lu.size(); ++f)
    Assert( gid.size() == Lu[f].size(), "Size mismatch" );
  for (std::size_t f=0; f<Lp.size(); ++f)
    Assert( gid.size() == Lp[f].size(), "Size mismatch" );

  for (std::size_t i=0; i<gid.size(); ++i) {
    auto& nfu = m_uNodefieldsc[ gid[i] ];
    nfu.first.resize( Lu.size() );
    for (std::size_t f=0; f<Lu.size(); ++f) nfu.first[f] += Lu[f][i];
    nfu.second += nesup[i];
    auto& nfp = m_pNodefieldsc[ gid[i] ];
    nfp.first.resize( Lp.size() );
    for (std::size_t f=0; f<Lp.size(); ++f) nfp.first[f] += Lp[f][i];
    nfp.second += nesup[i];
  }

  // When we have heard from all chares we communicate with, this chare is done
  if (++m_nnod == Disc()->NodeCommMap().size()) {
    m_nnod = 0;
    comnodeout_complete();
  }
}

void
DG::stage()
// *****************************************************************************
// Evaluate whether to continue with next time step stage
// *****************************************************************************
{
  // Increment Runge-Kutta stage counter
  ++m_stage;

  // if not all Runge-Kutta stages complete, continue to next time stage,
  // otherwise prepare for nodal field output
  if (m_stage < 3)
    next();
  else
    startFieldOutput( CkCallback(CkIndex_DG::step(), thisProxy[thisIndex]) );
}

void
DG::evalLB( int nrestart )
// *****************************************************************************
// Evaluate whether to do load balancing
//! \param[in] nrestart Number of times restarted
// *****************************************************************************
{
  auto d = Disc();

  // Detect if just returned from a checkpoint and if so, zero timers
  d->restarted( nrestart );

  const auto lbfreq = g_inputdeck.get< tag::cmd, tag::lbfreq >();
  const auto nonblocking = g_inputdeck.get< tag::cmd, tag::nonblocking >();

  // Load balancing if user frequency is reached or after the second time-step
  if ( (d->It()) % lbfreq == 0 || d->It() == 2 ) {

    AtSync();
    if (nonblocking) next();

  } else {

    next();

  }
}

void
DG::evalRestart()
// *****************************************************************************
// Evaluate whether to save checkpoint/restart
// *****************************************************************************
{
  auto d = Disc();

  const auto rsfreq = g_inputdeck.get< tag::cmd, tag::rsfreq >();
  const auto benchmark = g_inputdeck.get< tag::cmd, tag::benchmark >();

  if (not benchmark and not (d->It() % rsfreq)) {

    std::vector< std::size_t > meshdata{ /* finished = */ 0, d->MeshId() };
    contribute( meshdata, CkReduction::nop,
      CkCallback(CkReductionTarget(Transporter,checkpoint), d->Tr()) );

  } else {

    evalLB( /* nrestart = */ -1 );

  }
}

void
DG::step()
// *****************************************************************************
// Evaluate wether to continue with next time step
// *****************************************************************************
{
  auto d = Disc();

  // Output time history
  if (d->histiter() or d->histtime() or d->histrange()) {
    std::vector< std::vector< tk::real > > hist;
    auto h = g_dgpde[d->MeshId()].histOutput( d->Hist(), myGhosts()->m_inpoel,
      myGhosts()->m_coord, m_u, m_p );
    hist.insert( end(hist), begin(h), end(h) );
    d->history( std::move(hist) );
  }

  // Free memory storing output mesh
  m_outmesh.destroy();

  // Output one-liner status report to screen
  d->status();
  // Reset Runge-Kutta stage counter
  m_stage = 0;

  const auto term = g_inputdeck.get< tag::term >();
  const auto nstep = g_inputdeck.get< tag::nstep >();
  const auto eps = std::numeric_limits< tk::real >::epsilon();

  // If neither max iterations nor max time reached, continue, otherwise finish
  if (std::fabs(d->T()-term) > eps && d->It() < nstep) {

    evalRestart();
 
  } else {

    auto meshid = d->MeshId();
    d->contribute( sizeof(std::size_t), &meshid, CkReduction::nop,
                   CkCallback(CkReductionTarget(Transporter,finish), d->Tr()) );

  }
}

void
DG::imex_integrate()
{
  /*****************************************************************************
  Performs the Implicit-Explicit Runge-Kutta step.

  \details Performs the Implicit-Explicit Runge-Kutta step. Scheme taken from
  Cavaglieri, D., & Bewley, T. (2015). Low-storage implicit/explicit Runge–Kutta
  schemes for the simulation of stiff high-dimensional ODE systems. Journal of
  Computational Physics, 286, 172-193.

  Scheme given by equations (25a,b):

  u[0] = u[n] + dt * (expl_rkcoef[1,0]*R_ex(u[n])+impl_rkcoef[1,1]*R_im(u[0]))

  u[1] = u[n] + dt * (expl_rkcoef[2,1]*R_ex(u[0])+impl_rkcoef[2,1]*R_im(u[0])
                                                 +impl_rkcoef[2,2]*R_im(u[1]))

  u[n+1] = u[n] + dt * (expl_rkcoef[3,1]*R_ex(u[0])+impl_rkcoef[3,1]*R_im(u[0])
                        expl_rkcoef[3,2]*R_ex(u[1])+impl_rkcoef[3,2]*R_im(u[1]))

  In order to solve the first two equations we need to solve a series of systems
  of non-linear equations:

  F1(u[0]) = B1 + R1(u[0]) = 0, and
  F2(u[1]) = B2 + R2(u[1]) = 0,

  where

  B1 = u[n] + dt * expl_rkcoef[1,0]*R_ex(u[n]),
  R1 = dt * impl_rkcoef[1,1]*R_im(u[0]) - u([0]),
  B2 = u[n] + dt * (expl_rkcoef[2,1]*R_ex(u[0])+impl_rkcoef[2,1]*R_im(u[0])),
  R2 = dt * impl_rkcoef[2,2]*R_im(u[1]) - u([1]).

  In order to solve the non-linear system F(U) = 0, we employ Broyden's method.
  Taken from https://en.wikipedia.org/wiki/Broyden%27s_method.
  The method consists in obtaining an approximation for the inverse of the
  Jacobian H = J^(-1) and advancing in a quasi-newton step:

  U[k+1] = U[k] - H[k]*F(U[k]),

  until F(U) is close enough to zero.

  The approximation H[k] is improved at every iteration following

  H[k] = H[k-1] + (DU[k]-H[k-1]*DF[k])/(DU[k]^T*H[k-1]*DF[k]) * DU[k]^T*H[k-1],

  where DU[k] = U[k] - U[k-1] and DF[k] = F(U[k]) - F(U[k-1)).

  This function performs the following main algorithmic steps:
  - If stage == 0 or stage == 1:
    - Take Initial value:
      U[0] = U[n] + dt * expl_rkcoef[1,0]*R_ex(U[n]) (for stage 0)
      U[1] = U[n] + dt * (expl_rkcoef[2,1]*R_ex(U[0])
                         +impl_rkcoef[2,1]*R_im(U[0])) (for stage 1)
    - Loop over the Elements (e++)
      - Initialize Jacobian inverse approximation as the identity
      - Compute implicit right-hand-side (F_im) with current U
      - Iterate for the solution (iter++)
        - Compute new solution U[k+1] = U[k] - H[k]*F(U[k])
        - Compute implicit right-hand-side (F_im) with current U
        - Compute DU and DF
        - Update inverse Jacobian approximation by:
          - Compute V1 = H[k-1]*DF[k] and V2 = DU[k]^T*H[k-1]
          - Compute d = DU[k]^T*V1 and V3 = DU[k]-V1
          - Compute V4 = V3/d
          - Update H[k] = H[k-1] + V4*V2
        - Save old U and F
        - Compute absolute and relative errors
        - Break iterations if error < tol or iter == max_iter
     - Update explicit equations using only the explicit terms.
  - Else if stage == 2:
     - Update explicit equations using only the explicit terms.
     - Update implicit equations using:
     u[n+1] = u[n]+dt*(expl_rkcoef[3,1]*R_ex(u[0])+impl_rkcoef[3,1]*R_im(u[0])
                       expl_rkcoef[3,2]*R_ex(u[1])+impl_rkcoef[3,2]*R_im(u[1]))

  ******************************************************************************/
  auto d = Disc();
  const auto rdof = g_inputdeck.get< tag::rdof >();
  const auto ndof = g_inputdeck.get< tag::ndof >();
  if (m_stage < 2) {
    // Save previous stiff_rhs
    m_stiffrhsprev = m_stiffrhs;

    // Compute the imex update

    // Integrate explicitly on the imex equations
    // (To use as initial values)
    for (std::size_t e=0; e<myGhosts()->m_nunk; ++e)
      for (std::size_t c=0; c<m_nstiffeq; ++c)
      {
        for (std::size_t k=0; k<m_numEqDof[c]; ++k)
        {
          auto rmark = m_stiffEqIdx[c]*rdof+k;
          auto mark = m_stiffEqIdx[c]*ndof+k;
          m_u(e, rmark) =  m_un(e, rmark) + d->Dt() * (
            expl_rkcoef[0][m_stage] * m_rhsprev(e, mark)/m_lhs(e, mark)
            + expl_rkcoef[1][m_stage] * m_rhs(e, mark)/m_lhs(e, mark)
            + impl_rkcoef[0][m_stage]
            * m_stiffrhsprev(e,c*ndof+k)/m_lhs(e, mark) );
          if(fabs(m_u(e, rmark)) < 1e-16)
            m_u(e, rmark) = 0;
        }
      }

    // Solve for implicit-explicit equations
    const auto nelem = myGhosts()->m_fd.Esuel().size()/4;
    for (std::size_t e=0; e<nelem; ++e)
    {
      // Non-linear system f(u) = 0 to be solved
      // Broyden's method
      // Control parameters
      std::size_t max_iter = g_inputdeck.get< tag::imex_maxiter >();
      tk::real rel_tol = g_inputdeck.get< tag::imex_reltol >();
      tk::real abs_tol = g_inputdeck.get< tag::imex_abstol >();
      tk::real rel_err = rel_tol+1;
      tk::real abs_err = abs_tol+1;
      std::size_t nstiff = m_nstiffeq*ndof;

      // Initialize Jacobian to be the identity
      std::vector< std::vector< tk::real > >
        approx_jacob(nstiff, std::vector< tk::real >(nstiff, 0.0));
      for (std::size_t i=0; i<nstiff; ++i)
        approx_jacob[i][i] = 1.0e+00;

      // Save explicit terms to be re-used
      std::vector< tk::real > expl_terms(nstiff, 0.0);
      for (size_t ieq=0; ieq<m_nstiffeq; ++ieq)
        for (size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
        {
          auto stiffmark = m_stiffEqIdx[ieq]*ndof+idof;
          auto stiffrmark = m_stiffEqIdx[ieq]*rdof+idof;
          expl_terms[ieq*ndof+idof] = m_un(e, stiffrmark)
            + d->Dt() * ( expl_rkcoef[0][m_stage]
            * m_rhsprev(e,stiffmark)/m_lhs(e,stiffmark)
            + expl_rkcoef[1][m_stage]
            * m_rhs(e,stiffmark)/m_lhs(e,stiffmark)
            + impl_rkcoef[0][m_stage]
            * m_stiffrhsprev(e,ieq*ndof+idof)/m_lhs(e,stiffmark) );
        }

      // Compute stiff_rhs with initial u
      g_dgpde[d->MeshId()].stiff_rhs( e, myGhosts()->m_geoElem,
        myGhosts()->m_inpoel, myGhosts()->m_coord,
        m_u, m_p, m_ndof, m_stiffrhs );

      // Make auxiliary u_old and f_old to store previous values
      std::vector< tk::real > u_old(nstiff, 0.0), f_old(nstiff, 0.0);
      // Make delta_u and delta_f
      std::vector< tk::real > delta_u(nstiff, 0.0), delta_f(nstiff, 0.0);
      // Store f
      std::vector< tk::real > f(nstiff, 0.0);
      for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
        for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
        {
          auto stiffrmark = m_stiffEqIdx[ieq]*rdof+idof;
          auto stiffmark = m_stiffEqIdx[ieq]*ndof+idof;
          f[ieq*ndof+idof] = expl_terms[ieq*ndof+idof]
            + d->Dt() * impl_rkcoef[1][m_stage]
            * m_stiffrhs(e,ieq*ndof+idof)/m_lhs(e,stiffmark)
            - m_u(e, stiffrmark);
        }

      // Initialize u_old and f_old
      for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
        for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
        {
          u_old[ieq*ndof+idof] = m_u(e, m_stiffEqIdx[ieq]*rdof+idof);
          f_old[ieq*ndof+idof] = f[ieq*ndof+idof];
        }

      // Store the norm of f initially, for relative error measure
      tk::real err0 = 0.0;
      for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
        for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
          err0 += f[ieq*ndof+idof]*f[ieq*ndof+idof];
      err0 = std::sqrt(err0);

      // Iterate for the solution if err0 > 0
      if (err0 > abs_tol)
        for (size_t iter=0; iter<max_iter; ++iter)
        {

          // Compute new solution
          tk::real delta;
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
            {
              delta = 0.0;
              for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
                for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                  delta +=
                    approx_jacob[ieq*ndof+idof][jeq*ndof+jdof] * f[jeq*ndof+jdof];
              // Update u
              auto stiffrmark = m_stiffEqIdx[ieq]*rdof+idof;
              m_u(e, stiffrmark) -= delta;
            }

          // Compute new stiff_rhs
          g_dgpde[d->MeshId()].stiff_rhs( e, myGhosts()->m_geoElem,
            myGhosts()->m_inpoel, myGhosts()->m_coord,
            m_u, m_p, m_ndof, m_stiffrhs );

          // Compute new f(u)
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
            {
              auto stiffrmark = m_stiffEqIdx[ieq]*rdof+idof;
              auto stiffmark = m_stiffEqIdx[ieq]*ndof+idof;
              f[ieq*ndof+idof] = expl_terms[ieq*ndof+idof]
                + d->Dt() * impl_rkcoef[1][m_stage]
                * m_stiffrhs(e,ieq*ndof+idof)/m_lhs(e,stiffmark)
                - m_u(e, stiffrmark);
            }

          // Compute delta_u and delta_f
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
            {
              auto stiffrmark = m_stiffEqIdx[ieq]*rdof+idof;
              delta_u[ieq*ndof+idof] = m_u(e, stiffrmark) - u_old[ieq*ndof+idof];
              delta_f[ieq*ndof+idof] = f[ieq*ndof+idof] - f_old[ieq*ndof+idof];
            }

          // Update inverse Jacobian approximation

          // 1. Compute approx_jacob*delta_f and delta_u*jacob_approx
          tk::real sum1, sum2;
          std::vector< tk::real > auxvec1(nstiff, 0.0), auxvec2(nstiff, 0.0);
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
            {
              sum1 = 0.0;
              sum2 = 0.0;
              for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
                for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                {
                  sum1 += approx_jacob[ieq*ndof+idof][jeq*ndof+jdof] *
                    delta_f[jeq*ndof+jdof];
                  sum2 += delta_u[jeq*ndof+jdof] *
                    approx_jacob[jeq*ndof+jdof][ieq*ndof+idof];
                }
              auxvec1[ieq*ndof+idof] = sum1;
              auxvec2[ieq*ndof+idof] = sum2;
            }

          // 2. Compute delta_u*approx_jacob*delta_f
          // and delta_u-approx_jacob*delta_f
          tk::real denom = 0.0;
          for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
            for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
            {
              denom += delta_u[jeq*ndof+jdof]*auxvec1[jeq*ndof+jdof];
              auxvec1[jeq*ndof+jdof] =
                delta_u[jeq*ndof+jdof]-auxvec1[jeq*ndof+jdof];
            }

          // 3. Divide delta_u+approx_jacob*delta_f
          // by delta_u*(approx_jacob*delta_f)
          if (std::abs(denom) < 1.0e-18)
          {
            if (denom < 0.0)
            {
              for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
                for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                  auxvec1[jeq*ndof+jdof] /= -1.0e-18;
            }
            else
            {
              for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
                for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                  auxvec1[jeq*ndof+jdof] /= 1.0e-18;
            }
          }
          else
          {
            for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
              for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                auxvec1[jeq*ndof+jdof] /= denom;
          }

          // 4. Perform outter product between the two arrays and
          // add that quantity to the new jacobian approximation
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
              for (std::size_t jeq=0; jeq<m_nstiffeq; ++jeq)
                for (std::size_t jdof=0; jdof<m_numEqDof[jeq]; ++jdof)
                  approx_jacob[ieq*ndof+idof][jeq*ndof+jdof] +=
                    auxvec1[ieq*ndof+idof] * auxvec2[jeq*ndof+jdof];

          // Save solution and f
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
            {
              u_old[ieq*ndof+idof] = m_u(e, m_stiffEqIdx[ieq]*rdof+idof);
              f_old[ieq*ndof+idof] = f[ieq*ndof+idof];
            }

          // Compute a measure of error, use norm of f
          tk::real err = 0.0;
          for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
            for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
              err += f[ieq*ndof+idof]*f[ieq*ndof+idof];
          abs_err = std::sqrt(err);
          rel_err = abs_err/err0;

          // Check if error condition is met and loop back
          if (rel_err < rel_tol || abs_err < abs_tol)
            break;

          // If we did not converge, print a message
          if (iter == max_iter-1)
          {
            printf("\nIMEX-RK: Non-linear solver did not converge in %lu iterations\n", max_iter);<--- %lu in format string (no. 1) requires 'unsigned long' but the argument type is 'std::size_t {aka unsigned long}'.
            printf("Element #%lu\n", e);<--- %lu in format string (no. 1) requires 'unsigned long' but the argument type is 'std::size_t {aka unsigned long}'.
            printf("Relative error: %e\n", rel_err);
            printf("Absolute error: %e\n\n", abs_err);
          }
        }
    }

    // Then, integrate explicitly on the remaining equations
    for (std::size_t e=0; e<nelem; ++e)
      for (std::size_t c=0; c<m_nnonstiffeq; ++c)
      {
        for (std::size_t k=0; k<m_numEqDof[c]; ++k)
        {
          auto rmark = m_nonStiffEqIdx[c]*rdof+k;
          auto mark = m_nonStiffEqIdx[c]*ndof+k;
          m_u(e, rmark) =  m_un(e, rmark) + d->Dt() * (
            expl_rkcoef[0][m_stage] * m_rhsprev(e, mark)/m_lhs(e, mark)
            + expl_rkcoef[1][m_stage] * m_rhs(e, mark)/m_lhs(e, mark));
          if(fabs(m_u(e, rmark)) < 1e-16)
            m_u(e, rmark) = 0;
        }
      }
  }
  else {
    // For last stage just use all previously computed stages
    const auto nelem = myGhosts()->m_fd.Esuel().size()/4;
    for (std::size_t e=0; e<nelem; ++e)
    {
      // First integrate explicitly on nonstiff equations
      for (std::size_t c=0; c<m_nnonstiffeq; ++c)
      {
        for (std::size_t k=0; k<m_numEqDof[c]; ++k)
        {
          auto rmark = m_nonStiffEqIdx[c]*rdof+k;
          auto mark = m_nonStiffEqIdx[c]*ndof+k;
          m_u(e, rmark) =  m_un(e, rmark) + d->Dt() * (
            expl_rkcoef[0][m_stage] * m_rhsprev(e, mark)/m_lhs(e, mark)
            + expl_rkcoef[1][m_stage] * m_rhs(e, mark)/m_lhs(e, mark));
          if(fabs(m_u(e, rmark)) < 1e-16)
            m_u(e, rmark) = 0;
        }
      }
      // Then, integrate the imex-equations
      for (std::size_t ieq=0; ieq<m_nstiffeq; ++ieq)
        for (std::size_t idof=0; idof<m_numEqDof[ieq]; ++idof)
        {
          auto rmark = m_stiffEqIdx[ieq]*rdof+idof;
          auto mark = m_stiffEqIdx[ieq]*ndof+idof;
          m_u(e, rmark) = m_un(e, rmark)
            + d->Dt() * (expl_rkcoef[0][m_stage]
                         * m_rhsprev(e,mark)/m_lhs(e,mark)
                         + expl_rkcoef[1][m_stage]
                         * m_rhs(e,mark)/m_lhs(e,mark)
                         + impl_rkcoef[0][m_stage]
                         * m_stiffrhsprev(e,ieq*ndof+idof)/m_lhs(e,mark)
                         + impl_rkcoef[1][m_stage]
                         * m_stiffrhs(e,ieq*ndof+idof)/m_lhs(e,mark) );
          if(fabs(m_u(e, rmark)) < 1e-16)
            m_u(e, rmark) = 0;
        }
    }
  }
}

#include "NoWarning/dg.def.h"