Quinoa all test code coverage report
Current view: top level - PDE/MultiMat - BCFunctions.hpp (source / functions) Hit Total Coverage
Commit: -128-NOTFOUND Lines: 44 72 61.1 %
Date: 2024-04-22 13:39:53 Functions: 2 3 66.7 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 26 84 31.0 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/PDE/MultiMat/BCFunctions.hpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     Functions specifying boundary conditions.
       9                 :            :   \details   Functions that return boundary state when the interior state at
      10                 :            :              at the boundary location is provided.
      11                 :            : */
      12                 :            : // *****************************************************************************
      13                 :            : #ifndef BCFunctions_h
      14                 :            : #define BCFunctions_h
      15                 :            : 
      16                 :            : #include "FunctionPrototypes.hpp"
      17                 :            : #include "MiscMultiMatFns.hpp"
      18                 :            : 
      19                 :            : namespace inciter {
      20                 :            : 
      21                 :            :   //! \brief Boundary state function providing the left and right state of a
      22                 :            :   //!   face at symmetry boundaries
      23                 :            :   //! \param[in] ncomp Number of scalar components in this PDE system
      24                 :            :   //! \param[in] ul Left (domain-internal) state
      25                 :            :   //! \param[in] fn Unit face normal
      26                 :            :   //! \return Left and right states for all scalar components in this PDE
      27                 :            :   //!   system
      28                 :            :   //! \note The function signature must follow tk::StateFn. For multimat, the
      29                 :            :   //!   left or right state is the vector of conserved quantities, followed by
      30                 :            :   //!   the vector of primitive quantities appended to it.
      31                 :            :   static tk::StateFn::result_type
      32                 :    1876080 :   symmetry( ncomp_t ncomp,
      33                 :            :             const std::vector< EOS >&,
      34                 :            :             const std::vector< tk::real >& ul,
      35                 :            :             tk::real, tk::real, tk::real, tk::real,
      36                 :            :             const std::array< tk::real, 3 >& fn )
      37                 :            :   {
      38                 :    1876080 :     auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();
      39                 :    1876080 :     const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
      40                 :            : 
      41         [ +  - ]:    1876080 :     [[maybe_unused]] auto nsld = numSolids(nmat, solidx);
      42                 :            : 
      43 [ -  + ][ -  - ]:    1876080 :     Assert( ul.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
         [ -  - ][ -  - ]
      44                 :            :             "internal state vector" );
      45                 :            : 
      46                 :    1876080 :     tk::real rho(0.0);
      47         [ +  + ]:    6251640 :     for (std::size_t k=0; k<nmat; ++k)
      48                 :    4375560 :       rho += ul[densityIdx(nmat, k)];
      49                 :            : 
      50         [ +  - ]:    3752160 :     auto ur = ul;
      51                 :            : 
      52                 :            :     // Internal cell velocity components
      53                 :    1876080 :     auto v1l = ul[ncomp+velocityIdx(nmat, 0)];
      54                 :    1876080 :     auto v2l = ul[ncomp+velocityIdx(nmat, 1)];
      55                 :    1876080 :     auto v3l = ul[ncomp+velocityIdx(nmat, 2)];
      56                 :            :     // Normal component of velocity
      57                 :    1876080 :     auto vnl = v1l*fn[0] + v2l*fn[1] + v3l*fn[2];
      58                 :            :     // Ghost state velocity components
      59                 :    1876080 :     auto v1r = v1l - 2.0*vnl*fn[0];
      60                 :    1876080 :     auto v2r = v2l - 2.0*vnl*fn[1];
      61                 :    1876080 :     auto v3r = v3l - 2.0*vnl*fn[2];
      62                 :            :     // Boundary condition
      63         [ +  + ]:    6251640 :     for (std::size_t k=0; k<nmat; ++k)
      64                 :            :     {
      65                 :    4375560 :       ur[volfracIdx(nmat, k)] = ul[volfracIdx(nmat, k)];
      66                 :    4375560 :       ur[densityIdx(nmat, k)] = ul[densityIdx(nmat, k)];
      67                 :    4375560 :       ur[energyIdx(nmat, k)] = ul[energyIdx(nmat, k)];
      68         [ +  + ]:    4375560 :       if (solidx[k] > 0) {
      69                 :            :         // Internal inverse deformation tensor
      70                 :            :         std::array< std::array< tk::real, 3 >, 3 > g;
      71         [ +  + ]:     216000 :         for (std::size_t i=0; i<3; ++i)
      72         [ +  + ]:     648000 :           for (std::size_t j=0; j<3; ++j)
      73                 :     486000 :             g[i][j] = ul[deformIdx(nmat,solidx[k],i,j)];
      74                 :            :         // Make reflection matrix
      75                 :            :         std::array< std::array< tk::real, 3 >, 3 >
      76                 :      54000 :         reflectionMat{{{1,0,0}, {0,1,0}, {0,0,1}}};
      77         [ +  + ]:     216000 :         for (std::size_t i=0; i<3; ++i)
      78         [ +  + ]:     648000 :           for (std::size_t j=0; j<3; ++j)
      79                 :     486000 :             reflectionMat[i][j] -= 2*fn[i]*fn[j];
      80                 :            :         // Reflect g
      81         [ +  - ]:      54000 :         g = tk::reflectTensor(g, reflectionMat);
      82                 :            :         // Copy g into ur
      83         [ +  + ]:     216000 :         for (std::size_t i=0; i<3; ++i)
      84         [ +  + ]:     648000 :           for (std::size_t j=0; j<3; ++j)
      85                 :     486000 :             ur[deformIdx(nmat,solidx[k],i,j)] = g[i][j];
      86                 :            :       }
      87                 :            :     }
      88                 :    1876080 :     ur[momentumIdx(nmat, 0)] = rho * v1r;
      89                 :    1876080 :     ur[momentumIdx(nmat, 1)] = rho * v2r;
      90                 :    1876080 :     ur[momentumIdx(nmat, 2)] = rho * v3r;
      91                 :            : 
      92                 :            :     // Internal cell primitive quantities using the separately reconstructed
      93                 :            :     // primitive quantities. This is used to get ghost state for primitive
      94                 :            :     // quantities
      95                 :            : 
      96                 :            :     // velocity
      97                 :    1876080 :     ur[ncomp+velocityIdx(nmat, 0)] = v1r;
      98                 :    1876080 :     ur[ncomp+velocityIdx(nmat, 1)] = v2r;
      99                 :    1876080 :     ur[ncomp+velocityIdx(nmat, 2)] = v3r;
     100                 :            :     // material pressures
     101         [ +  + ]:    6251640 :     for (std::size_t k=0; k<nmat; ++k)
     102                 :    4375560 :       ur[ncomp+pressureIdx(nmat, k)] = ul[ncomp+pressureIdx(nmat, k)];
     103                 :            : 
     104 [ -  + ][ -  - ]:    1876080 :     Assert( ur.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
         [ -  - ][ -  - ]
     105                 :            :             "boundary state vector" );
     106                 :            : 
     107         [ +  - ]:    3752160 :     return {{ std::move(ul), std::move(ur) }};
     108                 :            :   }
     109                 :            : 
     110                 :            :   //! \brief Boundary state function providing the left and right state of a
     111                 :            :   //!   face at farfield outlet boundaries
     112                 :            :   //! \param[in] ncomp Number of scalar components in this PDE system
     113                 :            :   //! \param[in] ul Left (domain-internal) state
     114                 :            :   //! \param[in] fn Unit face normal
     115                 :            :   //! \return Left and right states for all scalar components in this PDE
     116                 :            :   //!   system
     117                 :            :   //! \details The farfield outlet boudary calculation, implemented here, is
     118                 :            :   //!   based on the characteristic theory of hyperbolic systems. For subsonic
     119                 :            :   //!   outlet flow, there is 1 incoming characteristic per material.
     120                 :            :   //!   Therefore, we calculate the ghost cell state by taking material
     121                 :            :   //!   pressure from the outside and other quantities from the internal cell.
     122                 :            :   //!   For supersonic outlet flow, all the characteristics are from internal
     123                 :            :   //!   cell and we obtain the ghost cell state from the internal cell.
     124                 :            :   //! \note The function signature must follow tk::StateFn
     125                 :            :   static tk::StateFn::result_type
     126                 :          0 :   farfieldOutlet( ncomp_t ncomp,
     127                 :            :                   const std::vector< EOS >& mat_blk,
     128                 :            :                   const std::vector< tk::real >& ul,
     129                 :            :                   tk::real, tk::real, tk::real, tk::real,
     130                 :            :                   const std::array< tk::real, 3 >& fn )
     131                 :            :   {
     132                 :          0 :     auto nmat = g_inputdeck.get< tag::multimat, tag::nmat >();
     133                 :          0 :     const auto& solidx = g_inputdeck.get< tag::matidxmap, tag::solidx >();
     134                 :            : 
     135                 :            :     auto fp =
     136                 :          0 :       g_inputdeck.get< tag::bc >()[0].get< tag::pressure >();
     137                 :            : 
     138         [ -  - ]:          0 :     [[maybe_unused]] auto nsld = numSolids(nmat, solidx);
     139                 :            : 
     140 [ -  - ][ -  - ]:          0 :     Assert( ul.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
         [ -  - ][ -  - ]
     141                 :            :             "internal state vector" );
     142                 :            : 
     143         [ -  - ]:          0 :     auto ur = ul;
     144                 :            : 
     145                 :            :     // Internal cell velocity components
     146                 :          0 :     auto v1l = ul[ncomp+velocityIdx(nmat, 0)];
     147                 :          0 :     auto v2l = ul[ncomp+velocityIdx(nmat, 1)];
     148                 :          0 :     auto v3l = ul[ncomp+velocityIdx(nmat, 2)];
     149                 :            : 
     150                 :            :     // Normal velocity
     151                 :          0 :     auto vn = v1l*fn[0] + v2l*fn[1] + v3l*fn[2];
     152                 :            : 
     153                 :            :     // Acoustic speed
     154                 :          0 :     tk::real a(0.0);
     155         [ -  - ]:          0 :     for (std::size_t k=0; k<nmat; ++k)
     156         [ -  - ]:          0 :       if (ul[volfracIdx(nmat, k)] > 1.0e-04)
     157         [ -  - ]:          0 :         a = std::max( a, mat_blk[k].compute< EOS::soundspeed >(
     158                 :          0 :           ul[densityIdx(nmat, k)], ul[ncomp+pressureIdx(nmat, k)],
     159                 :          0 :           ul[volfracIdx(nmat, k)], k ) );
     160                 :            : 
     161                 :            :     // Mach number
     162                 :          0 :     auto Ma = vn / a;
     163                 :            : 
     164 [ -  - ][ -  - ]:          0 :     if(Ma >= 0 && Ma < 1) {         // Subsonic outflow
     165         [ -  - ]:          0 :       for (std::size_t k=0; k<nmat; ++k) {
     166         [ -  - ]:          0 :         auto gk = getDeformGrad(nmat, k, ul);
     167                 :          0 :         ur[energyIdx(nmat, k)] = ul[volfracIdx(nmat, k)] *
     168                 :          0 :         mat_blk[k].compute< EOS::totalenergy >(
     169         [ -  - ]:          0 :           ur[densityIdx(nmat, k)]/ul[volfracIdx(nmat, k)], v1l, v2l, v3l, fp,
     170                 :            :           gk );
     171                 :            :       }
     172                 :            : 
     173                 :            :       // Internal cell primitive quantities using the separately reconstructed
     174                 :            :       // primitive quantities. This is used to get ghost state for primitive
     175                 :            :       // quantities
     176                 :            : 
     177                 :            :       // material pressures
     178         [ -  - ]:          0 :       for (std::size_t k=0; k<nmat; ++k)
     179                 :          0 :         ur[ncomp+pressureIdx(nmat, k)] = ul[volfracIdx(nmat, k)] * fp;
     180                 :            :     }
     181                 :            : 
     182 [ -  - ][ -  - ]:          0 :     Assert( ur.size() == ncomp+nmat+3+nsld*6, "Incorrect size for appended "
         [ -  - ][ -  - ]
     183                 :            :             "boundary state vector" );
     184                 :            : 
     185         [ -  - ]:          0 :     return {{ std::move(ul), std::move(ur) }};
     186                 :            :   }
     187                 :            : 
     188                 :            :   //! \brief Boundary state function providing the left and right state of a
     189                 :            :   //!   face at extrapolation boundaries
     190                 :            :   //! \param[in] ul Left (domain-internal) state
     191                 :            :   //! \return Left and right states for all scalar components in this PDE
     192                 :            :   //!   system
     193                 :            :   //! \note The function signature must follow tk::StateFn. For multimat, the
     194                 :            :   //!   left or right state is the vector of conserved quantities, followed by
     195                 :            :   //!   the vector of primitive quantities appended to it.
     196                 :            :   static tk::StateFn::result_type
     197                 :     108016 :   extrapolate( ncomp_t,
     198                 :            :                const std::vector< EOS >&,
     199                 :            :                const std::vector< tk::real >& ul,
     200                 :            :                tk::real, tk::real, tk::real, tk::real,
     201                 :            :                const std::array< tk::real, 3 >& )
     202                 :            :   {
     203                 :     108016 :     return {{ ul, ul }};
     204                 :            :   }
     205                 :            : 
     206                 :            : } // inciter::
     207                 :            : 
     208                 :            : #endif // BCFunctions_h

Generated by: LCOV version 1.14