Quinoa all test code coverage report
Current view: top level - Statistics - Statistics.cpp (source / functions) Hit Total Coverage
Commit: Quinoa_v0.3-957-gb4f0efae0 Lines: 156 157 99.4 %
Date: 2021-11-09 15:14:18 Functions: 9 9 100.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 163 228 71.5 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/Statistics/Statistics.cpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     Statistics class definition
       9                 :            :   \details   This file implements a statistics class that can be used to
      10                 :            :     estimate statistics from an ensemble. Supported at this time are ordinary
      11                 :            :     and central statistical moments of arbitrary-length products and arbitrary
      12                 :            :     number of 1D, 2D, and 3D probability density functions (PDF) with sample
      13                 :            :     spaces of ordinary and/or central sample space variables. See the header
      14                 :            :     file documentation for more information on the nomenclature.
      15                 :            : */
      16                 :            : // *****************************************************************************
      17                 :            : 
      18                 :            : #include <map>
      19                 :            : #include <iterator>
      20                 :            : #include <utility>
      21                 :            : #include <algorithm>
      22                 :            : #include <iosfwd>
      23                 :            : #include <cctype>
      24                 :            : #include <cfenv>
      25                 :            : 
      26                 :            : #include "Types.hpp"
      27                 :            : #include "Exception.hpp"
      28                 :            : #include "Statistics.hpp"
      29                 :            : #include "Particles.hpp"
      30                 :            : #include "SystemComponents.hpp"
      31                 :            : #include "UniPDF.hpp"
      32                 :            : #include "BiPDF.hpp"
      33                 :            : #include "TriPDF.hpp"
      34                 :            : 
      35                 :            : using tk::Statistics;
      36                 :            : 
      37                 :        780 : Statistics::Statistics( const tk::Particles& particles,
      38                 :            :                         const ctr::OffsetMap& offset,
      39                 :            :                         const std::vector< ctr::Product >& stat,
      40                 :            :                         const std::vector< ctr::Probability >& pdf,
      41                 :        780 :                         const std::vector< std::vector< tk::real > >& binsize )
      42                 :            :   : m_particles( particles ),
      43                 :            :     m_instOrd(),
      44                 :            :     m_ordinary(),
      45                 :            :     m_ordTerm(),
      46                 :            :     m_nord( 0 ),
      47                 :            :     m_instCen(),
      48                 :            :     m_central(),
      49                 :            :     m_ctr(),
      50                 :            :     m_ncen( 0 ),
      51                 :            :     m_instOrdUniPDF(),
      52                 :            :     m_ordupdf(),
      53                 :            :     m_instCenUniPDF(),
      54                 :            :     m_cenupdf(),
      55                 :            :     m_ctrUniPDF(),
      56                 :            :     m_instOrdBiPDF(),
      57                 :            :     m_ordbpdf(),
      58                 :            :     m_instCenBiPDF(),
      59                 :            :     m_cenbpdf(),
      60                 :            :     m_ctrBiPDF(),
      61                 :            :     m_instOrdTriPDF(),
      62                 :            :     m_ordtpdf(),
      63                 :            :     m_instCenTriPDF(),
      64                 :            :     m_centpdf(),
      65         [ +  - ]:        780 :     m_ctrTriPDF()
      66                 :            : // *****************************************************************************
      67                 :            : //  Constructor
      68                 :            : //! \param[in] particles Particles data to estimate from
      69                 :            : //! \param[in] offset Map of offsets in memory to address variable fields
      70                 :            : //! \param[in] stat List of requested statistical moments
      71                 :            : //! \param[in] pdf List of requested probability density functions (PDF)
      72                 :            : //! \param[in] binsize List of binsize vectors configuring the PDF estimators
      73                 :            : // *****************************************************************************
      74                 :            : {
      75                 :            :   // Prepare for computing ordinary and central moments, PDFs
      76         [ +  - ]:        780 :   setupOrdinary( offset, stat );
      77         [ +  - ]:        780 :   setupCentral( offset, stat );
      78         [ +  - ]:        780 :   setupPDF( offset, pdf, binsize );
      79                 :        780 : }
      80                 :            : 
      81                 :            : void
      82                 :        780 : Statistics::setupOrdinary( const ctr::OffsetMap& offset,
      83                 :            :                            const std::vector< ctr::Product >& stat )
      84                 :            : // *****************************************************************************
      85                 :            : //  Prepare for computing ordinary moments
      86                 :            : //! \param[in] offset Map of offsets in memory to address variable fields
      87                 :            : //! \param[in] stat List of requested statistical moments
      88                 :            : // *****************************************************************************
      89                 :            : {
      90         [ +  + ]:      12675 :   for (const auto& product : stat)
      91                 :            :     if (ordinary(product)) {
      92                 :            : 
      93         [ +  - ]:       4713 :       m_instOrd.emplace_back( std::vector< const tk::real* >() );
      94                 :            : 
      95                 :            :       int i = 0;
      96         [ +  + ]:      11469 :       for (const auto& term : product) {
      97                 :       6756 :         auto o = offset.find( term.var );
      98                 :            :         Assert( o != end( offset ), "No such depvar" );
      99                 :            :         // Put in starting address of instantaneous variable
     100         [ +  - ]:       6756 :         m_instOrd.back().push_back( m_particles.cptr( term.field, o->second ) );
     101                 :            :         // Collect all means of estimated statistics in a linear vector; this
     102                 :            :         // will be used to find means for fluctuations. Thus only collect single
     103                 :            :         // terms, i.e., <Y1>, <Y2>, etc., but not <Y1Y2>, etc.
     104 [ +  + ][ +  - ]:       6756 :         if (i==0) m_ordTerm.push_back( term );
     105                 :       6756 :         ++i;
     106                 :            :       }
     107                 :            : 
     108                 :            :       // Increase number of ordinary moments by one
     109                 :       4713 :       m_ordinary.push_back( 0.0 );
     110                 :            :       // Count up orindary moments
     111                 :       4713 :       ++m_nord;
     112                 :            :     }
     113                 :            : 
     114                 :            :   // Put in a zero as the last ordinary moment. This will be used as the center
     115                 :            :   // about which central moments are computed. If this is not needed, e.g.,
     116                 :            :   // because there is no central moments or not central PDFs are requested, this
     117                 :            :   // is small, unused, and harmless.
     118         [ +  + ]:        780 :   if (m_nord) {
     119                 :            :     // Storage for all the required ordinary moments
     120                 :            :     // +1 for 0 as center for ordinary moments in computing central moments
     121                 :        764 :     m_ordinary.resize( m_nord + 1 );
     122                 :            :     // Put in zero as center for ordinary moments in central products
     123                 :        764 :     m_ordinary[ m_nord ] = 0.0;
     124                 :            :   }
     125                 :        780 : }
     126                 :            : 
     127                 :            : void
     128                 :        780 : Statistics::setupCentral( const ctr::OffsetMap& offset,
     129                 :            :                           const std::vector< ctr::Product >& stat )
     130                 :            : // *****************************************************************************
     131                 :            : //  Prepare for computing central moments
     132                 :            : //! \param[in] offset Map of offsets in memory to address variable fields
     133                 :            : //! \param[in] stat List of requested statistical moments
     134                 :            : // *****************************************************************************
     135                 :            : {
     136                 :            :   // Central moments can only be estimated about ordinary moments
     137         [ +  + ]:        780 :   if (m_nord)
     138         [ +  + ]:      12659 :     for (const auto& product : stat) {
     139         [ +  + ]:      11895 :       if (central(product)) {
     140                 :            : 
     141         [ +  - ]:       7182 :         m_instCen.emplace_back( std::vector< const tk::real* >() );
     142         [ +  - ]:       7182 :         m_ctr.emplace_back( std::vector< const tk::real* >() );
     143                 :            : 
     144         [ +  + ]:      24367 :         for (const auto& term : product) {
     145                 :      17185 :           auto o = offset.find( term.var );
     146                 :            :           Assert( o != end( offset ), "No such depvar" );
     147                 :            :           // Put in starting address of instantaneous variable
     148 [ +  - ][ +  + ]:      17185 :           m_instCen.back().push_back( m_particles.cptr(term.field, o->second) );
     149                 :            :           // Put in index of center for central, m_nord for ordinary moment
     150                 :            :           m_ctr.back().push_back(
     151 [ +  + ][ +  - ]:      17185 :            m_ordinary.data() + (std::islower(term.var) ? mean(term) : m_nord) );
                 [ +  - ]
     152                 :            :         }
     153                 :            : 
     154                 :            :         // Increase number of central moments by one
     155                 :       7182 :         m_central.push_back( 0.0 );
     156                 :            :         // Count up central moments
     157                 :       7182 :         ++m_ncen;
     158                 :            :       }
     159                 :            :     }
     160                 :        780 : }
     161                 :            : 
     162                 :            : void
     163                 :        780 : Statistics::setupPDF( const ctr::OffsetMap& offset,
     164                 :            :                       const std::vector< ctr::Probability >& pdf,
     165                 :            :                       const std::vector< std::vector< tk::real > >& binsize )
     166                 :            : // *****************************************************************************
     167                 :            : //  Prepare for computing PDFs
     168                 :            : //! \param[in] offset Map of offsets in memory to address variable fields
     169                 :            : //! \param[in] pdf List of requested probability density functions (PDF)
     170                 :            : //! \param[in] binsize List of binsize vectors configuring the PDF estimators
     171                 :            : // *****************************************************************************
     172                 :            : {
     173                 :            :   std::size_t i = 0;
     174         [ +  + ]:        920 :   for (const auto& probability : pdf) {
     175                 :            :     if (ordinary(probability)) {
     176                 :            : 
     177                 :            :       // Detect number of sample space dimensions and create ordinary PDFs
     178         [ +  + ]:         88 :       const auto& bs = binsize[i++];
     179         [ +  + ]:         88 :       if (bs.size() == 1) {
     180                 :         56 :         m_ordupdf.emplace_back( bs[0] );
     181         [ +  - ]:        112 :         m_instOrdUniPDF.emplace_back( std::vector< const tk::real* >() );
     182         [ +  + ]:         32 :       } else if (bs.size() == 2) {
     183                 :         16 :         m_ordbpdf.emplace_back( bs );
     184         [ +  - ]:         32 :         m_instOrdBiPDF.emplace_back( std::vector< const tk::real* >() );
     185         [ +  - ]:         16 :       } else if (bs.size() == 3) {
     186                 :         16 :         m_ordtpdf.emplace_back( bs );
     187         [ +  - ]:         32 :         m_instOrdTriPDF.emplace_back( std::vector< const tk::real* >() );
     188                 :            :       }
     189                 :            : 
     190                 :            :       // Put in starting addresses of instantaneous variables
     191         [ +  + ]:        224 :       for (const auto& term : probability) {
     192                 :        136 :         auto o = offset.find( term.var );
     193                 :            :         Assert( o != end( offset ), "No such depvar" );
     194         [ +  + ]:        136 :         const tk::real* iptr = m_particles.cptr( term.field, o->second );
     195 [ +  + ][ +  - ]:        136 :         if (bs.size() == 1) m_instOrdUniPDF.back().push_back( iptr );
     196 [ +  + ][ +  - ]:         80 :         else if (bs.size() == 2) m_instOrdBiPDF.back().push_back( iptr );
     197 [ +  - ][ +  - ]:         48 :         else if (bs.size() == 3) m_instOrdTriPDF.back().push_back( iptr );
     198                 :            :       }
     199                 :            : 
     200                 :            :     } else { // if central PDF
     201                 :            : 
     202                 :            :       // Detect number of sample space dimensions and create central PDFs,
     203                 :            :       // create new storage for instantaneous variable pointer, create new
     204                 :            :       // storage for center pointer
     205         [ +  + ]:         52 :       const auto& bs = binsize[i++];
     206         [ +  + ]:         52 :       if (bs.size() == 1) {
     207                 :         20 :         m_cenupdf.emplace_back( bs[0] );
     208         [ +  - ]:         20 :         m_instCenUniPDF.emplace_back( std::vector< const tk::real* >() );
     209         [ +  - ]:         40 :         m_ctrUniPDF.emplace_back( std::vector< const tk::real* >() );
     210         [ +  + ]:         32 :       } else if (bs.size() == 2) {
     211                 :         16 :         m_cenbpdf.emplace_back( bs );
     212         [ +  - ]:         16 :         m_instCenBiPDF.emplace_back( std::vector< const tk::real* >() );
     213         [ +  - ]:         32 :         m_ctrBiPDF.emplace_back( std::vector< const tk::real* >() );
     214         [ +  - ]:         16 :       } else if (bs.size() == 3) {
     215                 :         16 :         m_centpdf.emplace_back( bs );
     216         [ +  - ]:         16 :         m_instCenTriPDF.emplace_back( std::vector< const tk::real* >() );
     217         [ +  - ]:         32 :         m_ctrTriPDF.emplace_back( std::vector< const tk::real* >() );
     218                 :            :       }
     219                 :            : 
     220                 :            :       // Put in starting address of instantaneous variables
     221         [ +  + ]:        152 :       for (const auto& term : probability) {
     222                 :        100 :         auto o = offset.find( term.var );
     223                 :            :         Assert( o != end( offset ), "No such depvar" );
     224                 :            :         // Put in starting address of instantaneous variable as well as index
     225                 :            :         // of center for central, m_nord for ordinary moment
     226         [ +  - ]:        100 :         const tk::real* iptr = m_particles.cptr( term.field, o->second );
     227                 :            :         const tk::real* cptr =
     228 [ +  - ][ +  - ]:        100 :           m_ordinary.data() + (std::islower(term.var) ? mean(term) : m_nord);
     229         [ +  + ]:        100 :         if (bs.size() == 1) {
     230         [ +  - ]:         20 :           m_instCenUniPDF.back().push_back( iptr );
     231         [ +  - ]:         20 :           m_ctrUniPDF.back().push_back( cptr );
     232         [ +  + ]:         80 :         } else if (bs.size() == 2) {
     233         [ +  - ]:         32 :           m_instCenBiPDF.back().push_back( iptr );
     234         [ +  - ]:         32 :           m_ctrBiPDF.back().push_back( cptr );
     235         [ +  - ]:         48 :         } else if (bs.size() == 3) {
     236         [ +  - ]:         48 :           m_instCenTriPDF.back().push_back( iptr );
     237         [ +  - ]:         48 :           m_ctrTriPDF.back().push_back( cptr );
     238                 :            :         }
     239                 :            :       }
     240                 :            :     }
     241                 :            :   }
     242                 :        780 : }
     243                 :            : 
     244                 :            : std::size_t
     245                 :      16805 : Statistics::mean( const tk::ctr::Term& term ) const
     246                 :            : // *****************************************************************************
     247                 :            : //  Return mean for fluctuation
     248                 :            : //! \param[in] term Term (a fluctuation) whose mean to search for
     249                 :            : //! \return Index to mean
     250                 :            : // *****************************************************************************
     251                 :            : {
     252                 :      16805 :   const auto size = m_ordTerm.size();
     253         [ +  - ]:     138880 :   for (auto i=decltype(size){0}; i<size; ++i) {
     254         [ +  - ]:     138880 :     if (m_ordTerm[i].var == std::toupper(term.var) &&
     255         [ +  + ]:     138880 :         m_ordTerm[i].field == term.field) {
     256                 :      16805 :       return i;
     257                 :            :     }
     258                 :            :   }
     259 [ -  - ][ -  - ]:          0 :   Throw( std::string("Cannot find mean for variable ") + term );
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
                 [ -  - ]
     260                 :            : }
     261                 :            : 
     262                 :            : void
     263                 :    4495789 : Statistics::accumulateOrd()
     264                 :            : // *****************************************************************************
     265                 :            : //  Accumulate (i.e., only do the sum for) ordinary moments
     266                 :            : // *****************************************************************************
     267                 :            : {
     268                 :            :   fenv_t fe;
     269                 :    4495789 :   feholdexcept( &fe );
     270                 :            : 
     271         [ +  + ]:    4495789 :   if (m_nord) {
     272                 :            :     // Zero ordinary moment accumulators
     273                 :            :     std::fill( begin(m_ordinary), end(m_ordinary), 0.0 );
     274                 :            : 
     275                 :            :     // Accumulate sum for ordinary moments. This is a partial sum, so no
     276                 :            :     // division by the number of samples.
     277                 :    4335773 :     const auto npar = m_particles.nunk();
     278         [ +  + ]: 1047770666 :     for (auto p=decltype(npar){0}; p<npar; ++p) {
     279         [ +  + ]: 5818940288 :       for (std::size_t i=0; i<m_nord; ++i) {
     280                 : 4775505395 :        auto prod = m_particles.var( m_instOrd[i][0], p );
     281                 : 4775505395 :         const auto s = m_instOrd[i].size();
     282         [ +  + ]: 9672045395 :         for (auto j=decltype(s){1}; j<s; ++j) {
     283                 : 4896540000 :           prod *= m_particles.var( m_instOrd[i][j], p );
     284                 :            :         }
     285                 : 4775505395 :         m_ordinary[i] += prod;
     286                 :            :       }
     287                 :            :     }
     288                 :            :   }
     289                 :            : 
     290                 :    4495789 :   feclearexcept( FE_UNDERFLOW );
     291                 :    4495789 :   feupdateenv( &fe );
     292                 :    4495789 : }
     293                 :            : 
     294                 :            : void
     295                 :    4495789 : Statistics::accumulateCen( const std::vector< tk::real >& om )
     296                 :            : // *****************************************************************************
     297                 :            : //  Accumulate (i.e., only do the sum for) central moments
     298                 :            : //! \details The ordinary moments container, m_ordinary, is overwritten here
     299                 :            : //!   with the argument om, because each of multiple Statistics class objects
     300                 :            : //!   (residing on different PEs) only collect their partial sums when
     301                 :            : //!   accumulateOrd() is run. By the time the accumulation of the central
     302                 :            : //!   moments is started, the ordinary moments have been collected from all
     303                 :            : //!   PEs and thus are the same to be passed here on all PEs. For example
     304                 :            : //!   client-code, see walker::Distributor.
     305                 :            : //! \param[in] om Ordinary moments
     306                 :            : // *****************************************************************************
     307                 :            : {
     308         [ +  + ]:    4495789 :   if (m_ncen) {
     309                 :            :     // Overwrite ordinary moments by those computed across all PEs
     310         [ +  + ]:   28306021 :     for (std::size_t i=0; i<om.size(); ++i) m_ordinary[i] = om[i];
     311                 :            : 
     312                 :            :     // Zero central moment accumulators
     313                 :            :     std::fill( begin(m_central), end(m_central), 0.0 );
     314                 :            : 
     315                 :            :     // Accumulate sum for central moments. This is a partial sum, so no division
     316                 :            :     // by the number of samples.
     317                 :    4160901 :     const auto npar = m_particles.nunk();
     318         [ +  + ]:  700615794 :     for (auto p=decltype(npar){0}; p<npar; ++p) {
     319         [ +  + ]: 5034025703 :       for (std::size_t i=0; i<m_ncen; ++i) {
     320                 : 4337570810 :         auto prod = m_particles.var( m_instCen[i][0], p ) - *(m_ctr[i][0]);
     321                 : 4337570810 :         const auto s = m_instCen[i].size();
     322         [ +  + ]: 9494433055 :         for (auto j=decltype(s){1}; j<s; ++j) {
     323                 : 5156862245 :           prod *= m_particles.var( m_instCen[i][j], p ) - *(m_ctr[i][j]);
     324                 :            :         }
     325                 : 4337570810 :         m_central[i] += prod;
     326                 :            :       }
     327                 :            :     }
     328                 :            :   }
     329                 :    4495789 : }
     330                 :            : 
     331                 :            : void
     332         [ +  + ]:        128 : Statistics::accumulateOrdPDF()
     333                 :            : // *****************************************************************************
     334                 :            : //  Accumulate (i.e., only do the sum for) ordinary PDFs
     335                 :            : // *****************************************************************************
     336                 :            : {
     337 [ +  + ][ +  + ]:        128 :   if (!m_ordupdf.empty() || !m_ordbpdf.empty() || !m_ordtpdf.empty()) {
                 [ -  + ]
     338                 :            :     // Zero PDF accumulators
     339         [ +  + ]:        176 :     for (auto& pdf : m_ordupdf) pdf.zero();
     340         [ +  + ]:        120 :     for (auto& pdf : m_ordbpdf) pdf.zero();
     341         [ +  + ]:        120 :     for (auto& pdf : m_ordtpdf) pdf.zero();
     342                 :            : 
     343                 :            :     // Accumulate partial sum for PDFs
     344                 :         88 :     const auto npar = m_particles.nunk();
     345         [ +  + ]:     420088 :     for (auto p=decltype(npar){0}; p<npar; ++p) {
     346                 :            :       std::size_t i = 0;
     347                 :            :       // Accumulate partial sum for univariate PDFs
     348         [ +  + ]:     840000 :       for (auto& pdf : m_ordupdf) {
     349                 :     420000 :         pdf.add( m_particles.var( m_instOrdUniPDF[i++][0], p ) );
     350                 :            :       }
     351                 :            :       // Accumulate partial sum for bivariate PDFs
     352                 :            :       i = 0;
     353         [ +  + ]:     480000 :       for (auto& pdf : m_ordbpdf) {
     354         [ +  - ]:      60000 :         const auto inst = m_instOrdBiPDF[i++];
     355         [ +  - ]:      60000 :         pdf.add( {{ m_particles.var( inst[0], p ),
     356         [ +  - ]:      60000 :                     m_particles.var( inst[1], p ) }} );
     357                 :            :       }
     358                 :            :       // Accumulate partial sum for trivariate PDFs
     359                 :            :       i = 0;
     360         [ +  + ]:     480000 :       for (auto& pdf : m_ordtpdf) {
     361         [ +  - ]:      60000 :         const auto inst = m_instOrdTriPDF[i++];
     362         [ +  - ]:      60000 :         pdf.add( {{ m_particles.var( inst[0], p ),
     363                 :      60000 :                     m_particles.var( inst[1], p ),
     364         [ +  - ]:      60000 :                     m_particles.var( inst[2], p ) }} );
     365                 :            :       }
     366                 :            :     }
     367                 :            :   }
     368                 :        128 : }
     369                 :            : 
     370                 :            : void
     371         [ +  + ]:        128 : Statistics::accumulateCenPDF( const std::vector< tk::real >& om )
     372                 :            : // *****************************************************************************
     373                 :            : //  Accumulate (i.e., only do the sum for) central PDFs
     374                 :            : //! \details The ordinary moments container, m_ordinary, is overwritten here
     375                 :            : //!   with the argument om, because each of multiple Statistics class objects
     376                 :            : //!   (residing on different PEs) only collect their partial sums when
     377                 :            : //!   accumulateOrd() is run. By the time the accumulation of the central
     378                 :            : //!   PDFs is started, the ordinary moments have been collected from all
     379                 :            : //!   PEs and thus are the same to be passed here on all PEs. For example
     380                 :            : //!   client-code, see walker::Distributor.
     381                 :            : //! \param[in] om Ordinary moments
     382                 :            : // *****************************************************************************
     383                 :            : {
     384 [ +  + ][ +  + ]:        128 :   if (!m_cenupdf.empty() || !m_cenbpdf.empty() || !m_centpdf.empty()) {
                 [ +  + ]
     385                 :            :     // Overwrite ordinary moments by those computed across all PEs
     386         [ +  + ]:        256 :     for (std::size_t i=0; i<om.size(); ++i) m_ordinary[i] = om[i];
     387                 :            : 
     388                 :            :     // Zero PDF accumulators
     389         [ +  + ]:        112 :     for (auto& pdf : m_cenupdf) pdf.zero();
     390         [ +  + ]:        104 :     for (auto& pdf : m_cenbpdf) pdf.zero();
     391         [ +  + ]:        104 :     for (auto& pdf : m_centpdf) pdf.zero();
     392                 :            : 
     393                 :            :     // Accumulate partial sum for PDFs
     394                 :         72 :     const auto npar = m_particles.nunk();
     395         [ +  + ]:     220072 :     for (auto p=decltype(npar){0}; p<npar; ++p) {
     396                 :            :       std::size_t i = 0;
     397                 :            :       // Accumulate partial sum for univariate PDFs
     398         [ +  + ]:     560000 :       for (auto& pdf : m_cenupdf) {
     399                 :     340000 :         pdf.add(
     400                 :     340000 :           m_particles.var( m_instCenUniPDF[i][0], p ) - *(m_ctrUniPDF[i][0]) );
     401                 :     340000 :         ++i;
     402                 :            :       }
     403                 :            :       // Accumulate partial sum for bivariate PDFs
     404                 :            :       i = 0;
     405         [ +  + ]:     280000 :       for (auto& pdf : m_cenbpdf) {
     406                 :      60000 :         const auto& inst = m_instCenBiPDF[i];
     407                 :      60000 :         const auto& cen = m_ctrBiPDF[i];
     408                 :      60000 :         pdf.add( {{ m_particles.var( inst[0], p ) - *(cen[0]),
     409                 :      60000 :                     m_particles.var( inst[1], p ) - *(cen[1]) }} );
     410                 :      60000 :         ++i;
     411                 :            :       }
     412                 :            :       // Accumulate partial sum for trivariate PDFs
     413                 :            :       i = 0;
     414         [ +  + ]:     280000 :       for (auto& pdf : m_centpdf) {
     415         [ +  - ]:      60000 :         const auto inst = m_instCenTriPDF[i];
     416         [ +  - ]:      60000 :         const auto& cen = m_ctrTriPDF[i];
     417         [ +  - ]:      60000 :         pdf.add( {{ m_particles.var( inst[0], p ) - *(cen[0]),
     418                 :      60000 :                     m_particles.var( inst[1], p ) - *(cen[1]),
     419         [ +  - ]:      60000 :                     m_particles.var( inst[2], p ) - *(cen[2]) }} );
     420         [ +  - ]:      60000 :         ++i;
     421                 :            :       }
     422                 :            :     }
     423                 :            :   }
     424                 :        128 : }

Generated by: LCOV version 1.14