Quinoa all test code coverage report
Current view: top level - PDE/MultiMat/Problem - BoxInitialization.hpp (source / functions) Hit Total Coverage
Commit: -128-NOTFOUND Lines: 42 68 61.8 %
Date: 2024-11-22 09:12:55 Functions: 1 2 50.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 31 134 23.1 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/PDE/MultiMat/Problem/BoxInitialization.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     User-defined box initialization
       9                 :            :   \details   This file defines functions for initializing solutions for
      10                 :            :     compressible multi-material equations inside the user-defined box.
      11                 :            : */
      12                 :            : // *****************************************************************************
      13                 :            : #ifndef MultiMatBoxInitialization_h
      14                 :            : #define MultiMatBoxInitialization_h
      15                 :            : 
      16                 :            : #include "Fields.hpp"
      17                 :            : #include "EoS/EOS.hpp"
      18                 :            : #include "ContainerUtil.hpp"
      19                 :            : #include "MultiMat/MultiMatIndexing.hpp"
      20                 :            : 
      21                 :            : namespace inciter {
      22                 :            : 
      23                 :            : using ncomp_t = tk::ncomp_t;
      24                 :            : 
      25                 :            : template< class B >
      26                 :        104 : void initializeBox( const std::vector< EOS >& mat_blk,
      27                 :            :                     tk::real V_ex,
      28                 :            :                     tk::real t,
      29                 :            :                     const B& b,
      30                 :            :                     tk::real bgpreic,
      31                 :            :                     tk::real bgtempic,
      32                 :            :                     std::vector< tk::real >& s )
      33                 :            : // *****************************************************************************
      34                 :            : // Set the solution in the user-defined IC box/mesh block
      35                 :            : //! \tparam B IC-block type to operate, ctr::box, or ctr::meshblock
      36                 :            : //! \param[in] V_ex Exact box volume
      37                 :            : //! \param[in] t Physical time
      38                 :            : //! \param[in] b IC box configuration to use
      39                 :            : //! \param[in] bgpreic Background pressure user input
      40                 :            : //! \param[in] bgtempic Background temperature user input
      41                 :            : //! \param[in,out] s Solution vector that is set to box ICs
      42                 :            : //! \details This function sets the fluid density and total specific energy
      43                 :            : //!   within a box initial condition, configured by the user. If the user
      44                 :            : //!   is specified a box where mass is specified, we also assume here that
      45                 :            : //!   internal energy content (energy per unit volume) is also
      46                 :            : //!   specified. Specific internal energy (energy per unit mass) is then
      47                 :            : //!   computed here (and added to the kinetic energy) from the internal
      48                 :            : //!   energy per unit volume by multiplying it with the total box volume
      49                 :            : //!   and dividing it by the total mass of the material in the box.
      50                 :            : //!   Example (SI) units of the quantities involved:
      51                 :            : //!    * internal energy content (energy per unit volume): J/m^3
      52                 :            : //!    * specific energy (internal energy per unit mass): J/kg
      53                 :            : // *****************************************************************************
      54                 :            : {
      55                 :        104 :   auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();
      56                 :            : 
      57                 :            :   const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
      58                 :            : 
      59                 :            :   const auto& initiate = b.template get< tag::initiate >();
      60                 :            : 
      61                 :            :   // get material id in box (offset by 1, since input deck uses 1-based ids)
      62                 :        104 :   std::size_t boxmatid = b.template get< tag::materialid >() - 1;
      63                 :            :   const auto& boxvel = b.template get< tag::velocity >();
      64                 :        104 :   auto boxpre = b.template get< tag::pressure >();
      65                 :        104 :   auto boxene = b.template get< tag::energy >();
      66                 :        104 :   auto boxtemp = b.template get< tag::temperature >();
      67                 :        104 :   auto boxmas = b.template get< tag::mass >();
      68                 :        104 :   auto boxenc = b.template get< tag::energy_content >();
      69                 :            : 
      70                 :            :   auto alphamin = 1.0e-12;
      71                 :            : 
      72                 :            :   // [I] Compute the states inside the IC box/block based on the type of user
      73                 :            :   // input.
      74                 :            : 
      75                 :            :   // material volume fractions
      76         [ +  + ]:        312 :   for (std::size_t k=0; k<nmat; ++k) {
      77         [ +  + ]:        208 :     if (k == boxmatid) {
      78                 :        104 :       s[volfracIdx(nmat,k)] = 1.0 - (static_cast< tk::real >(nmat-1))*alphamin;
      79                 :            :     }
      80                 :            :     else {
      81                 :        104 :       s[volfracIdx(nmat,k)] = alphamin;
      82                 :            :     }
      83                 :            :   }
      84                 :            :   // material states (density, pressure, velocity)
      85                 :        104 :   tk::real u = 0.0, v = 0.0, w = 0.0, spi(0.0), pr(0.0), tmp(0.0), rbulk(0.0);
      86                 :        104 :   std::vector< tk::real > rhok(nmat, 0.0);
      87                 :            :   // 1. User-specified mass, specific energy (J/m^3) and volume of box
      88         [ -  + ]:        104 :   if (boxmas > 0.0) {
      89 [ -  + ][ -  - ]:        104 :     if (boxenc <= 1e-12) Throw( "Box energy content must be nonzero" );
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
                 [ -  - ]
      90                 :            :     // determine density and energy of material in the box
      91         [ -  + ]:        104 :     rhok[boxmatid] = boxmas / V_ex;
      92                 :        104 :     spi = boxenc / rhok[boxmatid];
      93                 :            : 
      94                 :            :     // Determine pressure and temperature
      95                 :        104 :     auto boxmat_vf = s[volfracIdx(nmat,boxmatid)];
      96                 :            : 
      97                 :            :     // Since initiate type 'linear' assigns the background IC values to all
      98                 :            :     // nodes within a box at initialization (followed by adding a time-dependent
      99                 :            :     // energy source term representing a propagating wave-front), the pressure
     100                 :            :     // in the box needs to be set to background pressure.
     101 [ -  + ][ -  - ]:        104 :     if (initiate == ctr::InitiateType::LINEAR && t < 1e-12) {
     102 [ -  - ][ -  - ]:          0 :       if (boxmas <= 1e-12 || boxenc <= 1e-12 || bgpreic <= 1e-12 ||
                 [ -  - ]
     103                 :            :         bgtempic <= 1e-12)
     104 [ -  - ][ -  - ]:          0 :         Throw("Box mass, energy content, background pressure and background "
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     105                 :            :           "temperature must be specified for IC with linear propagating source");
     106                 :            : 
     107                 :          0 :       pr = bgpreic;
     108         [ -  - ]:          0 :       auto te = mat_blk[boxmatid].compute< EOS::totalenergy >(
     109                 :            :         rhok[boxmatid], u, v, w, pr);
     110         [ -  - ]:          0 :       tmp = mat_blk[boxmatid].compute< EOS::temperature >(
     111         [ -  - ]:          0 :         boxmat_vf*rhok[boxmatid], u, v, w, boxmat_vf*te, boxmat_vf );
     112                 :            : 
     113                 :            :       // if the above density and pressure lead to an invalid thermodynamic
     114                 :            :       // state (negative temperature/energy), change temperature to background
     115                 :            :       // temperature and use corresponding density.
     116 [ -  - ][ -  - ]:          0 :       if (tmp < 0.0 || te < 0.0) {
     117                 :          0 :         tmp = bgtempic;
     118         [ -  - ]:          0 :         rhok[boxmatid] = mat_blk[boxmatid].compute< EOS::density >(pr, tmp);
     119                 :          0 :         spi = boxenc / rhok[boxmatid];
     120                 :            :       }
     121                 :            :     }
     122                 :            :     // For initiate type 'impulse', pressure and temperature are determined from
     123                 :            :     // energy content that needs to be dumped into the box at IC.
     124         [ +  - ]:        104 :     else if (initiate == ctr::InitiateType::IMPULSE) {
     125         [ +  - ]:        104 :       pr = mat_blk[boxmatid].compute< EOS::pressure >(
     126         [ +  - ]:        104 :         boxmat_vf*rhok[boxmatid], u, v, w, boxmat_vf*rhok[boxmatid]*spi,
     127                 :            :         boxmat_vf, boxmatid );
     128         [ +  - ]:        104 :       tmp = mat_blk[boxmatid].compute< EOS::temperature >(
     129 [ +  - ][ -  - ]:        208 :         boxmat_vf*rhok[boxmatid], u, v, w, boxmat_vf*rhok[boxmatid]*spi,
     130                 :            :         boxmat_vf );
     131                 :            :     }
     132 [ -  - ][ -  - ]:          0 :     else Throw( "IC box initiate type not implemented for multimat" );
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     133                 :            : 
     134                 :            :     // find density of trace material quantities in the box based on pressure
     135         [ +  + ]:        312 :     for (std::size_t k=0; k<nmat; ++k) {
     136         [ +  + ]:        208 :       if (k != boxmatid) {
     137         [ +  - ]:        208 :         rhok[k] = mat_blk[k].compute< EOS::density >(pr, tmp);
     138                 :            :       }
     139                 :            :     }
     140                 :            :   }
     141                 :            :   // 2. User-specified temperature, pressure and velocity in box
     142                 :            :   else {
     143         [ -  - ]:          0 :     for (std::size_t k=0; k<nmat; ++k) {
     144         [ -  - ]:          0 :       rhok[k] = mat_blk[k].compute< EOS::density >(boxpre, boxtemp);
     145                 :            :     }
     146         [ -  - ]:          0 :     if (boxvel.size() == 3) {
     147                 :          0 :       u = boxvel[0];
     148                 :          0 :       v = boxvel[1];
     149                 :          0 :       w = boxvel[2];
     150                 :            :     }
     151         [ -  - ]:          0 :     if (boxpre > 0.0) {
     152                 :          0 :       pr = boxpre;
     153                 :            :     }
     154         [ -  - ]:          0 :     if (boxene > 0.0) {
     155 [ -  - ][ -  - ]:          0 :       Throw("IC-box with specified energy not set up for multimat");
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     156                 :            :     }
     157                 :            :   }
     158                 :            :   // bulk density
     159         [ +  + ]:        312 :   for (std::size_t k=0; k<nmat; ++k) rbulk += s[volfracIdx(nmat,k)]*rhok[k];
     160                 :            : 
     161                 :            :   // [II] Finally initialize the solution vector
     162         [ +  + ]:        312 :   for (std::size_t k=0; k<nmat; ++k) {
     163                 :            :     // partial density
     164         [ +  - ]:        208 :     s[densityIdx(nmat,k)] = s[volfracIdx(nmat,k)] * rhok[k];
     165                 :            :     // total specific energy
     166 [ +  - ][ +  + ]:        208 :     if (boxmas > 0.0 && k == boxmatid &&
     167         [ +  - ]:        104 :       initiate == ctr::InitiateType::IMPULSE) {
     168                 :        104 :       s[energyIdx(nmat,k)] = s[volfracIdx(nmat,k)] * rhok[k] * spi;
     169                 :            :     }
     170                 :            :     else {
     171                 :            :       // TEMP: Eventually we would need to initialize gk from control file
     172                 :            :       std::array< std::array< tk::real, 3 >, 3 > gk;
     173         [ -  + ]:        104 :       if (solidx[k] > 0) {
     174         [ -  - ]:          0 :         for (std::size_t i=0; i<3; ++i) {
     175         [ -  - ]:          0 :           for (std::size_t j=0; j<3; ++j) {
     176         [ -  - ]:          0 :             if (i==j) gk[i][j] = 1.0;
     177                 :          0 :             else gk[i][j] = 0.0;
     178                 :          0 :             s[deformIdx(nmat,solidx[k],i,j)] = gk[i][j];
     179                 :            :           }
     180                 :            :         }
     181                 :            :       }
     182                 :            :       else {
     183                 :        104 :         gk = {{}};
     184                 :            :       }
     185                 :        104 :       s[energyIdx(nmat,k)] = s[volfracIdx(nmat,k)] *
     186         [ +  - ]:        104 :         mat_blk[k].compute< EOS::totalenergy >( rhok[k], u, v, w, pr, gk );
     187                 :            :     }
     188                 :            :   }
     189                 :            :   // bulk momentum
     190         [ +  - ]:        104 :   s[momentumIdx(nmat,0)] = rbulk * u;
     191                 :        104 :   s[momentumIdx(nmat,1)] = rbulk * v;
     192         [ +  - ]:        104 :   s[momentumIdx(nmat,2)] = rbulk * w;
     193                 :        104 : }
     194                 :            : 
     195                 :            : } //inciter::
     196                 :            : 
     197                 :            : #endif // MultiMatBoxInitialization_h

Generated by: LCOV version 1.14