Branch data Line data Source code
1 : : // *****************************************************************************
2 : : /*!
3 : : \file src/Control/Inciter/InputDeck/InputDeck.hpp
4 : : \copyright 2012-2015 J. Bakosi,
5 : : 2016-2018 Los Alamos National Security, LLC.,
6 : : 2019-2021 Triad National Security, LLC.
7 : : All rights reserved. See the LICENSE file for details.
8 : : \brief Inciter's new input deck definition
9 : : \details This file defines the heterogeneous struct that is used for storing
10 : : the data from user input during the control file parsing of the
11 : : computational shock hydrodynamics tool, Inciter.
12 : : */
13 : : // *****************************************************************************
14 : : #ifndef InputDeck_h
15 : : #define InputDeck_h
16 : :
17 : : #include <getopt.h>
18 : : #include "Types.hpp"
19 : : #include "TaggedTuple.hpp"
20 : : #include "Inciter/CmdLine/CmdLine.hpp"
21 : : #include "Transfer.hpp"
22 : : #include "Inciter/OutVar.hpp"
23 : : #include "Inciter/Options/PDE.hpp"
24 : : #include "Inciter/Options/Problem.hpp"
25 : : #include "Inciter/Options/Scheme.hpp"
26 : : #include "Inciter/Options/Limiter.hpp"
27 : : #include "Inciter/Options/Flux.hpp"
28 : : #include "Inciter/Options/Initiate.hpp"
29 : : #include "Inciter/Options/AMRInitial.hpp"
30 : : #include "Inciter/Options/AMRError.hpp"
31 : : #include "Inciter/Options/PrefIndicator.hpp"
32 : : #include "Inciter/Options/MeshVelocity.hpp"
33 : : #include "Inciter/Options/MeshVelocitySmoother.hpp"
34 : : #include "Inciter/Options/Material.hpp"
35 : : #include "Options/PartitioningAlgorithm.hpp"
36 : : #include "Options/TxtFloatFormat.hpp"
37 : : #include "Options/FieldFile.hpp"
38 : : #include "Options/Error.hpp"
39 : : #include "Options/UserTable.hpp"
40 : :
41 : : namespace inciter {
42 : :
43 : : namespace ctr {
44 : :
45 : : using ncomp_t = std::size_t;
46 : :
47 : : using bclist = tk::TaggedTuple< brigand::list<
48 : : tag::dirichlet, std::vector< std::size_t >,
49 : : tag::symmetry, std::vector< std::size_t >,
50 : : tag::outlet, std::vector< std::size_t >,
51 : : tag::farfield, std::vector< std::size_t >,
52 : : tag::extrapolate, std::vector< std::size_t >,
53 : : tag::noslipwall, std::vector< std::size_t >,
54 : : tag::slipwall, std::vector< std::size_t >
55 : : > >;
56 : :
57 : : // Transport
58 : : using transportList = tk::TaggedTuple< brigand::list<
59 : : tag::physics, PhysicsType,
60 : : tag::ncomp, std::size_t,
61 : : tag::intsharp, int,
62 : : tag::intsharp_param, tk::real,
63 : : tag::problem, ProblemType,
64 : : tag::diffusivity, std::vector< tk::real >,
65 : : tag::lambda, std::vector< tk::real >,
66 : : tag::u0, std::vector< tk::real >
67 : : > >;
68 : :
69 : : // CompFlow
70 : : using compflowList = tk::TaggedTuple< brigand::list<
71 : : tag::physics, PhysicsType,
72 : : tag::problem, ProblemType,
73 : : tag::alpha, tk::real,
74 : : tag::beta, tk::real,
75 : : tag::betax, tk::real,
76 : : tag::betay, tk::real,
77 : : tag::betaz, tk::real,
78 : : tag::r0, tk::real,
79 : : tag::p0, tk::real,
80 : : tag::ce, tk::real,
81 : : tag::kappa, tk::real
82 : : > >;
83 : :
84 : : // MultiMat
85 : : using multimatList = tk::TaggedTuple< brigand::list<
86 : : tag::physics, PhysicsType,
87 : : tag::nmat, std::size_t,
88 : : tag::min_volumefrac, tk::real,
89 : : tag::prelax, uint64_t,
90 : : tag::prelax_timescale, tk::real,
91 : : tag::intsharp, int,
92 : : tag::intsharp_param, tk::real,
93 : : tag::rho0constraint, uint64_t,
94 : : tag::dt_sos_massavg, int,
95 : : tag::problem, ProblemType,
96 : : tag::viscous, bool
97 : : > >;
98 : :
99 : : // MultiSpecies
100 : : using multispeciesList = tk::TaggedTuple< brigand::list<
101 : : tag::physics, PhysicsType,
102 : : tag::nspec, std::size_t,
103 : : tag::problem, ProblemType,
104 : : tag::viscous, bool
105 : : > >;
106 : :
107 : : // Material/EOS object
108 : : using materialList = tk::TaggedTuple< brigand::list<
109 : : tag::eos, MaterialType,
110 : : tag::id, std::vector< uint64_t >,
111 : : tag::gamma, std::vector< tk::real >,
112 : : tag::pstiff, std::vector< tk::real >,
113 : : tag::w_gru, std::vector< tk::real >,
114 : : tag::A_jwl, std::vector< tk::real >,
115 : : tag::B_jwl, std::vector< tk::real >,
116 : : tag::C_jwl, std::vector< tk::real >,
117 : : tag::R1_jwl, std::vector< tk::real >,
118 : : tag::R2_jwl, std::vector< tk::real >,
119 : : tag::rho0_jwl, std::vector< tk::real >,
120 : : tag::de_jwl, std::vector< tk::real >,
121 : : tag::rhor_jwl, std::vector< tk::real >,
122 : : tag::Tr_jwl, std::vector< tk::real >,
123 : : tag::Pr_jwl, std::vector< tk::real >,
124 : : tag::mu, std::vector< tk::real >,
125 : : tag::yield_stress, std::vector< tk::real >,
126 : : tag::alpha, std::vector< tk::real >,
127 : : tag::K0, std::vector< tk::real >,
128 : : tag::cv, std::vector< tk::real >,
129 : : tag::k, std::vector< tk::real >,
130 : : tag::plasticity_reltime, std::vector< tk::real >
131 : : > >;
132 : :
133 : : // Species/EOS object
134 : : using speciesList = tk::TaggedTuple< brigand::list<
135 : : tag::id, std::vector< uint64_t >,
136 : : tag::gamma, std::vector< tk::real >,
137 : : tag::R, std::vector< tk::real >,
138 : : tag::cp_coeff, std::vector< std::vector< std::vector< tk::real > > >,
139 : : tag::t_range, std::vector< std::vector< tk::real > >,
140 : : tag::dH_ref, std::vector< tk::real >
141 : : > >;
142 : :
143 : : // Boundary conditions block
144 : : using bcList = tk::TaggedTuple< brigand::list<
145 : : tag::mesh, std::vector< std::size_t >,
146 : : tag::dirichlet, std::vector< std::size_t >,
147 : : tag::symmetry, std::vector< std::size_t >,
148 : : tag::outlet, std::vector< std::size_t >,
149 : : tag::farfield, std::vector< std::size_t >,
150 : : tag::extrapolate, std::vector< std::size_t >,
151 : : tag::noslipwall, std::vector< std::size_t >,
152 : : tag::slipwall, std::vector< std::size_t >,
153 : : tag::velocity, std::vector< tk::real >,
154 : : tag::pressure, tk::real,
155 : : tag::density, tk::real,
156 : : tag::temperature, tk::real,
157 : : tag::mass_fractions, std::vector< tk::real >,
158 : : tag::materialid, std::size_t,
159 : : tag::inlet, std::vector<
160 : : tk::TaggedTuple< brigand::list<
161 : : tag::sideset, std::vector< uint64_t >,
162 : : tag::velocity, std::vector< tk::real >,
163 : : tag::pressure, tk::real,
164 : : tag::temperature, tk::real,
165 : : tag::materialid, std::size_t
166 : : > >
167 : : >,
168 : : tag::timedep, std::vector<
169 : : tk::TaggedTuple< brigand::list<
170 : : tag::sideset, std::vector< uint64_t >,
171 : : tag::fn, std::vector< tk::real >
172 : : > >
173 : : >,
174 : : tag::back_pressure, tk::TaggedTuple< brigand::list<
175 : : tag::sideset, std::vector< std::size_t >,
176 : : tag::pressure, tk::real
177 : : > >
178 : : > >;
179 : :
180 : : // IC box
181 : : using boxList = tk::TaggedTuple< brigand::list<
182 : : tag::materialid, std::size_t,
183 : : tag::volume, tk::real,
184 : : tag::mass, tk::real,
185 : : tag::density, tk::real,
186 : : tag::velocity, std::vector< tk::real >,
187 : : tag::pressure, tk::real,
188 : : tag::energy, tk::real,
189 : : tag::energy_content, tk::real,
190 : : tag::temperature, tk::real,
191 : : tag::mass_fractions, std::vector< tk::real >,
192 : : tag::xmin, tk::real,
193 : : tag::xmax, tk::real,
194 : : tag::ymin, tk::real,
195 : : tag::ymax, tk::real,
196 : : tag::zmin, tk::real,
197 : : tag::zmax, tk::real,
198 : : tag::orientation, std::vector< tk::real >,
199 : : tag::initiate, inciter::ctr::InitiateType,
200 : : tag::point, std::vector< tk::real >,
201 : : tag::init_time, tk::real,
202 : : tag::front_width, tk::real,
203 : : tag::front_speed, tk::real
204 : : > >;
205 : :
206 : : // IC meshblock
207 : : using meshblockList = tk::TaggedTuple< brigand::list<
208 : : tag::blockid, std::uint64_t,
209 : : tag::materialid, std::size_t,
210 : : tag::volume, tk::real,
211 : : tag::mass, tk::real,
212 : : tag::density, tk::real,
213 : : tag::velocity, std::vector< tk::real >,
214 : : tag::pressure, tk::real,
215 : : tag::energy, tk::real,
216 : : tag::energy_content, tk::real,
217 : : tag::temperature, tk::real,
218 : : tag::mass_fractions, std::vector< tk::real >,
219 : : tag::initiate, inciter::ctr::InitiateType,
220 : : tag::point, std::vector< tk::real >,
221 : : tag::init_time, tk::real,
222 : : tag::front_width, tk::real,
223 : : tag::front_speed, tk::real
224 : : > >;
225 : :
226 : : // Initial conditions (ic) block
227 : : using icList = tk::TaggedTuple< brigand::list<
228 : : tag::materialid, std::size_t,
229 : : tag::pressure, tk::real,
230 : : tag::temperature, tk::real,
231 : : tag::mass_fractions, std::vector< tk::real >,
232 : : tag::density, tk::real,
233 : : tag::energy, tk::real,
234 : : tag::velocity, std::vector< tk::real >,
235 : : tag::box, std::vector< boxList >,
236 : : tag::meshblock, std::vector< meshblockList >
237 : : > >;
238 : :
239 : : // Overset mesh block
240 : : using meshList = tk::TaggedTuple< brigand::list<
241 : : tag::filename, std::string,
242 : : tag::location, std::vector< tk::real >,
243 : : tag::orientation, std::vector< tk::real >,
244 : : tag::mass, tk::real,
245 : : tag::moment_of_inertia, tk::real,
246 : : tag::center_of_mass, std::vector< tk::real >
247 : : > >;
248 : :
249 : : // Field output block
250 : : using fieldOutputList = tk::TaggedTuple< brigand::list<
251 : : tag::interval, uint32_t,
252 : : tag::time_interval, tk::real,
253 : : tag::time_range, std::vector< tk::real >,
254 : : tag::refined, bool,
255 : : tag::filetype, tk::ctr::FieldFileType,
256 : : tag::sideset, std::vector< uint64_t >,
257 : : tag::outvar, std::vector< OutVar >,
258 : : tag::elemvar, std::vector< std::string >, // only for error checking
259 : : tag::nodevar, std::vector< std::string > // only for error checking
260 : : > >;
261 : :
262 : : // Diagnostics block
263 : : using diagnosticsList = tk::TaggedTuple< brigand::list<
264 : : tag::interval, uint32_t,
265 : : tag::error, tk::ctr::ErrorType,
266 : : tag::format, tk::ctr::TxtFloatFormatType,
267 : : tag::precision, std::streamsize
268 : : > >;
269 : :
270 : : // History output block
271 : : using historyOutputList = tk::TaggedTuple< brigand::list<
272 : : tag::interval, uint32_t,
273 : : tag::time_interval, tk::real,
274 : : tag::time_range, std::vector< tk::real >,
275 : : tag::format, tk::ctr::TxtFloatFormatType,
276 : : tag::precision, std::streamsize,
277 : : tag::point, std::vector<
278 : : tk::TaggedTuple< brigand::list<
279 : : tag::id, std::string,
280 : : tag::coord, std::vector< tk::real >
281 : : > >
282 : : >
283 : : > >;
284 : :
285 : : using ConfigMembers = brigand::list<
286 : :
287 : : tag::title, std::string,
288 : :
289 : : // Command line parameters
290 : : tag::cmd, CmdLine,
291 : :
292 : : // time stepping options
293 : : tag::nstep, uint64_t,
294 : : tag::term, tk::real,
295 : : tag::t0, tk::real,
296 : : tag::dt, tk::real,
297 : : tag::cfl, tk::real,
298 : : tag::cfl_ramping, bool,
299 : : tag::cfl_ramping_steps,uint32_t,
300 : : tag::ttyi, uint32_t,
301 : : tag::imex_runge_kutta, uint32_t,
302 : : tag::imex_maxiter, uint32_t,
303 : : tag::imex_reltol, tk::real,
304 : : tag::imex_abstol, tk::real,
305 : :
306 : : // steady-state solver options
307 : : tag::implicit_timestepping, bool,
308 : : tag::steady_state, bool,
309 : : tag::residual, tk::real,
310 : : tag::rescomp, uint32_t,
311 : :
312 : : // mesh partitioning and reordering/sorting choices
313 : : tag::partitioning, tk::ctr::PartitioningAlgorithmType,
314 : : tag::pelocal_reorder, bool,
315 : : tag::operator_reorder, bool,
316 : :
317 : : // discretization scheme choices
318 : : tag::scheme, SchemeType,
319 : : tag::ndof, std::size_t,
320 : : tag::rdof, std::size_t,
321 : : tag::flux, FluxType,
322 : : tag::lowspeed_kp, tk::real,
323 : : tag::lowspeed_ku, tk::real,
324 : :
325 : : // limiter options
326 : : tag::limiter, LimiterType,
327 : : tag::cweight, tk::real,
328 : : tag::shock_detector_coeff, tk::real,
329 : : tag::accuracy_test, bool,
330 : : tag::limsol_projection, bool,
331 : :
332 : : // PDE options
333 : : tag::ncomp, std::size_t,
334 : : tag::pde, PDEType,
335 : : tag::transport, transportList,
336 : : tag::compflow, compflowList,
337 : : tag::multimat, multimatList,
338 : : tag::multispecies, multispeciesList,
339 : :
340 : : // Dependent variable name
341 : : tag::depvar, std::vector< char >,
342 : :
343 : : tag::sys, std::map< std::size_t, std::size_t >,
344 : :
345 : : tag::material, std::vector< materialList >,
346 : :
347 : : tag::species, std::vector< speciesList >,
348 : :
349 : : tag::matidxmap, tk::TaggedTuple< brigand::list<
350 : : tag::eosidx, std::vector< std::size_t >,
351 : : tag::matidx, std::vector< std::size_t >,
352 : : tag::solidx, std::vector< std::size_t >
353 : : > >,
354 : :
355 : : // Conditions
356 : : tag::bc, std::vector< bcList >,
357 : : tag::ic, icList,
358 : : tag::mesh, std::vector< meshList >,
359 : : tag::transfer, std::vector< Transfer >,
360 : :
361 : : // Rigid-body motion solver
362 : : tag::rigid_body_motion, tk::TaggedTuple< brigand::list<
363 : : tag::rigid_body_movt, bool,
364 : : tag::rigid_body_dof, std::size_t,
365 : : tag::symmetry_plane, std::size_t
366 : : > >,
367 : :
368 : : // ALE block
369 : : // ---------------------------------------------------------------------------
370 : : tag::ale, tk::TaggedTuple< brigand::list<
371 : : tag::ale, bool,
372 : : tag::smoother, MeshVelocitySmootherType,
373 : : tag::mesh_velocity, MeshVelocityType,
374 : : tag::mesh_motion, std::vector< std::size_t >,
375 : : tag::meshforce, std::vector< tk::real >,
376 : : tag::dvcfl, tk::real,
377 : : tag::vortmult, tk::real,
378 : : tag::maxit, std::size_t,
379 : : tag::tolerance, tk::real,
380 : : tag::dirichlet, std::vector< std::size_t >,
381 : : tag::symmetry, std::vector< std::size_t >,
382 : : tag::move, std::vector<
383 : : tk::TaggedTuple< brigand::list<
384 : : tag::sideset, std::vector< uint64_t >,
385 : : tag::fntype, tk::ctr::UserTableType,
386 : : tag::fn, std::vector< tk::real >
387 : : > >
388 : : >
389 : : > >,
390 : :
391 : : // p-refinement block
392 : : // ---------------------------------------------------------------------------
393 : : tag::pref, tk::TaggedTuple< brigand::list<
394 : : tag::pref, bool,
395 : : tag::indicator, PrefIndicatorType,
396 : : tag::ndofmax, std::size_t,
397 : : tag::tolref, tk::real
398 : : > >,
399 : :
400 : : // AMR block
401 : : // ---------------------------------------------------------------------------
402 : : tag::amr, tk::TaggedTuple< brigand::list<
403 : : tag::amr, bool,
404 : : tag::t0ref, bool,
405 : : tag::dtref, bool,
406 : : tag::dtref_uniform, bool,
407 : : tag::dtfreq, std::size_t,
408 : : tag::maxlevels, std::size_t,
409 : : tag::initial, std::vector< AMRInitialType >,
410 : : tag::edgelist, std::vector< std::size_t >,
411 : : tag::coords, tk::TaggedTuple< brigand::list<
412 : : tag::xminus, tk::real,
413 : : tag::xplus, tk::real,
414 : : tag::yminus, tk::real,
415 : : tag::yplus, tk::real,
416 : : tag::zminus, tk::real,
417 : : tag::zplus, tk::real
418 : : > >,
419 : : tag::error, AMRErrorType,
420 : : tag::refvar, std::vector< char >,
421 : : tag::tol_refine, tk::real,
422 : : tag::tol_derefine, tk::real
423 : : > >,
424 : :
425 : : // Output options
426 : : tag::field_output, fieldOutputList,
427 : : tag::diagnostics, diagnosticsList,
428 : : tag::history_output, historyOutputList
429 : : >;
430 : :
431 : : // Class storing the Config params
432 : : class InputDeck : public tk::TaggedTuple< ConfigMembers > {
433 : :
434 : : public:
435 : : //! Set of tags to ignore when printing this InputDeck
436 : : using ignore = CmdLine::ignore;
437 : :
438 : : //! \brief Constructor: set defaults
439 : : //! \param[in] cl Previously parsed and store command line
440 : : //! \details Anything not set here is initialized by the compiler using the
441 : : //! default constructor for the corresponding type.
442 : 1219 : explicit InputDeck( const CmdLine& cl = {} ) {
443 : : // Set previously parsed command line
444 [ + - ]: 1219 : get< tag::cmd >() = cl;
445 : : // Default time stepping params
446 : 1219 : get< tag::dt >() = 0.0;
447 : 1219 : get< tag::cfl >() = 0.0;
448 : 1219 : get< tag::cfl_ramping >() = false;
449 : : // Default AMR settings
450 : 1219 : auto rmax =
451 : : std::numeric_limits< tk::real >::max() / 100;
452 : 1219 : get< tag::amr, tag::coords, tag::xminus >() = rmax;
453 : 1219 : get< tag::amr, tag::coords, tag::xplus >() = -rmax;
454 : 1219 : get< tag::amr, tag::coords, tag::yminus >() = rmax;
455 : 1219 : get< tag::amr, tag::coords, tag::yplus >() = -rmax;
456 : 1219 : get< tag::amr, tag::coords, tag::zminus >() = rmax;
457 : 1219 : get< tag::amr, tag::coords, tag::zplus >() = -rmax;
458 : :
459 : : // -----------------------------------------------------------------------
460 : : /*
461 : : Keyword vector
462 : : The following code generates a vector of keywords, for the sole purpose
463 : : of documentation and user-help (accessible via the --helpctr and
464 : : --helpkw cmdline arguments. If entries for a keyword are not added to
465 : : this vector, help will not be output for it. The entries follow the
466 : : function signature of the tk::entry_t constructor (defined in
467 : : Base/Types.hpp).
468 : : */
469 : : // -----------------------------------------------------------------------
470 : 2438 : std::set< tk::entry_t > keywords;
471 : :
472 : : keywords.insert({"inciter",
473 : : "Start configuration block for inciter",
474 : : R"(This keyword is used to select inciter. Inciter, is a continuum-realm
475 : : shock hydrodynamics tool, solving a system of PDEs. The entire control
476 [ + - ][ + - ]: 1219 : file must be enclosed within the inciter block)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
477 : :
478 : : keywords.insert({"title", "Title", R"(The title may be specified in
479 [ + - ][ + - ]: 1219 : the input file. It is optional.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
480 : :
481 : : // -----------------------------------------------------------------------
482 : : // time stepping options
483 : : // -----------------------------------------------------------------------
484 : :
485 : : keywords.insert({"nstep", "Set number of time steps to take",
486 : : R"(This keyword is used to specify the number of time steps to take in a
487 : : simulation. The number of time steps are used in conjunction with the
488 : : maximmum time specified by keyword 'term': the simulation stops whichever
489 : : is reached first. Both 'nstep' and 'term' can be left unspecified, in
490 [ + - ][ + - ]: 1219 : which case their default values are used. See also 'term'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
491 : :
492 : : keywords.insert({"term", "Set maximum physical time to simulate",
493 : : R"(This keyword is used to specify the termination time in a simulation.
494 : : The termination time and number of time steps, specified by 'nstep', are
495 : : used in conjunction to determine when to stop a simulation: whichever is
496 : : reached first. Both 'nstep' and 'term' can be left unspecified, in which
497 [ + - ][ + - ]: 1219 : case their default values are used. See also 'nstep'.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
498 : :
499 : : keywords.insert({"t0", "Set starting non-dimensional time",
500 : : R"(This keyword is used to specify the starting time in a simulation.)",
501 [ + - ][ + - ]: 1219 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
502 : :
503 : : keywords.insert({"dt", "Select constant time step size",
504 : : R"(This keyword is used to specify the time step size that used as a
505 : : constant during simulation. Setting 'cfl' and 'dt' are mutually
506 [ + - ][ + - ]: 1219 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
507 : :
508 : : keywords.insert({"cfl",
509 : : "Set the Courant-Friedrichs-Lewy (CFL) coefficient",
510 : : R"(This keyword is used to specify the CFL coefficient for
511 : : variable-time-step-size simulations. Setting 'cfl' and 'dt' are mutually
512 [ + - ][ + - ]: 1219 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
513 : :
514 : : keywords.insert({"cfl_ramping",
515 : : "Determines whether a ramping coefficient is applied to the CFL coefficient.",
516 : : R"(This keyword is used to specify a boolean that determines
517 : : whether a ramping coefficient is applied to the CFL coefficient.
518 : : If true, the CFL would be scaled down by 1/'cfl_ramping_steps' at the
519 [ + - ][ + - ]: 1219 : first step, and linearly increased to the full CFL value.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
520 : :
521 : : keywords.insert({"cfl_ramping_steps",
522 : : "Specify the number of steps the CFL coefficient is ramped over.",
523 : : R"(This keyword is used to specify the number of steps over which the
524 : : the CFL coefficient ramping is active. Only used if 'cfl_ramping' is set
525 [ + - ][ + - ]: 1219 : to true. Default value is 100.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
526 : :
527 : : keywords.insert({"ttyi", "Set screen output interval",
528 : : R"(This keyword is used to specify the interval in time steps for screen
529 [ + - ][ + - ]: 1219 : output during a simulation.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
530 : :
531 : : keywords.insert({"implicit_timestepping",
532 : : "Toggle use of an implicit time-stepping scheme",
533 : : R"(This keywords is used to trigger implicit time integration BDF1
534 : : (backward Euler) for the DG/DGP1/DGP2/PDG spatial discretizations. This
535 : : will activate the implicit BDF1 scheme which replaces the explicit RK3
536 : : that is usually used. This requires PDE-specific implementation of the
537 : : Jacobian matrix. Jacobian implementation is complete only for
538 : : PDEType::MULTISPECIES, i.e. implicit_timestepping can only be used for
539 [ + - ][ + - ]: 1219 : multispecies currently.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
540 : :
541 : : keywords.insert({"imex_runge_kutta",
542 : : "Toggle use of IMplicit-EXplicit Runge-Kutta scheme",
543 : : R"(This keywords is used to turn IMEX integrator on/off for solid materials
544 : : in a multimat run. Plastic terms are integrated implicitly in time. This
545 : : flag will activate an Implicit-Explicit Runge-Kutta scheme to replace the
546 : : explicit one that is usually used. Scheme taken from Cavaglieri, D., &
547 : : Bewley, T. (2015). Low-storage implicit/explicit Runge–Kutta schemes for
548 : : the simulation of stiff high-dimensional ODE systems. Journal of
549 [ + - ][ + - ]: 1219 : Computational Physics, 286, 172-193.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
550 : :
551 : : keywords.insert({"imex_maxiter",
552 : : "Set maximum number of iterations for non-linear solver with IMEX-RK scheme",
553 : : R"(This keywords is used to specify the maximum number of iterations that
554 : : the non-linear solver uses to obtain the implicit unknowns within the
555 [ + - ][ + - ]: 1219 : Implicit-Explicit Runge-Kutta scheme.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
556 : :
557 : : keywords.insert({"imex_reltol",
558 : : "Set relative tolerance for non-linear solver with IMEX-RK scheme",
559 : : R"(This keywords is used to specify the relative tolerance that
560 : : the non-linear solver uses to obtain the implicit unknowns within the
561 [ + - ][ + - ]: 1219 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
562 : :
563 : : keywords.insert({"imex_abstol",
564 : : "Set absolute tolerance for non-linear solver with IMEX-RK scheme",
565 : : R"(This keywords is used to specify the absolute tolerance that
566 : : the non-linear solver uses to obtain the implicit unknowns within the
567 [ + - ][ + - ]: 1219 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
568 : :
569 : : // -----------------------------------------------------------------------
570 : : // steady-state solver options
571 : : // -----------------------------------------------------------------------
572 : :
573 : : keywords.insert({"steady_state", "March to steady state",
574 : : R"(This keyword is used indicate that local time stepping should be used
575 [ + - ][ + - ]: 1219 : to march towards a stationary solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
576 : :
577 : : keywords.insert({"residual",
578 : : "Set the convergence criterion for the residual to reach",
579 : : R"(This keyword is used to specify a convergence criterion for the local
580 : : time stepping marching to steady state, below which the simulation is
581 [ + - ][ + - ]: 1219 : considered converged.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
582 : :
583 : : keywords.insert({"rescomp",
584 : : "Equation system component index for convergence",
585 : : R"(This keyword is used to specify a single integer that is used to denote
586 : : the equation component index in the complete system of equations
587 : : configured, to use for the convergence criterion for local
588 [ + - ][ + - ]: 1219 : time stepping marching towards steady state.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
589 : :
590 : : // -----------------------------------------------------------------------
591 : : // mesh partitioning and reordering/sorting choices
592 : : // -----------------------------------------------------------------------
593 : :
594 : : keywords.insert({"partitioning",
595 : : "Select mesh partitioning algorithm",
596 : : R"(This keyword is used to select a mesh partitioning algorithm. See
597 : : Control/Options/PartitioningAlgorithm.hpp for valid options.)",
598 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
599 : :
600 : : keywords.insert({"rcb",
601 : : "Select recursive coordinate bisection mesh partitioner",
602 : : R"(This keyword is used to select the recursive coordinate bisection (RCB)
603 : : mesh partitioner. RCB is a geometry-based partitioner used to distribute
604 : : an input mesh among processing elements. See
605 [ + - ][ + - ]: 1219 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
606 : :
607 : : keywords.insert({"rib",
608 : : "Select recursive inertial bisection mesh partitioner",
609 : : R"(This keyword is used to select the recursive inertial bisection (RIB)
610 : : mesh partitioner. RIB is a geometry-based partitioner used to distribute
611 : : an input mesh among processing elements. See
612 [ + - ][ + - ]: 1219 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
613 : :
614 : : keywords.insert({"hsfc",
615 : : "Select Hilbert Space Filling Curve (HSFC) mesh partitioner",
616 : : R"(This keyword is used to select the Hilbert Space Filling Curve (HSFC)
617 : : mesh partitioner. HSFC is a geometry-based partitioner used to distribute
618 : : an input mesh among processing elements. See
619 [ + - ][ + - ]: 1219 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
620 : :
621 : : keywords.insert({"phg",
622 : : "Select parallel hypergraph mesh partitioner",
623 : : R"(This keyword is used to select the parallel hypergraph (PHG)
624 : : mesh partitioner. PHG is a graph-based partitioner used to distribute an
625 : : input mesh among processing elements. See
626 [ + - ][ + - ]: 1219 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
627 : :
628 : : keywords.insert({"mj",
629 : : "Select multi-jagged (MJ) mesh partitioner",
630 : : R"(This keyword is used to select the multi-jagged (MJ) mesh partitioner.
631 : : MJ is a geometry-based partitioner used to distribute an input mesh among
632 : : processing elements. See
633 [ + - ][ + - ]: 1219 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
634 : :
635 : : keywords.insert({"pelocal_reorder",
636 : : "PE-local reorder",
637 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
638 : : as "pelocal_reorder true" (or false) to do (or not do) a global
639 : : distributed mesh reordering across all PEs that yields an approximately
640 : : continuous mesh node ID order as mesh partitions are assigned to PEs after
641 [ + - ][ + - ]: 1219 : mesh partitioning. This reordering is optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
642 : :
643 : : keywords.insert({"operator_reorder",
644 : : "Operator-access reorder",
645 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
646 : : as "operator_reorder on" (or off) to do (or not do) a local mesh node
647 : : reordering based on the PDE operator access pattern. This reordering is
648 [ + - ][ + - ]: 1219 : optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
649 : :
650 : : // -----------------------------------------------------------------------
651 : : // discretization scheme choices
652 : : // -----------------------------------------------------------------------
653 : :
654 : : keywords.insert({"scheme", "Select discretization scheme",
655 : : R"(This keyword is used to select a spatial discretization scheme,
656 : : necessarily connected to the temporal discretization scheme. See
657 [ + - ][ + - ]: 1219 : Control/Inciter/Options/Scheme.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
658 : :
659 : : keywords.insert({"alecg",
660 : : "Select continuous Galerkin with ALE + Runge-Kutta",
661 : : R"(This keyword is used to select the continuous Galerkin finite element
662 : : scheme in the arbitrary Lagrangian-Eulerian (ALE) reference frame combined
663 : : with Runge-Kutta (RK) time stepping.
664 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
665 : :
666 : : keywords.insert({"oversetfe",
667 : : "Select continuous Galerkin finite element with overset meshes + "
668 : : "Runge-Kutta",
669 : : R"(This keyword is used to select the continuous Galerkin finite element
670 : : scheme with Runge-Kutta (RK) time stepping, combined with overset grids.
671 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
672 : :
673 : : keywords.insert({"dgp0",
674 : : "Select 1st-order discontinuous Galerkin discretization + Runge-Kutta",
675 : : R"(This keyword is used to select the first-order accurate discontinuous
676 : : Galerkin, DG(P0), spatial discretiztaion used in Inciter. As this is first
677 : : order accurate, it is intended for testing and debugging purposes only.
678 : : Selecting this spatial discretization also selects the Runge-Kutta scheme
679 : : for time discretization. See Control/Inciter/Options/Scheme.hpp for other
680 [ + - ][ + - ]: 1219 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
681 : :
682 : : keywords.insert({"p0p1",
683 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
684 : : R"(This keyword is used to select the second-order accurate finite volume,
685 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
686 : : least-squares procedure to reconstruct the second-order solution from the
687 : : first-order one. Selecting this spatial discretization also selects the
688 : : Runge-Kutta scheme for time discretization.
689 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
690 : :
691 : : keywords.insert({"dgp1",
692 : : "Select 2nd-order discontinuous Galerkin discretization + Runge-Kutta",
693 : : R"(This keyword is used to select the second-order accurate discontinuous
694 : : Galerkin, DG(P1), spatial discretiztaion used in Inciter. Selecting this
695 : : spatial discretization also selects the Runge-Kutta scheme for time
696 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
697 [ + - ][ + - ]: 1219 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
698 : :
699 : : keywords.insert({"dgp2",
700 : : "Select 3nd-order discontinuous Galerkin discretization + Runge-Kutta",
701 : : R"(This keyword is used to select the third-order accurate discontinuous
702 : : Galerkin, DG(P2), spatial discretiztaion used in Inciter. Selecting this
703 : : spatial discretization also selects the Runge-Kutta scheme for time
704 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
705 [ + - ][ + - ]: 1219 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
706 : :
707 : : keywords.insert({"pdg",
708 : : "Select p-adaptive discontinuous Galerkin discretization + Runge-Kutta",
709 : : R"(This keyword is used to select the polynomial adaptive discontinuous
710 : : Galerkin spatial discretizaion used in Inciter. Selecting this spatial
711 : : discretization also selects the Runge-Kutta scheme for time
712 : : discretization. See Control/Inciter/Options/Scheme.hpp for other valid
713 [ + - ][ + - ]: 1219 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
714 : :
715 : : keywords.insert({"fv",
716 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
717 : : R"(This keyword is used to select the second-order accurate finite volume,
718 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
719 : : least-squares procedure to reconstruct the second-order solution from the
720 : : first-order one. See Control/Inciter/Options/Scheme.hpp for other valid
721 [ + - ][ + - ]: 1219 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
722 : :
723 : : keywords.insert({"ndof", "Number of evolved solution DOFs",
724 [ + - ][ + - ]: 1219 : R"(The number of solution DOFs that are evolved.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
725 : :
726 : : keywords.insert({"rdof", "Total number of solution DOFs",
727 : : R"(The total number of solution DOFs, including the reconstructed and the
728 [ + - ][ + - ]: 1219 : evolved ones.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
729 : :
730 : : // -----------------------------------------------------------------------
731 : : // limiter options
732 : : // -----------------------------------------------------------------------
733 : :
734 : : keywords.insert({"limiter", "Select limiter function",
735 : : R"(This keyword is used to select a limiter function, used for
736 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
737 [ + - ][ + - ]: 1219 : Control/Inciter/Options/Limiter.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
738 : :
739 : : keywords.insert({"nolimiter", "No limiter used",
740 : : R"(This keyword is used for discontinuous Galerkin (DG) spatial
741 : : discretization without any limiter in inciter. See
742 [ + - ][ + - ]: 1219 : Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
743 : :
744 : : keywords.insert({"wenop1",
745 : : "Select the Weighted Essentially Non-Oscillatory (WENO) limiter for DGP1",
746 : : R"(This keyword is used to select the Weighted Essentially Non-Oscillatory
747 : : limiter used for discontinuous Galerkin (DG) P1 spatial discretization
748 : : used in inciter. See Control/Inciter/Options/Limiter.hpp for other valid
749 [ + - ][ + - ]: 1219 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
750 : :
751 : : keywords.insert({"cweight",
752 : : "Set value for central linear weight used by WENO, cweight",
753 : : R"(This keyword is used to set the central linear weight used for the
754 : : central stencil in the Weighted Essentially Non-Oscillatory (WENO) limiter
755 [ + - ][ + - ]: 1219 : for discontinuous Galerkin (DG) methods.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
756 : :
757 : : keywords.insert({"superbeep1",
758 : : "Select the Superbee limiter for DGP1",
759 : : R"(This keyword is used to select the Superbee limiter used for
760 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
761 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
762 : :
763 : : keywords.insert({"shock_detector_coeff",
764 : : "Configure the coefficient used in shock indicator",
765 : : R"(This keyword can be used to configure the coefficient used in the
766 [ + - ][ + - ]: 1219 : threshold calculation for the shock indicator.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
767 : :
768 : : keywords.insert({"vertexbasedp1",
769 : : "Select the vertex-based limiter for DGP1",
770 : : R"(This keyword is used to select the vertex-based limiter used for
771 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
772 : : Ref. Kuzmin, D. (2010). A vertex-based hierarchical slope limiter for
773 : : p-adaptive discontinuous Galerkin methods. Journal of computational and
774 : : applied mathematics, 233(12), 3077-3085.
775 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
776 : :
777 : : keywords.insert({"accuracy_test", "Toggle accuracy test setup",
778 : : R"(This keyword is used to specify if the current setup is for an
779 : : order-of-accuracy testing, used for discontinuous Galerkin (DG) spatial
780 : : discretization in inciter. This deactivates certain robustness corrections
781 : : which might impact order-of-accuracy. Only intended for simple test
782 [ + - ][ + - ]: 1219 : problems and not for real problems.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
783 : :
784 : : keywords.insert({"limsol_projection",
785 : : "Toggle limited solution projection",
786 : : R"(This keyword is used to specify limited solution projection.
787 : : This is used for discontinuous Galerkin (DG) spatial discretization in
788 : : inciter, for multi-material hydrodynamics. This uses a projection to
789 : : obtain bulk momentum and material energies from the limited primitive
790 : : quantities. This step is essential to obtain closure-law obeying limited
791 : : quantities. See Pandare et al. (2023). On the Design of Stable,
792 : : Consistent, and Conservative High-Order Methods for Multi-Material
793 [ + - ][ + - ]: 1219 : Hydrodynamics. J Comp Phys (490).)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
794 : :
795 : : // -----------------------------------------------------------------------
796 : : // flux options
797 : : // -----------------------------------------------------------------------
798 : :
799 : : keywords.insert({"flux", "Select flux function",
800 : : R"(This keyword is used to select a flux function, used for
801 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
802 [ + - ][ + - ]: 1219 : Control/Inciter/Options/Flux.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
803 : :
804 : : keywords.insert({"laxfriedrichs",
805 : : "Select Lax-Friedrichs flux function",
806 : : R"(This keyword is used to select the Lax-Friedrichs flux function used
807 : : for discontinuous Galerkin (DG) spatial discretization used in inciter.
808 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
809 : :
810 : : keywords.insert({"hllc",
811 : : "Select the Harten-Lax-van Leer-Contact (HLLC) flux function",
812 : : R"(This keyword is used to select the Harten-Lax-van Leer-Contact flux
813 : : function used for discontinuous Galerkin (DG) spatial discretization
814 : : used in inciter. See Control/Inciter/Options/Flux.hpp for other valid
815 [ + - ][ + - ]: 1219 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
816 : :
817 : : keywords.insert({"upwind", "Select the upwind flux function",
818 : : R"(This keyword is used to select the upwind flux
819 : : function used for discontinuous Galerkin (DG) spatial discretization
820 : : used in inciter. It is only usable for scalar transport.
821 [ + - ][ + - ]: 1219 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
822 : :
823 : : keywords.insert({"ausm",
824 : : "Select the Advection Upstream Splitting Method (AUSM) flux function",
825 : : R"(This keyword is used to select the AUSM flux
826 : : function used for discontinuous Galerkin (DG) spatial discretization
827 : : used in inciter. It is only set up for for multi-material hydro, and
828 [ + - ][ + - ]: 1219 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
829 : :
830 : : keywords.insert({"ldfss",
831 : : "Select the Low Diffusion Flux Splitting Scheme (LDFSS)",
832 : : R"(This keyword is used to select the LDFSS flux
833 : : function used for discontinuous Galerkin (DG) spatial discretization
834 : : used in inciter. It is only set up for for multi-material hydro, and
835 [ + - ][ + - ]: 1219 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
836 : :
837 : : keywords.insert({"lowspeed_kp",
838 : : "Select the low-speed coefficient K_p in the AUSM+up flux function",
839 : : R"(This keyword is used to select the low-speed coefficient K_p in the
840 : : AUSM+up flux function used for the DG or FV spatial discretization for
841 : : multi-material hydro, and not used for anything else. The default
842 : : value is 0, and recommended value for low speed flows (Mach < 0.1) is
843 [ + - ][ + - ]: 1219 : 1.)"});
[ + - ][ + - ]
[ + - ][ + - ]
844 : :
845 : : keywords.insert({"lowspeed_ku",
846 : : "Select the low-speed coefficient K_u in the AUSM+up flux function",
847 : : R"(This keyword is used to select the low-speed coefficient K_u in the
848 : : AUSM+up flux function used for the DG or FV spatial discretization for
849 : : multi-material hydro, and not used for anything else. The default
850 : : value is 1, and recommended value for low speed flows (Mach < 0.1) is
851 [ + - ][ + - ]: 1219 : 1.)"});
[ + - ][ + - ]
[ + - ][ + - ]
852 : :
853 : : keywords.insert({"hll",
854 : : "Select the Harten-Lax-vanLeer (HLL) flux function",
855 : : R"(This keyword is used to select the HLL flux
856 : : function used for discontinuous Galerkin (DG) spatial discretization
857 : : used in inciter. It is only set up for for multi-material hydro, and
858 [ + - ][ + - ]: 1219 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
859 : :
860 : : keywords.insert({"hlld",
861 : : "Select the Harten-Lax-vanLeer-Discontinuities (HLLD) flux function",
862 : : R"(This keyword is used to select the HLLD flux
863 : : function used for discontinuous Galerkin (DG) spatial discretization
864 : : used in inciter. It is only set up for for multi-material runs. This
865 : : flux is designed to handle normal and shear waves within solid
866 [ + - ][ + - ]: 1219 : materials)"});
[ + - ][ + - ]
[ + - ][ + - ]
867 : :
868 : : // -----------------------------------------------------------------------
869 : : // PDE keywords
870 : : // -----------------------------------------------------------------------
871 : :
872 : : keywords.insert({"problem",
873 : : "Specify problem configuration for partial differential equation solver",
874 : : R"(This keyword is used to specify the problem configuration for the
875 [ + - ][ + - ]: 1219 : partial differential equation solver.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
876 : :
877 : : keywords.insert({"transport",
878 : : "Start configuration block for an transport equation",
879 : : R"(This keyword is used to introduce a transport block, used to
880 : : specify the configuration for a transport equation type.)",
881 [ + - ][ + - ]: 1219 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
882 : :
883 : : keywords.insert({"ncomp",
884 : : "Set number of scalar components for a system of transport equations",
885 : : R"(This keyword is used to specify the number of scalar
886 [ + - ][ + - ]: 1219 : components of transport (linear advection) equations.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
887 : :
888 : : keywords.insert({"compflow",
889 : : "Start configuration block for the compressible flow equations",
890 : : R"(This keyword is used to introduce the compflow block, used to
891 : : specify the configuration for a system of partial differential equations,
892 [ + - ][ + - ]: 1219 : governing single material compressible fluid flow.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
893 : :
894 : : keywords.insert({"multimat",
895 : : "Start configuration block for the compressible multi-material equations",
896 : : R"(This keyword is used to introduce the multimat block,
897 : : used to specify the configuration for a system of partial differential
898 : : equations, governing compressible multi-material hydrodynamics assuming
899 [ + - ][ + - ]: 1219 : velocity equilibrium (single velocity).)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
900 : :
901 : : keywords.insert({"multispecies",
902 : : "Start configuration block for the compressible multi-species equations",
903 : : R"(This keyword is used to introduce the multispecies block,
904 : : used to specify the configuration for a system of partial differential
905 : : equations, governing compressible multi-species fluid dynamics.)",
906 [ + - ][ + - ]: 1219 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
907 : :
908 : : keywords.insert({"nmat",
909 : : "Set number of materials for the multi-material system",
910 : : R"(This keyword is used to specify the number of materials for
911 [ + - ][ + - ]: 1219 : multi-material flow, see also the keyword 'multimat'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
912 : :
913 : : keywords.insert({"min_volumefrac",
914 : : "Minimum volume fraction of a material in a cell",
915 : : R"(This keyword is used to specify the minimum volume fraction that a
916 : : material can occupy in a computational element. The default value is
917 : : 1.0e-12. It is used only for multimat, and has no effect for the other
918 [ + - ][ + - ]: 1219 : PDE types.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
919 : :
920 : : keywords.insert({"nspec",
921 : : "Set number of species for the multi-species system",
922 : : R"(This keyword is used to specify the number of species for
923 [ + - ][ + - ]: 1219 : multi-species flow, see also the keyword 'multispecies'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
924 : :
925 : : keywords.insert({"prelax",
926 : : "Toggle multi-material finite pressure relaxation",
927 : : R"(This keyword is used to turn finite pressure relaxation between
928 : : multiple materials on/off. It is used only for the multi-material solver,
929 [ + - ][ + - ]: 1219 : and has no effect when used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
930 : :
931 : : keywords.insert({"prelax_timescale",
932 : : "Time-scale for multi-material finite pressure relaxation",
933 : : R"(This keyword is used to specify the time-scale at which finite pressure
934 : : relaxation between multiple materials occurs. The default value of 0.25
935 : : corresponds to a relaxation time that is 4 times the time required for a
936 : : sound wave to pass through a computational element. It is used only for
937 [ + - ][ + - ]: 1219 : multimat, and has no effect for the other PDE types.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
938 : :
939 : : keywords.insert({"intsharp",
940 : : "Toggle multi-material interface sharpening",
941 : : R"(This keyword is used to turn interface sharpening on/off. It uses the
942 : : multi-material THINC interface reconstruction.
943 : : Ref. Pandare A. K., Waltz J., & Bakosi J. (2021) Multi-Material
944 : : Hydrodynamics with Algebraic Sharp Interface Capturing. Computers &
945 : : Fluids, doi: https://doi.org/10.1016/j.compfluid.2020.104804. It is used
946 : : for the multi-material and the transport solver, and has no effect when
947 [ + - ][ + - ]: 1219 : used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
948 : :
949 : : keywords.insert({"intsharp_param",
950 : : "Parameter for multi-material interface sharpening",
951 : : R"(This keyword is used to specify the parameter for the interface
952 : : sharpening. This parameter affects how many cells the material interfaces
953 : : span, after the use of sharpening. It is used for multimat and transport,
954 [ + - ][ + - ]: 1219 : and has no effect for the other PDE types.)", "real" });
[ + - ][ + - ]
[ + - ][ + - ]
955 : :
956 : : keywords.insert({"rho0constraint",
957 : : "Toggle the density constraint correction",
958 : : R"(This keyword is used to toggle the density constraint in solid
959 : : dynamics on/off. It is used only for the multi-material solver in the
960 [ + - ][ + - ]: 1219 : presence of solids. The default is 1 (on).)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
961 : :
962 : : keywords.insert({"dt_sos_massavg",
963 : : "Toggle method for calculating speed of sound used for time step in a cell",
964 : : R"(This keyword is used to specify the method to calculate the speed of
965 : : sound in a cell used for the time step. If set to 1, the speed of sound
966 : : will be calculated using the mass average, rather than the maximum value
967 : : across materials. It is used for multimat, and has no effect for the
968 [ + - ][ + - ]: 1219 : other PDE types.)", "uint 0/1" });
[ + - ][ + - ]
[ + - ][ + - ]
969 : :
970 : : // Dependent variable name
971 : : keywords.insert({"depvar",
972 : : "Select dependent variable name for PDE.",
973 [ + - ][ + - ]: 1219 : R"(Select dependent variable name for PDE.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
974 : :
975 : : // -----------------------------------------------------------------------
976 : : // physics choices
977 : : // -----------------------------------------------------------------------
978 : :
979 : : keywords.insert({"physics",
980 : : "Specify the physics configuration for a system of PDEs",
981 : : R"(This keyword is used to select the physics configuration for a
982 : : particular PDE system. Valid options depend on the system of PDEs in
983 [ + - ][ + - ]: 1219 : which the keyword is used.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
984 : :
985 : : keywords.insert({"advection",
986 : : "Specify the advection physics",
987 : : R"(This keyword is used to select the advection physics for the transport
988 [ + - ][ + - ]: 1219 : PDE system. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
989 : :
990 : : keywords.insert({"advdiff",
991 : : "Specify the advection + diffusion physics",
992 : : R"(This keyword is used to select the advection + diffusion physics
993 [ + - ][ + - ]: 1219 : for transport PDEs. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
994 : :
995 : : keywords.insert({"euler",
996 : : "Specify the Euler (inviscid) compressible flow physics",
997 : : R"(This keyword is used to select the Euler (inviscid) compressible
998 [ + - ][ + - ]: 1219 : flow physics configuration. Usable for 'compflow' and 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
999 : :
1000 : : keywords.insert({"energy_pill",
1001 : : "Specify the energy pill physics",
1002 : : R"(This keyword is used to select an energy pill initialization as physics
1003 : : configuration for multiple material compressible flow. Parameters for the
1004 : : linearly traveling front are required to be specified when energy_pill is
1005 : : selected. See 'linear' for more details. Currently setup only for
1006 [ + - ][ + - ]: 1219 : 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
1007 : :
1008 : : // -----------------------------------------------------------------------
1009 : : // material/eos object
1010 : : // -----------------------------------------------------------------------
1011 : :
1012 : : keywords.insert({"material",
1013 : : "Start configuration block for material (eos) properties",
1014 : : R"(This keyword is used to introduce a material block, used to
1015 [ + - ][ + - ]: 1219 : specify material properties.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1016 : :
1017 : : keywords.insert({"species",
1018 : : "Start configuration block for species (eos) properties",
1019 : : R"(This keyword is used to introduce a species block, used to
1020 : : specify species properties in the multi species solver.)",
1021 [ + - ][ + - ]: 1219 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1022 : :
1023 : : keywords.insert({"id", "ID",
1024 : : R"(This keyword is used to specify an ID, a positive integer. Usage is
1025 : : context specific, i.e. what block it is specified in. E.g. Inside the
1026 : : material block, it is used to specify a block consisting of IDs of
1027 [ + - ][ + - ]: 1219 : materials of that EOS type)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1028 : :
1029 : : keywords.insert({"eos", "Select equation of state (type)",
1030 : : R"(This keyword is used to select an equation of state for a material.)",
1031 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1032 : :
1033 : : keywords.insert({"gamma", "ratio of specific heats",
1034 : : R"(This keyword is used to specify the material property, ratio of
1035 [ + - ][ + - ]: 1219 : specific heats.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1036 : :
1037 : : keywords.insert({"pstiff", "EoS stiffness parameter",
1038 : : R"(This keyword is used to specify the material property, stiffness
1039 [ + - ][ + - ]: 1219 : parameter in the stiffened gas equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1040 : :
1041 : : keywords.insert({"w_gru", "Grueneisen coefficient",
1042 : : R"(This keyword is used to specify the material property, Gruneisen
1043 : : coefficient for the Jones-Wilkins-Lee equation of state.)",
1044 [ + - ][ + - ]: 1219 : "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1045 : :
1046 : : keywords.insert({"A_jwl", "JWL EoS A parameter",
1047 : : R"(This keyword is used to specify the material property A (units: Pa)
1048 [ + - ][ + - ]: 1219 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1049 : :
1050 : : keywords.insert({"B_jwl", "JWL EoS B parameter",
1051 : : R"(This keyword is used to specify the material property B (units: Pa)
1052 [ + - ][ + - ]: 1219 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1053 : :
1054 : : keywords.insert({"C_jwl", "JWL EoS C parameter",
1055 : : R"(This keyword is used to specify the material property C (units: Pa)
1056 [ + - ][ + - ]: 1219 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1057 : :
1058 : : keywords.insert({"R1_jwl", "JWL EoS R1 parameter",
1059 : : R"(This keyword is used to specify the material property R1 for the
1060 [ + - ][ + - ]: 1219 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1061 : :
1062 : : keywords.insert({"R2_jwl", "JWL EoS R2 parameter",
1063 : : R"(This keyword is used to specify the material property R2 for the
1064 [ + - ][ + - ]: 1219 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1065 : :
1066 : : keywords.insert({"rho0_jwl", "JWL EoS rho0 parameter",
1067 : : R"(This keyword is used to specify the material property rho0, which is
1068 : : the density of initial state (units: kg/m3) for the Jones-Wilkins-Lee
1069 [ + - ][ + - ]: 1219 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1070 : :
1071 : : keywords.insert({"de_jwl", "JWL EoS de parameter",
1072 : : R"(This keyword is used to specify the material property de, which is the
1073 : : heat of detonation for products; and for reactants, it is chosen such that
1074 : : the ambient internal energy (e0) is 0 (units: J/kg). Used for the
1075 [ + - ][ + - ]: 1219 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1076 : :
1077 : : keywords.insert({"rhor_jwl", "JWL EoS rhor parameter",
1078 : : R"(This keyword is used to specify the material property rhor, which is
1079 : : the density of reference state (units: kg/m3) for the Jones-Wilkins-Lee
1080 [ + - ][ + - ]: 1219 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1081 : :
1082 : : keywords.insert({"Tr_jwl", "JWL EoS Tr parameter",
1083 : : R"(This keyword is used to specify the material property Tr, which is the
1084 : : temperature of reference state (units: K) for the Jones-Wilkins-Lee
1085 [ + - ][ + - ]: 1219 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1086 : :
1087 : : keywords.insert({"Pr_jwl", "JWL EoS er parameter",
1088 : : R"(This keyword is used to specify the material property Pr, which is the
1089 : : pressure at the reference state (units: Pa) for the Jones-Wilkins-Lee
1090 : : equation of state. It is used to calculate the reference temperature for
1091 [ + - ][ + - ]: 1219 : the EoS.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1092 : :
1093 : : keywords.insert({"mu", "shear modulus/dynamic viscosity",
1094 : : R"(This keyword is used to specify the material property, shear modulus
1095 [ + - ][ + - ]: 1219 : for solids, or dynamic viscosity for fluids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1096 : :
1097 : : keywords.insert({"yield_stress", "Yield stress of solid material",
1098 : : R"(This keyword is used to specify the material property yield stress,
1099 : : which indicates the stress (units: Pa) after which the material begins
1100 [ + - ][ + - ]: 1219 : plastic flow.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1101 : :
1102 : : keywords.insert({"alpha", "alpha parameter for Godunov-Romenski EOS",
1103 : : R"(This keyword is used to specify the alpha parameter for
1104 [ + - ][ + - ]: 1219 : Godunov-Romenski EOS for solids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1105 : :
1106 : : keywords.insert({"K0", "K0 parameter for Godunov-Romenski EOS",
1107 : : R"(This keyword is used to specify the K0 parameter for
1108 [ + - ][ + - ]: 1219 : Godunov-Romenski EOS for solids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1109 : :
1110 : : keywords.insert({"cv", "specific heat at constant volume",
1111 : : R"(This keyword is used to specify the material property, specific heat at
1112 [ + - ][ + - ]: 1219 : constant volume.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1113 : :
1114 : : keywords.insert({"k", "heat conductivity",
1115 : : R"(This keyword is used to specify the material property, heat
1116 [ + - ][ + - ]: 1219 : conductivity.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1117 : :
1118 : : keywords.insert({"plasticity_reltime", "Relaxation time for plasticity",
1119 : : R"(This keyword is used to specify the base relaxation time for a solid
1120 : : subject to perfect plasticity. See Ortega, A. López, et al. "Numerical
1121 : : simulation of elastic–plastic solid mechanics using an Eulerian stretch
1122 : : tensor approach and HLLD Riemann solver." Journal of Computational
1123 [ + - ][ + - ]: 1219 : Physics 257 (2014): 414-441.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1124 : :
1125 : : keywords.insert({"cp_coeff", "specific heat coefficients for TPG",
1126 : : R"(This keyword is used to specify species' coefficients in the
1127 : : thermally perfect gas polynomial fit (per temperature range)
1128 : : for specific heat at constant volume. The outer vector is per
1129 : : species, the middle vector is per temperature range, and the
1130 : : inner vector contains 8 coefficients to describe the polynomial.)",
1131 [ + - ][ + - ]: 1219 : "vector of vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1132 : :
1133 : : keywords.insert({"t_range", "temperature range for TPG specific heat polynomials",
1134 : : R"(This keyword is used to specify the temperature range for each specific
1135 : : heat polynomial given in cp_coeff. The outer vector is per species,
1136 : : and the inner vector gives the temperature ranges. The inner vector must
1137 : : be sized 1 larger than the number of temperature ranges, as the ranges
1138 [ + - ][ + - ]: 1219 : are read as [T0, T1],[T1, T2],...)", "vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1139 : :
1140 : : keywords.insert({"dH_ref", "reference enthalpy for TPG specific heat polynomials",
1141 : : R"(This keyword is used to specify the reference enthalpy at 298.15 K so that
1142 : : the reference temperature in the enthalpy calculations is 0 K. This number
1143 : : is taken from the NASA Glenn 2002 report, and is the heat of formation
1144 [ + - ][ + - ]: 1219 : divided by the species molar mass.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1145 : :
1146 : : keywords.insert({"R", "Specific gas constant",
1147 : : R"(This keyword is used to specify the species property, specific gas
1148 [ + - ][ + - ]: 1219 : constant, in units J/kg.K.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1149 : :
1150 : : keywords.insert({"stiffenedgas",
1151 : : "Select the stiffened gas equation of state",
1152 [ + - ][ + - ]: 1219 : R"(This keyword is used to select the stiffened gas equation of state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1153 : :
1154 : : keywords.insert({"jwl", "Select the JWL equation of state",
1155 : : R"(This keyword is used to select the Jones, Wilkins, Lee equation of
1156 [ + - ][ + - ]: 1219 : state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1157 : :
1158 : : keywords.insert({"smallshearsolid",
1159 : : "Select the SMALLSHEARSOLID equation of state",
1160 : : R"(This keyword is used to select the small shear strain equation of state
1161 : : for solids. This EOS uses a small-shear approximation for the elastic
1162 : : contribution, and a stiffened gas EOS for the hydrodynamic contribution of
1163 : : the internal energy See Plohr, J. N., & Plohr, B. J. (2005). Linearized
1164 : : analysis of Richtmyer–Meshkov flow for elastic materials. Journal of Fluid
1165 [ + - ][ + - ]: 1219 : Mechanics, 537, 55-89 for further details.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1166 : :
1167 : : keywords.insert({"wilkins_aluminum",
1168 : : "Select Wilkins' equation of state for aluminum",
1169 : : R"(This keyword is used to select Wilkin's equation of state for solids
1170 : : and a hydro EoS for aluminum. These functions were taken from Example 4
1171 : : of Barton, Philip T. "An interface-capturing Godunov method
1172 : : for the simulation of compressible solid-fluid problems." Journal
1173 [ + - ][ + - ]: 1219 : of Computational Physics 390 (2019): 25-50.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1174 : :
1175 : : keywords.insert({"godunovromenski",
1176 : : "Select godunovromenski equation of state for solids",
1177 : : R"(This keyword is used to select Godunov-Romenski equation of state
1178 : : for solids. These functions were taken from Example 1
1179 : : of Barton, Philip T. "An interface-capturing Godunov method
1180 : : for the simulation of compressible solid-fluid problems." Journal
1181 [ + - ][ + - ]: 1219 : of Computational Physics 390 (2019): 25-50.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1182 : :
1183 : : keywords.insert({"matidxmap",
1184 : : "AUTO-GENERATED Material index map for EOS",
1185 : : R"(The following AUTO-GENERATED data structure is used to index into the
1186 : : correct material vector entry. This is done using the following three maps:
1187 : : 1. eosidx: This vector provides the eos-index (value) in the
1188 : : vector<tag::material> for the given user-spec material id (index).
1189 : : 2. matidx: This vector provides the material-index (value) inside the
1190 : : vector<tag::material>[eosidx] block for the given user-specified
1191 : : material id (index).
1192 : : 3. solidx: This vector provides the solid-index (value) assigned to
1193 [ + - ][ + - ]: 1219 : the given user-specified material id (index). It is 0 for fluids.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1194 : :
1195 : : // -----------------------------------------------------------------------
1196 : : // output object
1197 : : // -----------------------------------------------------------------------
1198 : :
1199 : : keywords.insert({"field_output",
1200 : : "Start of field_output input block",
1201 : : R"(This keyword is used to start a block in the input file containing the
1202 [ + - ][ + - ]: 1219 : list and settings of requested field output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1203 : :
1204 : : keywords.insert({"interval",
1205 : : "Set interval (in units of iteration count)",
1206 : : R"(This keyword is used to specify an interval in units of iteration count
1207 : : (i.e., number of time steps). This must be used within a relevant
1208 [ + - ][ + - ]: 1219 : block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1209 : :
1210 : : keywords.insert({"time_interval",
1211 : : "Set interval (in units of physics time)",
1212 : : R"(This keyword is used to specify an interval in units of physics time.
1213 [ + - ][ + - ]: 1219 : This must be used within a relevant block.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1214 : :
1215 : : keywords.insert({"time_range",
1216 : : "Configure physics time range for output (in units of physics time)",
1217 : : R"(This keyword is used to configure field-, or history-output, specifying
1218 : : a start time, a stop time, and an output frequency in physics time units.
1219 : : Example: 'time_range = {0.2, 0.3, 0.001}', which specifies that from t=0.2 to
1220 : : t=0.3 output should happen at physics time units of dt=0.001. This must be
1221 [ + - ][ + - ]: 1219 : used within a relevant block.)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1222 : :
1223 : : keywords.insert({"refined", "Toggle refined field output on/off",
1224 : : R"(This keyword can be used to turn on/off refined field output, which
1225 : : refines the mesh and evaluates the solution on the refined mesh for saving
1226 [ + - ][ + - ]: 1219 : the solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1227 : :
1228 : : keywords.insert({"filetype", "Select output file type",
1229 : : R"(This keyword is used to specify the output file type of
1230 [ + - ][ + - ]: 1219 : mesh-based field output in a field_output block.)", "string" });
[ + - ][ + - ]
[ + - ][ + - ]
1231 : :
1232 : : keywords.insert({"elemvar",
1233 : : "Specify list of elem-centered variables for output",
1234 : : R"(This keyword is used to specify elem-centered variables for output to
1235 [ + - ][ + - ]: 1219 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1236 : :
1237 : : keywords.insert({"nodevar",
1238 : : "Specify list of node-centered variables for output",
1239 : : R"(This keyword is used to specify node-centered variables for output to
1240 [ + - ][ + - ]: 1219 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1241 : :
1242 : : keywords.insert({"sideset",
1243 : : "Specify list of side sets",
1244 : : R"(This keyword is used to specify side sets. Usage is context specific,
1245 : : i.e. depends on what block it is specified in. Eg. in the field_output
1246 : : block it specifies the sidesets on which field output is desired.)",
1247 [ + - ][ + - ]: 1219 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1248 : :
1249 : : keywords.insert({"diagnostics",
1250 : : "Specify the diagnostics block",
1251 : : R"(This keyword is used to introduce the dagnostics block, used to
1252 [ + - ][ + - ]: 1219 : configure diagnostics output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1253 : :
1254 : : keywords.insert({"interval",
1255 : : "Set interval (in units of iteration count)",
1256 : : R"(This keyword is used to specify an interval in units of iteration count
1257 : : (i.e., number of time steps). Usage is context specific, and this must
1258 [ + - ][ + - ]: 1219 : be used within a relevant block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1259 : :
1260 : : keywords.insert({"error", "Select an error type",
1261 : : R"(This keyword is used to select the error type. Used either in the
1262 : : diagnostics block to specify error norm, or in the AMR block to specify
1263 [ + - ][ + - ]: 1219 : the error for solution-adaptive mesh refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1264 : :
1265 : : keywords.insert({"format",
1266 : : "Specify the ASCII floating-point output format",
1267 : : R"(This keyword is used to select the
1268 : : floating-point output format for ASCII floating-point number output.
1269 : : Valid options are 'default', 'fixed', and 'scientific'. For more info on
1270 : : these various formats, see
1271 [ + - ][ + - ]: 1219 : http://en.cppreference.com/w/cpp/io/manip/fixed.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1272 : :
1273 : : keywords.insert({"precision",
1274 : : "Precision in digits for ASCII floating-point output",
1275 : : R"(This keyword is used to select
1276 : : the precision in digits for ASCII floating-point real number output.
1277 : : Example: "precision=10", which selects ten digits for floating-point
1278 : : output, e.g., 3.141592654. The number of digits must be larger than zero
1279 : : and lower than the maximum representable digits for the given
1280 : : floating-point type. For more info on setting the precision in C++, see
1281 : : http://en.cppreference.com/w/cpp/io/manip/setprecision, and
1282 [ + - ][ + - ]: 1219 : http://en.cppreference.com/w/cpp/types/numeric_limits/digits10)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1283 : :
1284 : : keywords.insert({"history_output",
1285 : : "Start of history_output input block",
1286 : : R"(This keyword is used to start a block in the input file containing the
1287 [ + - ][ + - ]: 1219 : descriptions and settings of requested history output.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1288 : :
1289 : : keywords.insert({"point",
1290 : : "Start configuration block for history point, or a single point in IC blocks",
1291 : : R"(This keyword is used to either introduce a vector block used to
1292 : : specify probes for history output, or in the IC/BC block to specify
1293 : : a single point. When used in history output, it takes sub-entries of
1294 : : 'id' and 'coord'. When used in IC/BC, directly takes three reals as
1295 [ + - ][ + - ]: 1219 : coordinates.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1296 : :
1297 : : keywords.insert({"coord", "Specify point coordinates",
1298 : : R"(This keyword is used to specify coordinates of the history-point.)",
1299 [ + - ][ + - ]: 1219 : "3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1300 : :
1301 : : keywords.insert({"exodusii", "Select ExodusII output",
1302 : : R"(This keyword is used to select the
1303 : : ExodusII output file type readable by, e.g., ParaView of either a requested
1304 : : probability density function (PDF) within a pdfs ... end block or for
1305 : : mesh-based field output in a field_output ... end block. Example:
1306 : : "filetype exodusii", which selects ExodusII file output. For more info on
1307 [ + - ][ + - ]: 1219 : ExodusII, see http://sourceforge.net/projects/exodusii.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1308 : :
1309 : : keywords.insert({"density", "Request/specify density",
1310 : : R"(This keyword is used to request/specify the density. Usage is
1311 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1312 : : field_output, requests density as an output quantity. Otherwise,
1313 [ + - ][ + - ]: 1219 : specifies density at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1314 : :
1315 : : keywords.insert({"x-momentum",
1316 : : "Request x-momentum",
1317 : : R"(This keyword is used to request the fluid x-momentum as an output
1318 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1319 : :
1320 : : keywords.insert({"y-momentum",
1321 : : "Request y-momentum",
1322 : : R"(This keyword is used to request the fluid y-momentum as an output
1323 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1324 : :
1325 : : keywords.insert({"z-momentum",
1326 : : "Request z-momentum",
1327 : : R"(This keyword is used to request the fluid z-momentum as an output
1328 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1329 : :
1330 : : keywords.insert({
1331 : : "specific_total_energy", "Request specific total energy",
1332 : : R"(This keyword is used to request the specific total energy as an output
1333 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1334 : :
1335 : : keywords.insert({
1336 : : "volumetric_total_energy", "Request total volumetric energy",
1337 : : R"(This keyword is used to request the volumetric total energy as an output
1338 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1339 : :
1340 : : keywords.insert({"x-velocity",
1341 : : "Request x-velocity",
1342 : : R"(This keyword is used to request the fluid x-velocity as an output
1343 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1344 : :
1345 : : keywords.insert({"y-velocity",
1346 : : "Request y-velocity",
1347 : : R"(This keyword is used to request the fluid y-velocity as an output
1348 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1349 : :
1350 : : keywords.insert({"z-velocity",
1351 : : "Request z-velocity",
1352 : : R"(This keyword is used to request the fluid z-velocity as an output
1353 [ + - ][ + - ]: 1219 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1354 : :
1355 : : keywords.insert({"pressure", "Request/specify pressure",
1356 : : R"(This keyword is used to request/specify the pressure. Usage is
1357 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1358 : : field_output, requests pressure as an output quantity. Otherwise,
1359 [ + - ][ + - ]: 1219 : specifies pressure at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1360 : :
1361 : : keywords.insert({"material_indicator",
1362 : : "Request material_indicator",
1363 : : R"(This keyword is used to request the material indicator function as an
1364 [ + - ][ + - ]: 1219 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1365 : :
1366 : : keywords.insert({"analytic",
1367 : : "Request analytic solution",
1368 : : R"(This keyword is used to request the analytic solution (if exist) as an
1369 [ + - ][ + - ]: 1219 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1370 : :
1371 : : keywords.insert({"l2", "Select the L2 norm",
1372 [ + - ][ + - ]: 1219 : R"(This keyword is used to enable computing the L2 norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1373 : :
1374 : : keywords.insert({"linf", "Select the L_{infinity} norm",
1375 [ + - ][ + - ]: 1219 : R"(This keyword is used to enable computing the L-infinity norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1376 : :
1377 : : keywords.insert({"default",
1378 : : "Select the default ASCII floating-point output",
1379 : : R"(This keyword is used to select the
1380 : : 'default' floating-point output format for ASCII floating-point real
1381 : : number output. For more info on these various formats, see
1382 [ + - ][ + - ]: 1219 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1383 : :
1384 : : keywords.insert({"fixed",
1385 : : "Select the fixed ASCII floating-point output",
1386 : : R"(This keyword is used to select the
1387 : : 'fixed' floating-point output format for ASCII floating-point real
1388 : : number output. For more info on these various formats, see
1389 [ + - ][ + - ]: 1219 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1390 : :
1391 : : keywords.insert({"scientific",
1392 : : "Select the scientific ASCII floating-point output",
1393 : : R"(This keyword is used to select the
1394 : : 'scientific' floating-point output format for ASCII floating-point real
1395 : : number output. For more info on these various formats, see
1396 [ + - ][ + - ]: 1219 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1397 : :
1398 : : // -----------------------------------------------------------------------
1399 : : // ALE options
1400 : : // -----------------------------------------------------------------------
1401 : :
1402 : : keywords.insert({"ale", "Start block configuring ALE",
1403 : : R"(This keyword is used to introduce the ale block, used to
1404 : : configure arbitrary Lagrangian-Eulerian (ALE) mesh movement.)",
1405 [ + - ][ + - ]: 1219 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1406 : :
1407 : : keywords.insert({"smoother", "Select mesh velocity smoother",
1408 : : R"(This keyword is used to select a mesh velocity smoother option, used
1409 : : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1410 [ + - ][ + - ]: 1219 : 'laplace', 'helmholtz', and 'none')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1411 : :
1412 : : keywords.insert({"mesh_velocity", "Select mesh velocity",
1413 : : R"(This keyword is used to select a mesh velocity option, used for
1414 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1415 [ + - ][ + - ]: 1219 : 'sine', 'fluid', and 'user_defined".)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1416 : :
1417 : : keywords.insert({"mesh_motion",
1418 : : "List of dimension indices that are allowed to move in ALE calculations",
1419 : : R"(This keyword is used to specify a list of integers (0, 1, or 2) whose
1420 : : coordinate directions corresponding to x, y, or z are allowed to move with
1421 : : the mesh velocity in ALE calculations. Useful for 1D/2D problems.)",
1422 [ + - ][ + - ]: 1219 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1423 : :
1424 : : keywords.insert({"meshforce", "Set ALE mesh force model parameter(s)",
1425 : : R"(This keyword is used to specify a vector of real numbers used to
1426 : : parameterize a mesh force model for ALE. The length of the vector must
1427 [ + - ][ + - ]: 1219 : exactly be 4.)", "vector of 4 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1428 : :
1429 : : keywords.insert({"dvcfl",
1430 : : "Set the volume-change Courant-Friedrichs-Lewy (CFL) coefficient",
1431 : : R"(This keyword is used to specify the volume-change (dV/dt) CFL coefficient
1432 : : for variable-time-step-size simulations due to volume change in time in
1433 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. Setting 'dvcfl' only has
1434 : : effect in ALE calculations and used together with 'cfl'. See also J. Waltz,
1435 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1436 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1437 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1438 [ + - ][ + - ]: 1219 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1439 : :
1440 : : keywords.insert({"vortmult",
1441 : : "Configure vorticity multiplier for ALE mesh velocity",
1442 : : R"(This keyword is used to configure the multiplier for the vorticity term
1443 : : in the mesh velocity smoother (mesh_velocity=fluid) or for the potential
1444 : : gradient for the Helmholtz mesh velocity (mesh_velocity=helmholtz) for ALE
1445 : : mesh motion. For 'fluid' this is coefficient c2 in Eq.(36) of Waltz,
1446 : : Morgan, Canfield, Charest, Risinger, Wohlbier, A three-dimensional finite
1447 : : element arbitrary Lagrangian–Eulerian method for shock hydrodynamics on
1448 : : unstructured grids, Computers & Fluids, 2014, and for 'helmholtz', this
1449 : : is coefficient a1 in Eq.(23) of Bakosi, Waltz, Morgan, Improved ALE mesh
1450 : : velocities for complex flows, International Journal for Numerical Methods
1451 [ + - ][ + - ]: 1219 : in Fluids, 2017. )", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1452 : :
1453 : : keywords.insert({"maxit",
1454 : : "Set the max number of iterations for the ALE mesh velocity linear solve",
1455 : : R"(This keyword is used to specify the maximum number of linear solver
1456 : : iterations taken to converge the mesh velocity linear solve in
1457 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1458 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1459 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1460 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1461 [ + - ][ + - ]: 1219 : 2014.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1462 : :
1463 : : keywords.insert({"tolerance",
1464 : : "Set the tolerance for the ALE mesh velocity linear solve",
1465 : : R"(This keyword is used to specify the tolerance to converge the mesh
1466 : : velocity linear solve for in
1467 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1468 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1469 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1470 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1471 [ + - ][ + - ]: 1219 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1472 : :
1473 : : keywords.insert({"move",
1474 : : "Start configuration block configuring surface movement in ALE",
1475 : : R"(This keyword is used to introduce a move block, used to
1476 [ + - ][ + - ]: 1219 : configure surface movement for ALE simulations.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1477 : :
1478 : : keywords.insert({"fntype",
1479 : : "Select how a user-defined function is interpreted",
1480 : : R"(This keyword is used to select how a user-defined function should be
1481 [ + - ][ + - ]: 1219 : interpreted.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1482 : :
1483 : : keywords.insert({"fn", "Specify a discrete user-defined function",
1484 : : R"(This keyword is used to specify a user-defined function block with
1485 : : discrete points, listed inside the fn block. Used in ale mesh motion and
1486 [ + - ][ + - ]: 1219 : time-dependent BC specification)", "reals" });
[ + - ][ + - ]
[ + - ][ + - ]
1487 : :
1488 : : keywords.insert({"laplace",
1489 : : "Select the Laplace mesh velocity smoother for ALE",
1490 : : R"(This keyword is used to select the 'Laplace' mesh velocity smoother
1491 [ + - ][ + - ]: 1219 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1492 : :
1493 : : keywords.insert({"helmholtz",
1494 : : "Select the Helmholtz velocity for ALE",
1495 : : R"(This keyword is used to select the a velocity, computed from the
1496 : : Helmholtz-decomposition as the mesh velocity for
1497 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. See J. Bakosi, J. Waltz,
1498 : : N. Morgan, Improved ALE mesh velocities for complex flows, Int. J. Numer.
1499 [ + - ][ + - ]: 1219 : Meth. Fl., 1-10, 2017, https://doi.org/10.1002/fld.4403.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1500 : :
1501 : : keywords.insert({"none", "Select none option",
1502 : : R"(This keyword is used to select the 'none' option from a list of
1503 [ + - ][ + - ]: 1219 : configuration options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1504 : :
1505 : : keywords.insert({"sine",
1506 : : "Prescribe sinusoidal mesh velocity for ALE",
1507 : : R"(This keyword is used to prescribe a sinusoidal mesh velocity
1508 [ + - ][ + - ]: 1219 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1509 : :
1510 : : keywords.insert({"fluid", "Select the fluid velocity for ALE",
1511 : : R"(This keyword is used to select the 'fluid' velocity as the mesh velocity
1512 [ + - ][ + - ]: 1219 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1513 : :
1514 : : // -----------------------------------------------------------------------
1515 : : // h/p adaptation objects
1516 : : // -----------------------------------------------------------------------
1517 : :
1518 : : keywords.insert({"amr",
1519 : : "Start configuration block configuring adaptive mesh refinement",
1520 : : R"(This keyword is used to introduce the amr block, used to
1521 [ + - ][ + - ]: 1219 : configure adaptive mesh refinement.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1522 : :
1523 : : keywords.insert({"t0ref", "Enable mesh refinement at t<0",
1524 : : R"(This keyword is used to enable initial mesh refinement, which can be
1525 : : configured to perform multiple levels of mesh refinement based on various
1526 [ + - ][ + - ]: 1219 : refinement criteria and configuration settings.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1527 : :
1528 : : keywords.insert({"dtref", "Enable mesh refinement at t>0",
1529 : : R"(This keyword is used to enable solution-adaptive mesh refinement during
1530 [ + - ][ + - ]: 1219 : time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1531 : :
1532 : : keywords.insert({"dtref_uniform",
1533 : : "Enable mesh refinement at t>0 but only perform uniform refinement",
1534 : : R"(This keyword is used to force uniform-only solution-adaptive mesh
1535 [ + - ][ + - ]: 1219 : refinement during time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1536 : :
1537 : : keywords.insert({"dtfreq",
1538 : : "Set mesh refinement frequency during time stepping",
1539 : : R"(This keyword is used to configure the frequency of mesh refinement
1540 [ + - ][ + - ]: 1219 : during time stepping.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1541 : :
1542 : : keywords.insert({"maxlevels",
1543 : : "Set maximum allowed mesh refinement levels",
1544 : : R"(This keyword is used to configure the maximum allowed mesh refinement
1545 [ + - ][ + - ]: 1219 : levels.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1546 : :
1547 : : keywords.insert({"initial",
1548 : : "Configure initial mesh refinement (before time stepping)",
1549 : : R"(This keyword is used to add to a list of initial mesh refinement types
1550 : : that happens before t = 0. Allowed options are 'uniform',
1551 : : 'uniform_derefine', 'initial_conditions', 'coords', 'edgelist')",
1552 [ + - ][ + - ]: 1219 : "vector of strings"});
[ + - ][ + - ]
[ + - ][ + - ]
1553 : :
1554 : : keywords.insert({"coords",
1555 : : "Configure initial refinement using coordinate planes",
1556 : : R"(This keyword can be used to configure entire volumes on a given side of
1557 : : a plane in 3D space. The keyword introduces an coords block within
1558 : : an amr block. All edges of the input mesh will be tagged for refinement
1559 : : whose end-points lie within the given ranges.
1560 : : Example: 'xminus 0.5' refines all edges whose end-point coordinates are
1561 : : less than 0.5. Multiple specifications are understood by combining with
1562 : : a logical AND. That is: 'xminus 0.5 yplus 0.3' refines all edges whose
1563 : : end-point x coordinates are less than 0.5 AND y coordinates are larger than
1564 [ + - ][ + - ]: 1219 : 0.3.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1565 : :
1566 : : keywords.insert({"xminus",
1567 : : "Configure initial refinement for coordinates lower than an x-normal plane",
1568 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1569 : : whose end-points are less than the x coordinate of a plane perpendicular
1570 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1571 : : within an amr-block with syntax 'xminus <real>'. All edges of the
1572 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1573 : : the real number given. Example: 'xminus 0.5' refines all edges whose end-point
1574 [ + - ][ + - ]: 1219 : x-coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1575 : :
1576 : : keywords.insert({"xplus",
1577 : : "Configure initial refinement for coordinates larger than an x-normal plane",
1578 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1579 : : whose end-points are larger than the x coordinate of a plane perpendicular
1580 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1581 : : within an amr-block with syntax 'xplus <real>'. All edges of the
1582 : : input mesh will be tagged for refinement whose end-points lie larger than
1583 : : (+) the real number given. Example: 'xplus 0.5' refines all edges whose
1584 [ + - ][ + - ]: 1219 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1585 : :
1586 : : keywords.insert({"yminus",
1587 : : "Configure initial refinement for coordinates lower than an y-normal plane",
1588 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1589 : : whose end-points are less than the y coordinate of a plane perpendicular
1590 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1591 : : within an amr-block with syntax 'yminus <real>'. All edges of the
1592 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1593 : : the real number given. Example: 'yminus 0.5' refines all edges whose end-point
1594 [ + - ][ + - ]: 1219 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1595 : :
1596 : : keywords.insert({"yplus",
1597 : : "Configure initial refinement for coordinates larger than an y-normal plane",
1598 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1599 : : whose end-points are larger than the y coordinate of a plane perpendicular
1600 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1601 : : within an amr-block with syntax 'yplus <real>'. All edges of the
1602 : : input mesh will be tagged for refinement whose end-points lie larger than
1603 : : (+) the real number given. Example: 'yplus 0.5' refines all edges whose
1604 [ + - ][ + - ]: 1219 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1605 : :
1606 : : keywords.insert({"zminus",
1607 : : "Configure initial refinement for coordinates lower than an z-normal plane",
1608 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1609 : : whose end-points are less than the z coordinate of a plane perpendicular
1610 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1611 : : within an amr-block with syntax 'zminus <real>'. All edges of the
1612 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1613 : : the real number given. Example: 'zminus 0.5' refines all edges whose end-point
1614 [ + - ][ + - ]: 1219 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1615 : :
1616 : : keywords.insert({"zplus",
1617 : : "Configure initial refinement for coordinates larger than an z-normal plane",
1618 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1619 : : whose end-points are larger than the z coordinate of a plane perpendicular
1620 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1621 : : within an amr-block with syntax 'zplus <real>'. All edges of the
1622 : : input mesh will be tagged for refinement whose end-points lie larger than
1623 : : (+) the real number given. Example: 'zplus 0.5' refines all edges whose
1624 [ + - ][ + - ]: 1219 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1625 : :
1626 : : keywords.insert({"edgelist",
1627 : : "Configure edge-node pairs for initial refinement",
1628 : : R"(This keyword can be used to configure a list of edges that are explicitly
1629 : : tagged for initial refinement during setup in inciter. The keyword
1630 : : introduces an edgelist block within an amr block and must
1631 : : contain a list of integer pairs, i.e., the number of ids must be even,
1632 : : denoting the end-points of the nodes (=edge) which should be tagged for
1633 [ + - ][ + - ]: 1219 : refinement.)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1634 : :
1635 : : keywords.insert({"error",
1636 : : "Configure the error type for solution-adaptive mesh refinement",
1637 : : R"(This keyword is used to select the algorithm used to estimate the error
1638 : : for solution-adaptive mesh refinement. Available options are 'jump' and
1639 [ + - ][ + - ]: 1219 : 'hessian')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1640 : :
1641 : : keywords.insert({"refvar",
1642 : : "Configure dependent variables used for adaptive mesh refinement",
1643 : : R"(This keyword is used to configured a list of dependent variables that
1644 : : trigger adaptive mesh refinement based on estimating their numerical error.
1645 : : These refinement variables are used for both initial (i.e., before time
1646 : : stepping) mesh refinement as well as during time stepping. Only previously
1647 : : (i.e., earlier in the input file) selected dependent variables can be
1648 : : configured as refinement variables. Dependent variables are required to be
1649 : : defined in all equation system configuration blocks, e.g., transport ...
1650 : : end, by using the 'depvar' keyword. Example: transport depvar c end amr
1651 : : refvar c end end. Selecting a particular scalar component in a system is
1652 : : done by appending the equation number to the refvar: Example: transport
1653 : : depvar q ncomp 3 end amr refvar q1 q2 end end, which configures two
1654 : : refinement variables: the first and third scalar component of the previously
1655 [ + - ][ + - ]: 1219 : configured transport equation system.)", "vector of char"});
[ + - ][ + - ]
[ + - ][ + - ]
1656 : :
1657 : : keywords.insert({"tol_refine", "Configure refine tolerance",
1658 : : R"(This keyword is used to set the tolerance used to tag an edge for
1659 [ + - ][ + - ]: 1219 : refinement if the relative error exceeds this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1660 : :
1661 : : keywords.insert({"tol_derefine",
1662 : : "Configure derefine tolerance",
1663 : : R"(This keyword is used to set the tolerance used to tag an edge for
1664 [ + - ][ + - ]: 1219 : derefinement if the relative error is below this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1665 : :
1666 : : keywords.insert({"uniform",
1667 : : "Select uniform initial mesh refinement",
1668 : : R"(This keyword is used to select uniform initial mesh refinement.)",
1669 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1670 : :
1671 : : keywords.insert({"uniform_derefine",
1672 : : "Select uniform initial mesh de-refinement",
1673 : : R"(This keyword is used to select uniform initial mesh de-refinement.)",
1674 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1675 : :
1676 : : keywords.insert({"initial_conditions",
1677 : : "Select initial-conditions-based initial mesh refinement",
1678 : : R"(This keyword is used to select initial-conditions-based initial mesh
1679 [ + - ][ + - ]: 1219 : refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1680 : :
1681 : : keywords.insert({"jump",
1682 : : "Error estimation based on the solution jump normalized by solution value",
1683 : : R"(This keyword is used to select the jump-based error indicator for
1684 : : solution-adaptive mesh refinement. The error is estimated by computing the
1685 : : magnitude of the jump in the solution value normalized by the solution
1686 [ + - ][ + - ]: 1219 : value.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1687 : :
1688 : : keywords.insert({"hessian",
1689 : : "Error estimation based on the Hessian normalized by solution value",
1690 : : R"(This keyword is used to select the Hessian-based error indicator for
1691 : : solution-adaptive mesh refinement. The error is estimated by computing the
1692 : : Hessian (2nd derivative matrix) of the solution normalized by sum of the
1693 [ + - ][ + - ]: 1219 : absolute values of the gradients at edges-end points.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1694 : :
1695 : : keywords.insert({"pref",
1696 : : "Start configuration block configuring p-adaptive refinement",
1697 : : R"(This keyword is used to introduce the pref block, to
1698 [ + - ][ + - ]: 1219 : configure p-adaptive refinement)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1699 : :
1700 : : keywords.insert({"indicator",
1701 : : "Configure the specific adaptive indicator for p-adaptive DG scheme",
1702 : : R"(This keyword can be used to configure a specific type of adaptive
1703 : : indicator for p-adaptive refinement of the DG scheme. The keyword must
1704 : : be used in a pref block. Available options are 'pref_spectral_decay' and
1705 [ + - ][ + - ]: 1219 : 'pref_non_conformity'.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1706 : :
1707 : : keywords.insert({"ndofmax",
1708 : : "Configure the maximum number of degree of freedom for p-adaptive DG",
1709 : : R"(This keyword can be used to configure a maximum number of degree of
1710 : : freedom for p-adaptive refinement of the DG scheme. The keyword must
1711 [ + - ][ + - ]: 1219 : be used in a pref block.)", "uint either 4 or 10"});
[ + - ][ + - ]
[ + - ][ + - ]
1712 : :
1713 : : keywords.insert({"tolref",
1714 : : "Configure the tolerance for p-refinement for p-adaptive DG",
1715 : : R"(This keyword can be used to configure a tolerance for p-adaptive
1716 : : refinement for the DG scheme. The keyword must be used in a pref
1717 : : block. All elements with a refinement indicator larger than this
1718 [ + - ][ + - ]: 1219 : tolerance will be p-refined.)", "real between 0 and 1"});
[ + - ][ + - ]
[ + - ][ + - ]
1719 : :
1720 : : keywords.insert({"spectral_decay",
1721 : : "Select the spectral-decay indicator for p-adaptive DG scheme",
1722 : : R"(This keyword is used to select the spectral-decay indicator used for
1723 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1724 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1725 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1726 : :
1727 : : keywords.insert({"non_conformity",
1728 : : "Select the non-conformity indicator for p-adaptive DG scheme",
1729 : : R"(This keyword is used to select the non-conformity indicator used for
1730 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1731 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1732 [ + - ][ + - ]: 1219 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1733 : :
1734 : : // -----------------------------------------------------------------------
1735 : : // boundary condition options
1736 : : // -----------------------------------------------------------------------
1737 : :
1738 : : keywords.insert({"bc",
1739 : : "Start configuration block for boundary conditions",
1740 : : R"(This keyword is used to introduce the bc block, used for
1741 : : boundary conditions. This is a vector block, where each vector entry
1742 [ + - ][ + - ]: 1219 : specifies BCs for a particular mesh)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1743 : :
1744 : : keywords.insert({"mesh",
1745 : : "List meshes on which the following BCs apply",
1746 : : R"(This keyword is used to list multiple meshes on which the boundary
1747 : : conditions listed in this particular bc-block apply.)",
1748 [ + - ][ + - ]: 1219 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1749 : :
1750 : : keywords.insert({"dirichlet",
1751 : : "List sidesets with Dirichlet boundary conditions",
1752 : : R"(This keyword is used to list Dirichlet sidesets.
1753 : : This keyword is used to list multiple sidesets on
1754 : : which a prescribed Dirichlet BC is then applied. Such prescribed BCs
1755 : : at each point in space and time are evaluated using a built-in function,
1756 [ + - ][ + - ]: 1219 : e.g., using the method of manufactured solutions.)", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1757 : :
1758 : : keywords.insert({"symmetry",
1759 : : "List sidesets with symmetry boundary conditions",
1760 : : R"(This keyword is used to list (multiple) symmetry BC sidesets.)",
1761 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1762 : :
1763 : : keywords.insert({"inlet",
1764 : : "List sidesets with inlet boundary conditions",
1765 : : R"(This keyword is used to list (multiple) inlet BC sidesets.)",
1766 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1767 : :
1768 : : keywords.insert({"outlet",
1769 : : "List sidesets with outlet boundary conditions",
1770 : : R"(This keyword is used to list (multiple) outlet BC sidesets.)",
1771 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1772 : :
1773 : : keywords.insert({"farfield",
1774 : : "List sidesets with farfield boundary conditions",
1775 : : R"(This keyword is used to list (multiple) farfield BC sidesets.
1776 : : Keywords allowed in a bc_farfield block are 'density', 'velocity',
1777 [ + - ][ + - ]: 1219 : 'pressure')", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1778 : :
1779 : : keywords.insert({"extrapolate",
1780 : : "List sidesets with Extrapolation boundary conditions",
1781 : : R"(This keyword is used to list (multiple) extrapolate BC sidesets.)",
1782 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1783 : :
1784 : : keywords.insert({"noslipwall",
1785 : : "List sidesets with no-slip wall boundary conditions",
1786 : : R"(This keyword is used to list (multiple) no-slip wall BC sidesets.)",
1787 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1788 : :
1789 : : keywords.insert({"slipwall",
1790 : : "List sidesets with slip wall boundary conditions",
1791 : : R"(This keyword is used to list (multiple) slip wall BC sidesets.)",
1792 [ + - ][ + - ]: 1219 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1793 : :
1794 : : keywords.insert({"timedep",
1795 : : "Start configuration block describing time dependent boundary conditions",
1796 : : R"(This keyword is used to introduce a bc_timedep block, used to
1797 : : specify the configuration of time dependent boundary conditions for a
1798 : : partial differential equation. A discrete function in time t in the form
1799 : : of a table with 6 columns (t, pressure(t), density(t), vx(t), vy(t), vz(t))
1800 : : is expected inside a fn ... end block, specified within the bc_timedep
1801 : : block. Multiple such bc_timedep blocks can be specified for different
1802 [ + - ][ + - ]: 1219 : time dependent BCs on different groups of side sets.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1803 : :
1804 : : keywords.insert({"back_pressure",
1805 : : "Start configuration block describing back pressure boundary conditions",
1806 : : R"(This keyword is used to introduce a back pressure BC block. This
1807 : : block requires a 'sideset' vector and 'pressure' to be specified within
1808 [ + - ][ + - ]: 1219 : it.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1809 : :
1810 : : keywords.insert({"velocity", "Specify velocity",
1811 : : R"(This keyword is used to configure a velocity vector used in a
1812 : : context-specific way, e.g., for boundary or initial conditions.)",
1813 [ + - ][ + - ]: 1219 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1814 : :
1815 : : // -----------------------------------------------------------------------
1816 : : // Rigid-body motion solver
1817 : : // -----------------------------------------------------------------------
1818 : :
1819 : : keywords.insert({"rigid_body_motion", "Specify a rigid body motion block",
1820 : : R"(This keyword is used to specify a rigid body motion block, to move an
1821 : : overset mesh as a rigid body. Number of degrees of freedom and the
1822 : : symmetry plane (if any) are specified within this block.)",
1823 [ + - ][ + - ]: 1219 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1824 : :
1825 : : keywords.insert({"rigid_body_dof",
1826 : : "Number of rigid body degrees of freedom", R"(This keyword is used to
1827 : : specify the number of degrees of freedom the rigid body has. Valid
1828 : : options are 3 and 6. 3 DOFs indicate translation in two dimensions and
1829 : : rotation about symmetry plane axis; 6 DOFs indication translation in
1830 : : three dimensions and rotation about three axes. If 3 DOFs is specified,
1831 : : symmetry plane is required; if 6 DOFs is specified symmetry plane is not
1832 [ + - ][ + - ]: 1219 : used.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1833 : :
1834 : : keywords.insert({"symmetry_plane", "Symmetry plane for rigid body motion",
1835 : : R"(This keyword is used to specify the symmetry plane for a 3 DOF rigid
1836 [ + - ][ + - ]: 1219 : body motion solver. 1: x-plane, 2: y-plane, 3: z-plane.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1837 : :
1838 : : // -----------------------------------------------------------------------
1839 : : // IC object
1840 : : // -----------------------------------------------------------------------
1841 : :
1842 : : keywords.insert({"ic",
1843 : : "Introduce an ic block used to configure initial conditions",
1844 : : R"(This keyword is used to introduce an ic block used to set initial
1845 [ + - ][ + - ]: 1219 : conditions.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1846 : :
1847 : : keywords.insert({"materialid", "Specify material id",
1848 : : R"(This keyword is used to configure the material id within an IC box,
1849 : : IC mesh-block, farfield BC, or in the background as a part of the
1850 [ + - ][ + - ]: 1219 : initialization.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1851 : :
1852 : : keywords.insert({"temperature", "Specify temperature",
1853 : : R"(This keyword is used to configure temperature, used for, e.g.,
1854 [ + - ][ + - ]: 1219 : boundary or initial conditions.)" , "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1855 : :
1856 : : keywords.insert({"mass_fractions", "Specify species mass fractions",
1857 : : R"(This keyword is used to configure species mass fractions, used for,
1858 [ + - ][ + - ]: 1219 : e.g., boundary or initial conditions.)" , "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1859 : :
1860 : : keywords.insert({"box",
1861 : : "Introduce a box block used to assign initial conditions",
1862 : : R"(This keyword is used to introduce a IC box block used to assign
1863 : : initial conditions within a box given by spatial coordinates.)",
1864 [ + - ][ + - ]: 1219 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1865 : :
1866 : : keywords.insert({"meshblock",
1867 : : "Introduce a meshblock block used to assign initial conditions",
1868 : : R"(This keyword is used to introduce a IC meshblock block used to
1869 : : assign initial conditions within a mesh block specified in the mesh file.)",
1870 [ + - ][ + - ]: 1219 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1871 : :
1872 : : keywords.insert({"blockid", "Specify mesh block id",
1873 : : R"(This keyword is used to configure the mesh block id within the
1874 : : meshblock-block as a part of the initialization. It is strongly
1875 : : recommended to use contiguous block ids in mesh file starting from 1.)",
1876 [ + - ][ + - ]: 1219 : "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1877 : :
1878 : : keywords.insert({"volume", "Specify volume",
1879 : : R"(This keyword is used to configure the volume of a meshblock.)",
1880 [ + - ][ + - ]: 1219 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1881 : :
1882 : : keywords.insert({"mass", "Specify mass",
1883 : : R"(This keyword is used to configure the mass within a box/meshblock,
1884 : : or mass of the rigid body which is conformally meshed using the overset
1885 [ + - ][ + - ]: 1219 : mesh.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1886 : :
1887 : : keywords.insert({"energy", "Specify energy per unit mass",
1888 : : R"(This keyword is used to configure energy per unit mass, used for, e.g.,
1889 [ + - ][ + - ]: 1219 : boundary or initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1890 : :
1891 : : keywords.insert({"energy_content", "Specify energy per unit volume",
1892 : : R"(This keyword is used to configure energy per unit volume, used for
1893 [ + - ][ + - ]: 1219 : initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1894 : :
1895 : : keywords.insert({"xmin", "Minimum x coordinate",
1896 : : R"(This keyword used to configure a minimum x coordinate to specify
1897 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1898 : :
1899 : : keywords.insert({"xmax", "Maximum x coordinate",
1900 : : R"(This keyword used to configure a maximum x coordinate to specify
1901 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1902 : :
1903 : : keywords.insert({"ymin", "Minimum y coordinate",
1904 : : R"(This keyword used to configure a minimum y coordinate to specify
1905 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1906 : :
1907 : : keywords.insert({"ymax", "Maximum y coordinate",
1908 : : R"(This keyword used to configure a maximum y coordinate to specify
1909 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1910 : :
1911 : : keywords.insert({"zmin", "Minimum z coordinate",
1912 : : R"(This keyword used to configure a minimum z coordinate to specify
1913 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1914 : :
1915 : : keywords.insert({"zmax", "Maximum z coordinate",
1916 : : R"(This keyword used to configure a maximum z coordinate to specify
1917 [ + - ][ + - ]: 1219 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1918 : :
1919 : : keywords.insert({"orientation", "Configure orientation",
1920 : : R"(Configure orientation of an IC box for rotation about centroid of
1921 : : box (when specified within an IC 'box' block); or configure orientation
1922 : : of a mesh (when specified within a 'mesh' block). Requires specification
1923 : : of three angles about which the entity (box or mesh) is to be rotated.
1924 : : The entity is rotated about the cartesian coordinate axes.)",
1925 [ + - ][ + - ]: 1219 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1926 : :
1927 : : keywords.insert({"initiate", "Initiation type",
1928 : : R"(This keyword is used to select an initiation type to configure how
1929 : : values are assigned for a box/meshblock initialization. This can be used
1930 : : to specify, how the values are assigned to mesh nodes within a box. Uses:
1931 : : (1) impulse: assign the full values at t=0 for all points in a box,
1932 : : (2) linear: use a linear function in time and space, configured with an
1933 : : initiation point in space, a constant velocity of the growing spherical
1934 : : front in time (and space) linearly, and width of the front and assigns
1935 : : values to mesh points falling within the growing spherical shell inside
1936 [ + - ][ + - ]: 1219 : a configured box.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1937 : :
1938 : : keywords.insert({"init_time","Specify the initialization time",
1939 : : R"(This keyword is used to specify the time at which the propagating front
1940 : : is initialized for a mesh block or box IC, with 'initiate linear' type.
1941 : : Delays in initializing separate mesh blocks or boxes can be achieved using
1942 [ + - ][ + - ]: 1219 : different initialization times.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1943 : :
1944 : : keywords.insert({"front_width", "Specify a front width",
1945 : : R"(This keyword is used to specify the width of the propagating front for
1946 : : a mesh block or box IC, with 'initiate linear' type. The suggested value
1947 : : of the front width is about 4-5 times the mesh size inside the mesh block
1948 [ + - ][ + - ]: 1219 : or box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1949 : :
1950 : : keywords.insert({"front_speed", "Specify a front speed",
1951 : : R"(This keyword is used to specify the speed at which a front propagates
1952 [ + - ][ + - ]: 1219 : for a mesh block or box IC, with 'initiate linear' type.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1953 : :
1954 : : keywords.insert({"impulse",
1955 : : "Select the impulse initiation type, for a box/meshblock IC",
1956 : : R"(This keyword can be used to select the 'impulse' initiation/assignment
1957 : : type for box initial conditions. It simply assigns the prescribed values
1958 [ + - ][ + - ]: 1219 : to all mesh points within a configured box at t=0.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1959 : :
1960 : : keywords.insert({"linear",
1961 : : "Select the linear initiation type, for a box/meshblock IC",
1962 : : R"(This keyword is be used to specify the 'linear' initiation parameters
1963 : : for a particular box or meshblock, as a part of the 'energy_pill'
1964 : : initialization. Linear initiation uses a linear function in time and space,
1965 : : configured with an initiation point in space, a constant velocity of the
1966 : : growing spherical front in time (and space) linearly, and width of the front
1967 : : and assigns values to mesh points falling within the growing spherical shell
1968 : : inside a configured box or meshblock. The following keywords are required
1969 : : in the box/meshblock block if 'linear' is used: 'init_time',
1970 [ + - ][ + - ]: 1219 : 'front_width', 'front_speed')"});
[ + - ][ + - ]
[ + - ][ + - ]
1971 : :
1972 : : // -----------------------------------------------------------------------
1973 : : // Overset mesh object
1974 : : // -----------------------------------------------------------------------
1975 : :
1976 : : keywords.insert({"mesh",
1977 : : "Start configuration block assigning a mesh to a solver",
1978 : : R"(This keyword is used to introduce a mesh block, used to
1979 [ + - ][ + - ]: 1219 : assign and configure a mesh to a solver.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1980 : :
1981 : : keywords.insert({"filename", "Set filename",
1982 [ + - ][ + - ]: 1219 : R"(Set filename, e.g., mesh filename for solver coupling.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1983 : :
1984 : : keywords.insert({"location", "Configure location of mesh",
1985 : : R"(Configure location of a mesh relative to its local coordinate
1986 : : system. Requires specification of three distances which are used to
1987 [ + - ][ + - ]: 1219 : relocate the mesh.)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1988 : :
1989 : : keywords.insert({"moment_of_inertia", "Moment of inertia of rigid body",
1990 [ + - ][ + - ]: 1219 : R"(Moment of inertia of rigid body for rotational motion)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1991 : :
1992 : : keywords.insert({"center_of_mass", "Center of mass of rigid body",
1993 : : R"(Center of mass of rigid body used to compute torque for rotational
1994 [ + - ][ + - ]: 1219 : motion)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1995 : :
1996 : : // -----------------------------------------------------------------------
1997 : : // pre-configured problems
1998 : : // -----------------------------------------------------------------------
1999 : :
2000 : : keywords.insert({"user_defined",
2001 : : "Select user-defined specification for a problem",
2002 : : R"(This keyword is used to select the user-defined specification for an
2003 : : option. This could be a 'problem' to be solved by a partial differential
2004 : : equation, but can also be a 'user-defined' mesh velocity specification for
2005 [ + - ][ + - ]: 1219 : ALE mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2006 : :
2007 : : keywords.insert({"shear_diff",
2008 : : "Select the shear + diffusion test problem ",
2009 : : R"(This keyword is used to select the shear diffusion test problem. The
2010 : : initial and boundary conditions are specified to set up the test problem
2011 : : suitable to exercise and test the advection and diffusion terms of the
2012 [ + - ][ + - ]: 1219 : scalar transport equation.)" });
[ + - ][ + - ]
[ + - ][ + - ]
2013 : :
2014 : : keywords.insert({"slot_cyl",
2015 : : "Select Zalesak's slotted cylinder test problem",
2016 : : R"(This keyword is used to select Zalesak's slotted cylinder test
2017 : : problem. The initial and boundary conditions are specified to set up the
2018 : : test problem suitable to exercise and test the advection and diffusion
2019 [ + - ][ + - ]: 1219 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2020 : :
2021 : : keywords.insert({"gauss_hump",
2022 : : "Select advection of 2D Gaussian hump test problem",
2023 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
2024 : : problem. The initial and boundary conditions are specified to set up the
2025 : : test problem suitable to exercise and test the advection
2026 [ + - ][ + - ]: 1219 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2027 : :
2028 : : keywords.insert({"cyl_advect",
2029 : : "Select advection of cylinder test problem",
2030 : : R"(This keyword is used to select the advection of cylinder test
2031 : : problem. The initial and boundary conditions are specified to set up the
2032 : : test problem suitable to exercise and test the advection
2033 [ + - ][ + - ]: 1219 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2034 : :
2035 : : keywords.insert({"cyl_vortex",
2036 : : "Select deformation of cylinder in a vortex test problem",
2037 : : R"(This keyword is used to select the test problem which deforms a cylinder
2038 : : in a vortical velocity field. The initial and boundary conditions are
2039 : : specified to set up the test problem suitable to exercise and test the
2040 [ + - ][ + - ]: 1219 : advection terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2041 : :
2042 : : keywords.insert({"vortical_flow",
2043 : : "Select the vortical flow test problem ",
2044 : : R"(This keyword is used to select the vortical flow test problem. The
2045 : : purpose of this test problem is to test velocity errors generated by spatial
2046 : : operators in the presence of 3D vorticity and in particluar the
2047 : : superposition of planar and vortical flows, analogous to voritcity
2048 : : stretching. For more details, see Waltz,
2049 : : et. al, "Manufactured solutions for the three-dimensional Euler equations
2050 : : with relevance to Inertial Confinement Fusion", Journal of Computational
2051 [ + - ][ + - ]: 1219 : Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2052 : :
2053 : : keywords.insert({"nl_energy_growth",
2054 : : "Select the nonlinear energy growth test problem",
2055 : : R"(This keyword is used to select the nonlinear energy growth test problem.
2056 : : The purpose of this test problem is to test nonlinear, time dependent energy
2057 : : growth and the subsequent development of pressure gradients due to coupling
2058 : : between the internal energy and the equation of state. For more details,
2059 : : see Waltz, et. al, "Manufactured
2060 : : solutions for the three-dimensional Euler equations with relevance to
2061 : : Inertial Confinement Fusion", Journal of Computational Physics 267 (2014)
2062 [ + - ][ + - ]: 1219 : 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2063 : :
2064 : : keywords.insert({"rayleigh_taylor",
2065 : : "Select the Rayleigh-Taylor test problem ",
2066 : : R"(This keyword is used to select the Rayleigh-Taylor unstable configuration
2067 : : test problem. The purpose of this test problem is to assess time dependent
2068 : : fluid motion in the presence of Rayleigh-Taylor unstable conditions, i.e.
2069 : : opposing density and pressure gradients.
2070 : : For more details, see Waltz, et. al, "Manufactured solutions for the
2071 : : three-dimensional Euler equations with relevance to Inertial Confinement
2072 [ + - ][ + - ]: 1219 : Fusion", Journal of Computational Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2073 : :
2074 : : keywords.insert({"taylor_green",
2075 : : "Select the Taylor-Green test problem ",
2076 : : R"(This keyword is used to select the Taylor-Green vortex test problem. The
2077 : : purpose of this problem is to test time accuracy and the correctness of the
2078 : : discretization of the viscous term in the Navier-Stokes equation. For more
2079 : : details on the flow, see G.I. Taylor, A.E.
2080 : : Green, "Mechanism of the Production of Small Eddies from Large Ones", Proc.
2081 : : R. Soc. Lond. A 1937 158 499-521; DOI: 10.1098/rspa.1937.0036. Published 3
2082 [ + - ][ + - ]: 1219 : February 1937.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2083 : :
2084 : : keywords.insert({"sod_shocktube",
2085 : : "Select the Sod shock-tube test problem ",
2086 : : R"(This keyword is used to select the Sod shock-tube test problem. The
2087 : : purpose of this test problem is to test the correctness of the
2088 : : approximate Riemann solver and its shock and interface capturing
2089 : : capabilities. For more details, see
2090 : : G. A. Sod, "A Survey of Several Finite Difference Methods for Systems of
2091 : : Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27 (1978)
2092 [ + - ][ + - ]: 1219 : 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2093 : :
2094 : : keywords.insert({"rotated_sod_shocktube",
2095 : : "Select the rotated Sod shock-tube test problem ",
2096 : : R"(This keyword is used to select the rotated Sod shock-tube test problem.
2097 : : This the same as Sod shocktube but the geometry is rotated about X, Y, Z
2098 : : each by 45 degrees (in that order) so that none of the domain boundary align
2099 : : with any of the coordinate directions. The purpose of this test problem is
2100 : : to test the correctness of the approximate Riemann solver and its shock and
2101 : : interface capturing capabilities in an arbitrarily oriented geometry.
2102 : : For more details on the Sod
2103 : : problem, see G. A. Sod, "A Survey of Several Finite Difference Methods for
2104 : : Systems of Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27
2105 [ + - ][ + - ]: 1219 : (1978) 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2106 : :
2107 : : keywords.insert({"shedding_flow",
2108 : : "Select the Shedding flow test problem ",
2109 : : R"(This keyword is used to select the Shedding flow test problem. It
2110 : : describe a quasi-2D inviscid flow over a triangular wedge in tetrahedron
2111 : : grid. The purpose of this test problem is to test the capability of DG
2112 : : scheme for retaining the shape of vortices and also different error
2113 : : indicator behavior for this external flow problem when p-adaptive DG scheme
2114 [ + - ][ + - ]: 1219 : is applied.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2115 : :
2116 : : keywords.insert({"sedov_blastwave",
2117 : : "Select the Sedov blast-wave test problem ",
2118 : : R"(This keyword is used to select the Sedov blast-wave test problem. The
2119 : : purpose of this test problem is to test the correctness of the
2120 : : approximate Riemann solver and its strong shock and interface capturing
2121 [ + - ][ + - ]: 1219 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2122 : :
2123 : : keywords.insert({"interface_advection",
2124 : : "Select the interface advection test problem ",
2125 : : R"(This keyword is used to select the interface advection test problem.
2126 : : The purpose of this test problem is to test the well-balancedness of the
2127 : : multi-material discretization and its interface capturing
2128 [ + - ][ + - ]: 1219 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2129 : :
2130 : : keywords.insert({"gauss_hump_compflow",
2131 : : "Select advection of 2D Gaussian hump test problem",
2132 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
2133 : : problem. The initial and boundary conditions are specified to set up the
2134 : : test problem suitable to exercise and test the advection terms of the
2135 : : Euler equations. The baseline of the density distribution in this testcase
2136 : : is 1 instead of 0 in gauss_hump_transport which enables it to be the
2137 [ + - ][ + - ]: 1219 : regression testcase for p-adaptive DG scheme.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2138 : :
2139 : : keywords.insert({"waterair_shocktube",
2140 : : "Select the water-air shock-tube test problem ",
2141 : : R"(This keyword is used to select the Water-air shock-tube test problem.
2142 : : The purpose of this test problem is to test the correctness of the
2143 : : multi-material pressure relaxation procedure and its interface capturing
2144 : : capabilities. For more details, see
2145 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2146 : : interfaces with compressible fluids on unstructured meshes. Journal of
2147 [ + - ][ + - ]: 1219 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2148 : :
2149 : : keywords.insert({"shock_hebubble",
2150 : : "Select the shock He-bubble test problem ",
2151 : : R"(This keyword is used to select the shock He-bubble test problem. The
2152 : : purpose of this test problem is to test the correctness of the
2153 : : multi-material algorithm and its shock-interface interaction
2154 : : capabilities. For more details, see
2155 : : Quirk, J. J., & Karni, S. (1996). On the dynamics of a shock–bubble
2156 [ + - ][ + - ]: 1219 : interaction. Journal of Fluid Mechanics, 318, 129-163.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2157 : :
2158 : : keywords.insert({"underwater_ex",
2159 : : "Select the underwater explosion test problem ",
2160 : : R"(This keyword is used to select the underwater explosion test problem.
2161 : : The purpose of this test problem is to test the correctness of the
2162 : : multi-material algorithm and its interface capturing capabilities in the
2163 : : presence of strong shocks and large deformations.
2164 : : For more details, see
2165 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2166 : : interfaces with compressible fluids on unstructured meshes. Journal of
2167 [ + - ][ + - ]: 1219 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2168 : :
2169 : : keywords.insert({"shockdensity_wave",
2170 : : "Select the shock-density wave test problem ",
2171 : : R"(This keyword is used to select the shock-density wave test problem.
2172 : : THe purpose of this test problem is to assess the accuracy of high order
2173 : : method in predicting the interaction of a density wave with a shock front.
2174 : : For more details, see Yu, L., Matthias
2175 : : I. (2014). Discontinuous Galerkin method for multicomponent chemically
2176 : : reacting flows and combustion. Journal of Computational Physics, 270,
2177 [ + - ][ + - ]: 1219 : 105-137.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2178 : :
2179 : : keywords.insert({"equilinterface_advect",
2180 : : "Select the advection of equilibrium interface problem ",
2181 : : R"(This keyword is used to select the advection of equilibrium interface
2182 : : problem. This is a manufactured problem with source terms with nonlinear
2183 : : solutions near the material interface. Source terms are used to ensure
2184 [ + - ][ + - ]: 1219 : that the conservation laws are satisfied by the manufactured solution.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2185 : :
2186 : : keywords.insert({"sinewave_packet",
2187 : : "Select the advection of sinewave packet problem ",
2188 : : R"(This keyword is used to select the advection of sinewave packet
2189 [ + - ][ + - ]: 1219 : problem.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2190 : :
2191 : : keywords.insert({"richtmyer_meshkov",
2192 : : "Select the Richtmyer-Meshkov instability problem ",
2193 : : R"(This keyword is used to select the Richtmyer-Meshkov instability
2194 [ + - ][ + - ]: 1219 : problem. In this problem, a shock hits a perturbed material interface.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2195 : :
2196 : : // -----------------------------------------------------------------------
2197 : :
2198 : : // Initialize help: fill own keywords
2199 : 1219 : tk::ctr::Info ctrinfoFill(get< tag::cmd, tag::ctrinfo >());
2200 [ + + ]: 315721 : for (const auto& i : keywords) {
2201 [ + - ]: 314502 : ctrinfoFill.fill(i);
2202 : : }
2203 : 1219 : }
2204 : :
2205 : : //! Query scheme centering
2206 : : //! \return Scheme centering
2207 : 173 : tk::Centering centering() const
2208 [ + - ]: 173 : { return ctr::Scheme().centering( get< tag::scheme >() ); }
2209 : :
2210 : : /** @name Pack/Unpack: Serialize InputDeck object for Charm++ */
2211 : : ///@{
2212 : : //! \brief Pack/Unpack serialize member function
2213 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2214 : 1604 : void pup( PUP::er& p ) { tk::TaggedTuple< ConfigMembers >::pup(p); }
2215 : : //! \brief Pack/Unpack serialize operator|
2216 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2217 : : //! \param[in,out] c InputDeck object reference
2218 : 1604 : friend void operator|( PUP::er& p, InputDeck& c ) { c.pup(p); }
2219 : : //@}
2220 : :
2221 : : };
2222 : :
2223 : : } // ctr::
2224 : : } // inciter::
2225 : :
2226 : : #endif // InputDeck_h
|