Quinoa all test code coverage report
Current view: top level - PDE/EoS - GodunovRomenski.cpp (source / functions) Hit Total Coverage
Commit: -128-NOTFOUND Lines: 0 93 0.0 %
Date: 2025-04-16 12:27:14 Functions: 0 13 0.0 %
Legend: Lines: hit not hit | Branches: + taken - not taken # not executed Branches: 0 110 0.0 %

           Branch data     Line data    Source code
       1                 :            : // *****************************************************************************
       2                 :            : /*!
       3                 :            :   \file      src/PDE/EoS/GodunovRomenski.cpp
       4                 :            :   \copyright 2012-2015 J. Bakosi,
       5                 :            :              2016-2018 Los Alamos National Security, LLC.,
       6                 :            :              2019-2021 Triad National Security, LLC.
       7                 :            :              All rights reserved. See the LICENSE file for details.
       8                 :            :   \brief     Godunov-Romenski equation of state for solids
       9                 :            :   \details   This file defines functions for the Godunov-Romenski equation of
      10                 :            :              state for solids and a hydro EoS for aluminum. These functions were
      11                 :            :              taken from Example 1 of Barton, Philip T. "An interface-capturing
      12                 :            :              Godunov method for the simulation of compressible solid-fluid
      13                 :            :              problems." Journal of Computational Physics 390 (2019): 25-50.
      14                 :            : */
      15                 :            : // *****************************************************************************
      16                 :            : 
      17                 :            : #include <cmath>
      18                 :            : #include <iostream>
      19                 :            : #include "Vector.hpp"
      20                 :            : #include "EoS/GodunovRomenski.hpp"
      21                 :            : #include "EoS/GetMatProp.hpp"
      22                 :            : 
      23                 :            : // // Lapacke forward declarations
      24                 :            : // extern "C" {
      25                 :            : 
      26                 :            : // using lapack_int = long;
      27                 :            : 
      28                 :            : // #define LAPACK_ROW_MAJOR 101
      29                 :            : 
      30                 :            : // lapack_int LAPACKE_dgeev(int, char, char, lapack_int, double*, lapack_int,
      31                 :            : //   double*, double*, double*, lapack_int, double*, lapack_int );
      32                 :            : 
      33                 :            : // }
      34                 :            : 
      35                 :            : using inciter::GodunovRomenski;
      36                 :            : 
      37                 :          0 : GodunovRomenski::GodunovRomenski(
      38                 :            :   tk::real gamma,
      39                 :            :   tk::real mu,
      40                 :            :   tk::real rho0,
      41                 :            :   tk::real alpha,
      42                 :          0 :   tk::real K0 ) :
      43                 :            :   m_gamma(gamma),
      44                 :            :   m_mu(mu),
      45                 :            :   m_rho0(rho0),
      46                 :            :   m_alpha(alpha),
      47                 :          0 :   m_K0(K0)
      48                 :            : // *************************************************************************
      49                 :            : //  Constructor
      50                 :            : //! \param[in] gamma Ratio of specific heats
      51                 :            : //! \param[in] mu Constant shear modulus
      52                 :            : //! \param[in] rho0 Unstressed density of material
      53                 :            : //! \param[in] alpha Alpha parameter
      54                 :            : //! \param[in] K0 K0 parameter
      55                 :            : // *************************************************************************
      56                 :          0 : { }
      57                 :            : 
      58                 :            : tk::real
      59                 :          0 : GodunovRomenski::density(
      60                 :            :   tk::real pr,
      61                 :            :   tk::real ) const
      62                 :            : // *************************************************************************
      63                 :            : //! \brief Calculate density from the material pressure and temperature
      64                 :            : //!   using the GodunovRomenski equation of state
      65                 :            : //! \param[in] pr Material pressure
      66                 :            : //! \return Material density calculated using the cold compression pressure
      67                 :            : // *************************************************************************
      68                 :            : {
      69                 :            :   // Quick Newton
      70                 :          0 :   tk::real rho = m_rho0;
      71                 :          0 :   std::size_t maxiter = 50;
      72                 :          0 :   tk::real tol = 1.0e-04;
      73                 :          0 :   tk::real err = tol + 1;
      74         [ -  - ]:          0 :   for (std::size_t iter=0; iter<maxiter; ++iter)
      75                 :            :   {
      76                 :          0 :     tk::real p = pressure_coldcompr(rho) - pr;
      77                 :          0 :     auto dpdrho = DpccDrho(rho);
      78                 :          0 :     auto delta = p/dpdrho;
      79                 :          0 :     rho -= delta;
      80                 :          0 :     err = std::sqrt(std::pow(p,2.0));
      81         [ -  - ]:          0 :     if (err < tol) break;
      82                 :            :   }
      83                 :          0 :   return rho;
      84                 :            : }
      85                 :            : 
      86                 :            : tk::real
      87                 :          0 : GodunovRomenski::pressure(
      88                 :            :   tk::real arho,
      89                 :            :   tk::real u,
      90                 :            :   tk::real v,
      91                 :            :   tk::real w,
      92                 :            :   tk::real arhoE,
      93                 :            :   tk::real alpha,
      94                 :            :   std::size_t imat,
      95                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& defgrad ) const
      96                 :            : // *************************************************************************
      97                 :            : //! \brief Calculate pressure from the material density, momentum, total energy
      98                 :            : //!   and the inverse deformation gradient tensor using the GodunovRomenski
      99                 :            : //!   equation of state
     100                 :            : //! \param[in] arho Material partial density (alpha_k * rho_k)
     101                 :            : //! \param[in] u X-velocity
     102                 :            : //! \param[in] v Y-velocity
     103                 :            : //! \param[in] w Z-velocity
     104                 :            : //! \param[in] arhoE Material total energy (alpha_k * rho_k * E_k)
     105                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     106                 :            : //!   the single-material system, this argument can be left unspecified by
     107                 :            : //!   the calling code
     108                 :            : //! \param[in] imat Material-id who's EoS is required. Default is 0, so that
     109                 :            : //!   for the single-material system, this argument can be left unspecified
     110                 :            : //!   by the calling code
     111                 :            : //! \param[in] defgrad Material inverse deformation gradient tensor
     112                 :            : //!   (g_k). Default is 0, so that for the single-material system,
     113                 :            : //!   this argument can be left unspecified by the calling code
     114                 :            : //! \return Material partial pressure (alpha_k * p_k) calculated using the
     115                 :            : //!   GodunovRomenski EoS
     116                 :            : //! \details The material pressure consists of the thermal component and the
     117                 :            : //!   cold-compression component. Pressure-effects due to shear are stored in
     118                 :            : //!   the elastic Cauchy stress tensor, not in the pressure.
     119                 :            : // *************************************************************************
     120                 :            : {
     121                 :            :   // obtain elastic contribution to energy
     122                 :            :   std::array< std::array< tk::real, 3 >, 3 > devH;
     123         [ -  - ]:          0 :   auto arhoEe = alpha*elasticEnergy(defgrad, devH);
     124                 :            :   // obtain cold compression contribution to energy
     125                 :          0 :   auto rho = arho/alpha;
     126         [ -  - ]:          0 :   auto arhoEc = alpha*coldcomprEnergy(rho);
     127                 :            :   // obtain thermal contribution to energy
     128                 :          0 :   auto arhoEt = arhoE - arhoEe - arhoEc - 0.5*arho*(u*u + v*v + w*w);
     129                 :            : 
     130                 :            :   // use Mie-Gruneisen form of Godunov-Romenski for pressure
     131         [ -  - ]:          0 :   auto partpressure = pressure_coldcompr(arho,alpha) + m_gamma*arhoEt;
     132                 :            : 
     133                 :            :   // check partial pressure divergence
     134         [ -  - ]:          0 :   if (!std::isfinite(partpressure)) {
     135 [ -  - ][ -  - ]:          0 :     std::cout << "Material-id:      " << imat << std::endl;
                 [ -  - ]
     136 [ -  - ][ -  - ]:          0 :     std::cout << "Volume-fraction:  " << alpha << std::endl;
                 [ -  - ]
     137 [ -  - ][ -  - ]:          0 :     std::cout << "Partial density:  " << arho << std::endl;
                 [ -  - ]
     138 [ -  - ][ -  - ]:          0 :     Throw("Material-" + std::to_string(imat) +
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     139                 :            :       " has nan/inf partial pressure: " + std::to_string(partpressure) +
     140                 :            :       ", material volume fraction: " + std::to_string(alpha));
     141                 :            :   }
     142                 :            : 
     143                 :          0 :   return partpressure;
     144                 :            : }
     145                 :            : 
     146                 :            : std::array< std::array< tk::real, 3 >, 3 >
     147                 :          0 : GodunovRomenski::CauchyStress(
     148                 :            :   tk::real,
     149                 :            :   tk::real,
     150                 :            :   tk::real,
     151                 :            :   tk::real,
     152                 :            :   tk::real,
     153                 :            :   tk::real alpha,
     154                 :            :   std::size_t /*imat*/,
     155                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& defgrad ) const
     156                 :            : // *************************************************************************
     157                 :            : //! \brief Calculate the elastic Cauchy stress tensor from the material density,
     158                 :            : //!   momentum, total energy, and inverse deformation gradient tensor using the
     159                 :            : //!   GodunovRomenski equation of state
     160                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     161                 :            : //!   the single-material system, this argument can be left unspecified by
     162                 :            : //!   the calling code
     163                 :            : // //! \param[in] imat Material-id who's EoS is required. Default is 0, so that
     164                 :            : // //!   for the single-material system, this argument can be left unspecified
     165                 :            : // //!   by the calling code
     166                 :            : //! \param[in] defgrad Material inverse deformation gradient tensor (g_k).
     167                 :            : //! \return Elastic part of material Cauchy stress tensor (alpha_k * sigma_k)
     168                 :            : //!   calculated using the GodunovRomenski EoS
     169                 :            : // *************************************************************************
     170                 :            : {
     171                 :          0 :   std::array< std::array< tk::real, 3 >, 3 > asig{{{0,0,0}, {0,0,0}, {0,0,0}}};
     172                 :            : 
     173                 :            :   // obtain elastic contribution to energy and subtract it from pmean
     174                 :            :   std::array< std::array< tk::real, 3 >, 3 > devH;
     175                 :            : 
     176                 :            :   // p_mean
     177         [ -  - ]:          0 :   auto p_se = -elasticEnergy(defgrad, devH);
     178                 :          0 :   auto pmean = alpha * p_se;
     179                 :            : 
     180                 :            :   // Pressure due to shear
     181                 :          0 :   asig[0][0] = -pmean;
     182                 :          0 :   asig[1][1] = -pmean;
     183                 :          0 :   asig[2][2] = -pmean;
     184                 :            : 
     185                 :            :   // Add deviatoric component of Cauchy stress tensor
     186         [ -  - ]:          0 :   for (std::size_t i=0; i<3; ++i) {
     187         [ -  - ]:          0 :     for (std::size_t j=0; j<3; ++j)
     188                 :          0 :       asig[i][j] += 2.0*m_mu*alpha*devH[i][j];
     189                 :            :   }
     190                 :            : 
     191                 :          0 :   return asig;
     192                 :            : }
     193                 :            : 
     194                 :            : tk::real
     195                 :          0 : GodunovRomenski::soundspeed(
     196                 :            :   tk::real arho,
     197                 :            :   tk::real apr,
     198                 :            :   tk::real alpha,
     199                 :            :   std::size_t imat,
     200                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& ) const
     201                 :            : // *************************************************************************
     202                 :            : //! Calculate speed of sound from the material density and material pressure
     203                 :            : //! \param[in] arho Material partial density (alpha_k * rho_k)
     204                 :            : //! \param[in] apr Material partial pressure (alpha_k * p_k)
     205                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     206                 :            : //!   the single-material system, this argument can be left unspecified by
     207                 :            : //!   the calling code
     208                 :            : //! \param[in] imat Material-id who's EoS is required. Default is 0, so that
     209                 :            : //!   for the single-material system, this argument can be left unspecified
     210                 :            : //!   by the calling code
     211                 :            : //!   (alpha * sigma_ij * n_j) projected onto the normal vector. Default is 0,
     212                 :            : //!   so that for the single-material system, this argument can be left
     213                 :            : //!   unspecified by the calling code
     214                 :            : // //! \param[in] defgrad Material inverse deformation gradient tensor
     215                 :            : // //!   (g_k) with the first dimension aligned to direction in which
     216                 :            : // //!   wave speeds are required. Default is 0, so that for the single-material
     217                 :            : // //!   system, this argument can be left unspecified by the calling code
     218                 :            : //! \return Material speed of sound using the GodunovRomenski EoS
     219                 :            : // *************************************************************************
     220                 :            : {
     221                 :          0 :   tk::real a = 0.0;
     222                 :            : 
     223                 :            :   // Hydro contribution
     224                 :          0 :   tk::real rho = arho/alpha;
     225                 :          0 :   auto p_cc = pressure_coldcompr(arho, alpha);
     226                 :          0 :   a += std::max( 1.0e-15, DpccDrho(rho) + (m_gamma+1.0) * (apr - p_cc)/arho );
     227                 :            :   // in the above expression, shear pressure is not included in apr in the first
     228                 :            :   // place, so should not subtract it
     229                 :            : 
     230                 :            :   // Shear contribution
     231                 :          0 :   a += (4.0/3.0) * alpha * m_mu / arho;
     232                 :            : 
     233                 :            :   // Compute square root
     234                 :          0 :   a = std::sqrt(a);
     235                 :            : 
     236                 :            :   // check sound speed divergence
     237         [ -  - ]:          0 :   if (!std::isfinite(a)) {
     238                 :          0 :     std::cout << "Material-id:      " << imat << std::endl;
     239                 :          0 :     std::cout << "Volume-fraction:  " << alpha << std::endl;
     240                 :          0 :     std::cout << "Partial density:  " << arho << std::endl;
     241                 :          0 :     std::cout << "Partial pressure: " << apr << std::endl;
     242 [ -  - ][ -  - ]:          0 :     Throw("Material-" + std::to_string(imat) + " has nan/inf sound speed: "
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     243                 :            :       + std::to_string(a) + ", material volume fraction: " +
     244                 :            :       std::to_string(alpha));
     245                 :            :   }
     246                 :            : 
     247                 :          0 :   return a;
     248                 :            : }
     249                 :            : 
     250                 :            : tk::real
     251                 :          0 : GodunovRomenski::shearspeed(
     252                 :            :   tk::real arho,
     253                 :            :   tk::real alpha,
     254                 :            :   std::size_t imat ) const
     255                 :            : // *************************************************************************
     256                 :            : //! Calculate speed of sound from the material density and material pressure
     257                 :            : //! \param[in] arho Material partial density (alpha_k * rho_k)
     258                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     259                 :            : //!   the single-material system, this argument can be left unspecified by
     260                 :            : //!   the calling code
     261                 :            : //! \param[in] imat Material-id who's EoS is required. Default is 0, so that
     262                 :            : //!   for the single-material system, this argument can be left unspecified
     263                 :            : //!   by the calling code
     264                 :            : //! \return Material shear-wave speed speed using the SmallShearSolid EoS
     265                 :            : // *************************************************************************
     266                 :            : {
     267                 :            :   // Approximate shear-wave speed. Ref. Barton, P. T. (2019).
     268                 :            :   // An interface-capturing Godunov method for the simulation of compressible
     269                 :            :   // solid-fluid problems. Journal of Computational Physics, 390, 25-50.
     270                 :          0 :   tk::real a = std::sqrt(alpha*m_mu/arho);
     271                 :            : 
     272                 :            :   // check shear-wave speed divergence
     273         [ -  - ]:          0 :   if (!std::isfinite(a)) {
     274                 :          0 :     std::cout << "Material-id:      " << imat << std::endl;
     275                 :          0 :     std::cout << "Volume-fraction:  " << alpha << std::endl;
     276                 :          0 :     std::cout << "Partial density:  " << arho << std::endl;
     277 [ -  - ][ -  - ]:          0 :     Throw("Material-" + std::to_string(imat) + " has nan/inf shear-wave speed: "
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
         [ -  - ][ -  - ]
     278                 :            :       + std::to_string(a) + ", material volume fraction: " +
     279                 :            :       std::to_string(alpha));
     280                 :            :   }
     281                 :            : 
     282                 :          0 :   return a;
     283                 :            : }
     284                 :            : 
     285                 :            : tk::real
     286                 :          0 : GodunovRomenski::totalenergy(
     287                 :            :   tk::real rho,
     288                 :            :   tk::real u,
     289                 :            :   tk::real v,
     290                 :            :   tk::real w,
     291                 :            :   tk::real pr,
     292                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& defgrad ) const
     293                 :            : // *************************************************************************
     294                 :            : //! \brief Calculate material specific total energy from the material
     295                 :            : //!   density, momentum and material pressure
     296                 :            : //! \param[in] rho Material density
     297                 :            : //! \param[in] u X-velocity
     298                 :            : //! \param[in] v Y-velocity
     299                 :            : //! \param[in] w Z-velocity
     300                 :            : //! \param[in] pr Material pressure
     301                 :            : //! \param[in] defgrad Material inverse deformation gradient tensor
     302                 :            : //!   g_k. Default is 0, so that for the single-material system,
     303                 :            : //!   this argument can be left unspecified by the calling code
     304                 :            : //! \return Material specific total energy using the GodunovRomenski EoS
     305                 :            : // *************************************************************************
     306                 :            : {
     307                 :            :   // obtain thermal and kinetic energy
     308         [ -  - ]:          0 :   auto pt = pr - pressure_coldcompr(rho);
     309                 :            :   // in the above expression, shear pressure is not included in pr in the first
     310                 :            :   // place, so should not subtract it
     311                 :          0 :   auto rhoEh = pt/m_gamma + 0.5*rho*(u*u + v*v + w*w);
     312                 :            :   // obtain elastic contribution to energy
     313                 :            :   std::array< std::array< tk::real, 3 >, 3 > devH;
     314         [ -  - ]:          0 :   auto rhoEe = elasticEnergy(defgrad, devH);
     315         [ -  - ]:          0 :   auto rhoEc = coldcomprEnergy(rho);
     316                 :            : 
     317                 :          0 :   return (rhoEh + rhoEe + rhoEc);
     318                 :            : }
     319                 :            : 
     320                 :            : tk::real
     321                 :          0 : GodunovRomenski::temperature(
     322                 :            :   tk::real,
     323                 :            :   tk::real,
     324                 :            :   tk::real,
     325                 :            :   tk::real,
     326                 :            :   tk::real,
     327                 :            :   tk::real,
     328                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& ) const
     329                 :            : // *************************************************************************
     330                 :            : //! \brief Calculate material temperature from the material density, and
     331                 :            : //!   material specific total energy
     332                 :            : // //! \param[in] arho Material partial density (alpha_k * rho_k)
     333                 :            : // //! \param[in] u X-velocity
     334                 :            : // //! \param[in] v Y-velocity
     335                 :            : // //! \param[in] w Z-velocity
     336                 :            : // //! \param[in] arhoE Material total energy (alpha_k * rho_k * E_k)
     337                 :            : // //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     338                 :            : // //!   the single-material system, this argument can be left unspecified by
     339                 :            : // //!   the calling code
     340                 :            : // //! \param[in] defgrad Material inverse deformation gradient tensor
     341                 :            : // //!   (g_k). Default is 0, so that for the single-material system,
     342                 :            : // //!   this argument can be left unspecified by the calling code
     343                 :            : //! \return Material temperature using the GodunovRomenski EoS
     344                 :            : // *************************************************************************
     345                 :            : {
     346                 :            :   // Temperature as a function of energy is not known.
     347                 :            :   // So we just set a value.
     348                 :          0 :   tk::real t = 300.0;
     349                 :            : 
     350                 :          0 :   return t;
     351                 :            : }
     352                 :            : 
     353                 :            : tk::real
     354                 :          0 : GodunovRomenski::min_eff_pressure(
     355                 :            :   tk::real min,
     356                 :            :   tk::real arho,
     357                 :            :   tk::real alpha ) const
     358                 :            : // *************************************************************************
     359                 :            : //! Compute the minimum allowed pressure
     360                 :            : //! \param[in] min Numerical threshold above which pressure needs to be limited
     361                 :            : //! \param[in] arho Material partial density (alpha_k * rho_k)
     362                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0, so that for
     363                 :            : //! \return Minimum pressure allowed by physical constraints
     364                 :            : // *************************************************************************
     365                 :            : {
     366                 :            :   // minimum pressure is constrained by zero soundspeed.
     367                 :          0 :   auto rho = arho/alpha;
     368                 :            :   return min
     369                 :          0 :     - rho/(m_gamma+1.0) * DpccDrho(rho)
     370                 :          0 :     + pressure_coldcompr(arho, alpha)/alpha;
     371                 :            : }
     372                 :            : 
     373                 :            : tk::real
     374                 :          0 : GodunovRomenski::coldcomprEnergy( tk::real rho ) const
     375                 :            : // *************************************************************************
     376                 :            : //! \brief Calculate cold-compression contribution to material energy from the
     377                 :            : //!   material density
     378                 :            : //! \param[in] rho Material density
     379                 :            : //! \return Material cold compression energy using the GodunovRomenski EoS
     380                 :            : // *************************************************************************
     381                 :            : {
     382                 :          0 :   auto rrho0a = std::pow(rho/m_rho0, m_alpha);
     383                 :          0 :   return ( rho * m_K0/(2.0*m_rho0*m_alpha*m_alpha) * (rrho0a-1.0)*(rrho0a-1.0) );
     384                 :            : }
     385                 :            : 
     386                 :            : tk::real
     387                 :          0 : GodunovRomenski::pressure_coldcompr(
     388                 :            :   tk::real arho,
     389                 :            :   tk::real alpha ) const
     390                 :            : // *************************************************************************
     391                 :            : //! \brief Calculate cold-compression contribution to material pressure from the
     392                 :            : //!   material density
     393                 :            : //! \param[in] arho Material partial density (alpha_k * rho_k)
     394                 :            : //! \param[in] alpha Material volume fraction. Default is 1.0.
     395                 :            : //! \return Material cold compression pressure using the GodunovRomenski EoS
     396                 :            : // *************************************************************************
     397                 :            : {
     398                 :          0 :   auto rho = arho/alpha;
     399                 :          0 :   auto rrho0a = std::pow(rho/m_rho0, m_alpha);
     400                 :          0 :   return alpha * (m_K0/m_alpha * (rrho0a*rho/m_rho0) * (rrho0a-1.0));
     401                 :            : }
     402                 :            : 
     403                 :            : tk::real
     404                 :          0 : GodunovRomenski::elasticEnergy(
     405                 :            :   const std::array< std::array< tk::real, 3 >, 3 >& defgrad,
     406                 :            :   std::array< std::array< tk::real, 3 >, 3 >& devH ) const
     407                 :            : // *************************************************************************
     408                 :            : //! \brief Calculate elastic contribution to material energy from the material
     409                 :            : //!   density, and deformation gradient tensor
     410                 :            : //! \param[in] defgrad Material inverse deformation gradient tensor
     411                 :            : //! \param[in/out] devH Deviatoric part of the Hensky tensor
     412                 :            : //! \return Material elastic energy using the GodunovRomenski EoS
     413                 :            : //! \details This function returns the material elastic energy, and also stores
     414                 :            : //!   the elastic shear distortion for further use
     415                 :            : // *************************************************************************
     416                 :            : {
     417                 :            :   // Compute deviatoric part of Hencky tensor
     418                 :          0 :   devH = tk::getDevHencky(defgrad);
     419                 :            : 
     420                 :            :   // Compute elastic energy
     421                 :          0 :   tk::real rhoEe = 0.0;
     422         [ -  - ]:          0 :   for (std::size_t i=0; i<3; ++i)
     423         [ -  - ]:          0 :     for (std::size_t j=0; j<3; ++j)
     424                 :          0 :       rhoEe += m_mu*devH[i][j]*devH[i][j];
     425                 :            : 
     426                 :          0 :   return rhoEe;
     427                 :            : }
     428                 :            : 
     429                 :            : tk::real
     430                 :          0 : GodunovRomenski::DpccDrho( tk::real rho ) const
     431                 :            : // *************************************************************************
     432                 :            : //! Calculate the derivative of the cold compression pressure wrt. density
     433                 :            : //! \param[in] rho Material partial density (alpha_k * rho_k)
     434                 :            : //! \return Derivative of the cold compression pressure wrt. density
     435                 :            : // *************************************************************************
     436                 :            : {
     437                 :          0 :   auto rrho0a = std::pow(rho/m_rho0, m_alpha);
     438                 :          0 :   return m_K0/(m_rho0*m_alpha) *
     439                 :          0 :     ((2.0*m_alpha+1.0)*(rrho0a*rrho0a) - (m_alpha+1.0)*rrho0a);
     440                 :            : }

Generated by: LCOV version 1.14