Branch data Line data Source code
1 : : // *****************************************************************************
2 : : /*!
3 : : \file src/Control/Inciter/InputDeck/InputDeck.hpp
4 : : \copyright 2012-2015 J. Bakosi,
5 : : 2016-2018 Los Alamos National Security, LLC.,
6 : : 2019-2021 Triad National Security, LLC.
7 : : All rights reserved. See the LICENSE file for details.
8 : : \brief Inciter's new input deck definition
9 : : \details This file defines the heterogeneous struct that is used for storing
10 : : the data from user input during the control file parsing of the
11 : : computational shock hydrodynamics tool, Inciter.
12 : : */
13 : : // *****************************************************************************
14 : : #ifndef InputDeck_h
15 : : #define InputDeck_h
16 : :
17 : : #include <getopt.h>
18 : : #include "Types.hpp"
19 : : #include "TaggedTuple.hpp"
20 : : #include "Inciter/CmdLine/CmdLine.hpp"
21 : : #include "Transfer.hpp"
22 : : #include "Inciter/OutVar.hpp"
23 : : #include "Inciter/Options/PDE.hpp"
24 : : #include "Inciter/Options/Problem.hpp"
25 : : #include "Inciter/Options/Scheme.hpp"
26 : : #include "Inciter/Options/Limiter.hpp"
27 : : #include "Inciter/Options/Flux.hpp"
28 : : #include "Inciter/Options/Initiate.hpp"
29 : : #include "Inciter/Options/AMRInitial.hpp"
30 : : #include "Inciter/Options/AMRError.hpp"
31 : : #include "Inciter/Options/PrefIndicator.hpp"
32 : : #include "Inciter/Options/MeshVelocity.hpp"
33 : : #include "Inciter/Options/MeshVelocitySmoother.hpp"
34 : : #include "Inciter/Options/Material.hpp"
35 : : #include "Options/PartitioningAlgorithm.hpp"
36 : : #include "Options/TxtFloatFormat.hpp"
37 : : #include "Options/FieldFile.hpp"
38 : : #include "Options/Error.hpp"
39 : : #include "Options/UserTable.hpp"
40 : :
41 : : namespace inciter {
42 : :
43 : : namespace ctr {
44 : :
45 : : using ncomp_t = std::size_t;
46 : :
47 : : using bclist = tk::TaggedTuple< brigand::list<
48 : : tag::dirichlet, std::vector< std::size_t >,
49 : : tag::symmetry, std::vector< std::size_t >,
50 : : tag::outlet, std::vector< std::size_t >,
51 : : tag::farfield, std::vector< std::size_t >,
52 : : tag::extrapolate, std::vector< std::size_t >,
53 : : tag::noslipwall, std::vector< std::size_t >
54 : : > >;
55 : :
56 : : // Transport
57 : : using transportList = tk::TaggedTuple< brigand::list<
58 : : tag::physics, PhysicsType,
59 : : tag::ncomp, std::size_t,
60 : : tag::intsharp, int,
61 : : tag::intsharp_param, tk::real,
62 : : tag::problem, ProblemType,
63 : : tag::diffusivity, std::vector< tk::real >,
64 : : tag::lambda, std::vector< tk::real >,
65 : : tag::u0, std::vector< tk::real >
66 : : > >;
67 : :
68 : : // CompFlow
69 : : using compflowList = tk::TaggedTuple< brigand::list<
70 : : tag::physics, PhysicsType,
71 : : tag::problem, ProblemType,
72 : : tag::alpha, tk::real,
73 : : tag::beta, tk::real,
74 : : tag::betax, tk::real,
75 : : tag::betay, tk::real,
76 : : tag::betaz, tk::real,
77 : : tag::r0, tk::real,
78 : : tag::p0, tk::real,
79 : : tag::ce, tk::real,
80 : : tag::kappa, tk::real
81 : : > >;
82 : :
83 : : // MultiMat
84 : : using multimatList = tk::TaggedTuple< brigand::list<
85 : : tag::physics, PhysicsType,
86 : : tag::nmat, std::size_t,
87 : : tag::prelax, uint64_t,
88 : : tag::prelax_timescale, tk::real,
89 : : tag::intsharp, int,
90 : : tag::intsharp_param, tk::real,
91 : : tag::rho0constraint, uint64_t,
92 : : tag::dt_sos_massavg, int,
93 : : tag::problem, ProblemType,
94 : : tag::viscous, bool
95 : : > >;
96 : :
97 : : // MultiSpecies
98 : : using multispeciesList = tk::TaggedTuple< brigand::list<
99 : : tag::physics, PhysicsType,
100 : : tag::nspec, std::size_t,
101 : : tag::problem, ProblemType,
102 : : tag::viscous, bool
103 : : > >;
104 : :
105 : : // Material/EOS object
106 : : using materialList = tk::TaggedTuple< brigand::list<
107 : : tag::eos, MaterialType,
108 : : tag::id, std::vector< uint64_t >,
109 : : tag::gamma, std::vector< tk::real >,
110 : : tag::pstiff, std::vector< tk::real >,
111 : : tag::w_gru, std::vector< tk::real >,
112 : : tag::A_jwl, std::vector< tk::real >,
113 : : tag::B_jwl, std::vector< tk::real >,
114 : : tag::C_jwl, std::vector< tk::real >,
115 : : tag::R1_jwl, std::vector< tk::real >,
116 : : tag::R2_jwl, std::vector< tk::real >,
117 : : tag::rho0_jwl, std::vector< tk::real >,
118 : : tag::de_jwl, std::vector< tk::real >,
119 : : tag::rhor_jwl, std::vector< tk::real >,
120 : : tag::Tr_jwl, std::vector< tk::real >,
121 : : tag::Pr_jwl, std::vector< tk::real >,
122 : : tag::mu, std::vector< tk::real >,
123 : : tag::yield_stress, std::vector< tk::real >,
124 : : tag::cv, std::vector< tk::real >,
125 : : tag::k, std::vector< tk::real >
126 : : > >;
127 : :
128 : : // Species/EOS object
129 : : using speciesList = tk::TaggedTuple< brigand::list<
130 : : tag::id, std::vector< uint64_t >,
131 : : tag::gamma, std::vector< tk::real >,
132 : : tag::R, std::vector< tk::real >,
133 : : tag::cp_coeff, std::vector< std::vector< std::vector< tk::real > > >,
134 : : tag::t_range, std::vector< std::vector< tk::real > >,
135 : : tag::dH_ref, std::vector< tk::real >
136 : : > >;
137 : :
138 : : // Boundary conditions block
139 : : using bcList = tk::TaggedTuple< brigand::list<
140 : : tag::mesh, std::vector< std::size_t >,
141 : : tag::dirichlet, std::vector< std::size_t >,
142 : : tag::symmetry, std::vector< std::size_t >,
143 : : tag::outlet, std::vector< std::size_t >,
144 : : tag::farfield, std::vector< std::size_t >,
145 : : tag::extrapolate, std::vector< std::size_t >,
146 : : tag::noslipwall, std::vector< std::size_t >,
147 : : tag::stag_point, std::vector< tk::real >,
148 : : tag::radius, tk::real,
149 : : tag::velocity, std::vector< tk::real >,
150 : : tag::pressure, tk::real,
151 : : tag::density, tk::real,
152 : : tag::temperature, tk::real,
153 : : tag::mass_fractions, std::vector< tk::real >,
154 : : tag::materialid, std::size_t,
155 : : tag::inlet, std::vector<
156 : : tk::TaggedTuple< brigand::list<
157 : : tag::sideset, std::vector< uint64_t >,
158 : : tag::velocity, std::vector< tk::real >,
159 : : tag::pressure, tk::real,
160 : : tag::temperature, tk::real,
161 : : tag::materialid, std::size_t
162 : : > >
163 : : >,
164 : : tag::timedep, std::vector<
165 : : tk::TaggedTuple< brigand::list<
166 : : tag::sideset, std::vector< uint64_t >,
167 : : tag::fn, std::vector< tk::real >
168 : : > >
169 : : >
170 : : > >;
171 : :
172 : : // IC box
173 : : using boxList = tk::TaggedTuple< brigand::list<
174 : : tag::materialid, std::size_t,
175 : : tag::volume, tk::real,
176 : : tag::mass, tk::real,
177 : : tag::density, tk::real,
178 : : tag::velocity, std::vector< tk::real >,
179 : : tag::pressure, tk::real,
180 : : tag::energy, tk::real,
181 : : tag::energy_content, tk::real,
182 : : tag::temperature, tk::real,
183 : : tag::mass_fractions, std::vector< tk::real >,
184 : : tag::xmin, tk::real,
185 : : tag::xmax, tk::real,
186 : : tag::ymin, tk::real,
187 : : tag::ymax, tk::real,
188 : : tag::zmin, tk::real,
189 : : tag::zmax, tk::real,
190 : : tag::orientation, std::vector< tk::real >,
191 : : tag::initiate, inciter::ctr::InitiateType,
192 : : tag::point, std::vector< tk::real >,
193 : : tag::init_time, tk::real,
194 : : tag::front_width, tk::real,
195 : : tag::front_speed, tk::real
196 : : > >;
197 : :
198 : : // IC meshblock
199 : : using meshblockList = tk::TaggedTuple< brigand::list<
200 : : tag::blockid, std::uint64_t,
201 : : tag::materialid, std::size_t,
202 : : tag::volume, tk::real,
203 : : tag::mass, tk::real,
204 : : tag::density, tk::real,
205 : : tag::velocity, std::vector< tk::real >,
206 : : tag::pressure, tk::real,
207 : : tag::energy, tk::real,
208 : : tag::energy_content, tk::real,
209 : : tag::temperature, tk::real,
210 : : tag::mass_fractions, std::vector< tk::real >,
211 : : tag::initiate, inciter::ctr::InitiateType,
212 : : tag::point, std::vector< tk::real >,
213 : : tag::init_time, tk::real,
214 : : tag::front_width, tk::real,
215 : : tag::front_speed, tk::real
216 : : > >;
217 : :
218 : : // Initial conditions (ic) block
219 : : using icList = tk::TaggedTuple< brigand::list<
220 : : tag::materialid, std::size_t,
221 : : tag::pressure, tk::real,
222 : : tag::temperature, tk::real,
223 : : tag::mass_fractions, std::vector< tk::real >,
224 : : tag::density, tk::real,
225 : : tag::energy, tk::real,
226 : : tag::velocity, std::vector< tk::real >,
227 : : tag::box, std::vector< boxList >,
228 : : tag::meshblock, std::vector< meshblockList >
229 : : > >;
230 : :
231 : : // Overset mesh block
232 : : using meshList = tk::TaggedTuple< brigand::list<
233 : : tag::filename, std::string,
234 : : tag::location, std::vector< tk::real >,
235 : : tag::orientation, std::vector< tk::real >,
236 : : tag::velocity, std::vector< tk::real >
237 : : > >;
238 : :
239 : : // Field output block
240 : : using fieldOutputList = tk::TaggedTuple< brigand::list<
241 : : tag::interval, uint32_t,
242 : : tag::time_interval, tk::real,
243 : : tag::time_range, std::vector< tk::real >,
244 : : tag::refined, bool,
245 : : tag::filetype, tk::ctr::FieldFileType,
246 : : tag::sideset, std::vector< uint64_t >,
247 : : tag::outvar, std::vector< OutVar >,
248 : : tag::elemalias, std::vector< std::string >, // only for error checking
249 : : tag::elemvar, std::vector< std::string >, // only for error checking
250 : : tag::nodealias, std::vector< std::string >, // only for error checking
251 : : tag::nodevar, std::vector< std::string > // only for error checking
252 : : > >;
253 : :
254 : : // Diagnostics block
255 : : using diagnosticsList = tk::TaggedTuple< brigand::list<
256 : : tag::interval, uint32_t,
257 : : tag::error, tk::ctr::ErrorType,
258 : : tag::format, tk::ctr::TxtFloatFormatType,
259 : : tag::precision, std::streamsize
260 : : > >;
261 : :
262 : : // History output block
263 : : using historyOutputList = tk::TaggedTuple< brigand::list<
264 : : tag::interval, uint32_t,
265 : : tag::time_interval, tk::real,
266 : : tag::time_range, std::vector< tk::real >,
267 : : tag::format, tk::ctr::TxtFloatFormatType,
268 : : tag::precision, std::streamsize,
269 : : tag::point, std::vector<
270 : : tk::TaggedTuple< brigand::list<
271 : : tag::id, std::string,
272 : : tag::coord, std::vector< tk::real >
273 : : > >
274 : : >
275 : : > >;
276 : :
277 : : using ConfigMembers = brigand::list<
278 : :
279 : : tag::title, std::string,
280 : :
281 : : // Command line parameters
282 : : tag::cmd, CmdLine,
283 : :
284 : : // time stepping options
285 : : tag::nstep, uint64_t,
286 : : tag::term, tk::real,
287 : : tag::t0, tk::real,
288 : : tag::dt, tk::real,
289 : : tag::cfl, tk::real,
290 : : tag::ttyi, uint32_t,
291 : : tag::imex_runge_kutta, uint32_t,
292 : : tag::imex_maxiter, uint32_t,
293 : : tag::imex_reltol, tk::real,
294 : : tag::imex_abstol, tk::real,
295 : :
296 : : // steady-state solver options
297 : : tag::steady_state, bool,
298 : : tag::residual, tk::real,
299 : : tag::rescomp, uint32_t,
300 : :
301 : : // mesh partitioning and reordering/sorting choices
302 : : tag::partitioning, tk::ctr::PartitioningAlgorithmType,
303 : : tag::pelocal_reorder, bool,
304 : : tag::operator_reorder, bool,
305 : :
306 : : // discretization scheme choices
307 : : tag::scheme, SchemeType,
308 : : tag::ndof, std::size_t,
309 : : tag::rdof, std::size_t,
310 : : tag::flux, FluxType,
311 : : tag::lowspeed_kp, tk::real,
312 : :
313 : : // limiter options
314 : : tag::limiter, LimiterType,
315 : : tag::cweight, tk::real,
316 : : tag::shock_detector_coeff, tk::real,
317 : : tag::accuracy_test, bool,
318 : : tag::limsol_projection, bool,
319 : :
320 : : // PDE options
321 : : tag::ncomp, std::size_t,
322 : : tag::pde, PDEType,
323 : : tag::transport, transportList,
324 : : tag::compflow, compflowList,
325 : : tag::multimat, multimatList,
326 : : tag::multispecies, multispeciesList,
327 : :
328 : : // Dependent variable name
329 : : tag::depvar, std::vector< char >,
330 : :
331 : : tag::sys, std::map< std::size_t, std::size_t >,
332 : :
333 : : tag::material, std::vector< materialList >,
334 : :
335 : : tag::species, std::vector< speciesList >,
336 : :
337 : : tag::matidxmap, tk::TaggedTuple< brigand::list<
338 : : tag::eosidx, std::vector< std::size_t >,
339 : : tag::matidx, std::vector< std::size_t >,
340 : : tag::solidx, std::vector< std::size_t >
341 : : > >,
342 : :
343 : : // Conditions
344 : : tag::bc, std::vector< bcList >,
345 : : tag::ic, icList,
346 : : tag::mesh, std::vector< meshList >,
347 : : tag::transfer, std::vector< Transfer >,
348 : :
349 : : // ALE block
350 : : // ---------------------------------------------------------------------------
351 : : tag::ale, tk::TaggedTuple< brigand::list<
352 : : tag::ale, bool,
353 : : tag::smoother, MeshVelocitySmootherType,
354 : : tag::mesh_velocity, MeshVelocityType,
355 : : tag::mesh_motion, std::vector< std::size_t >,
356 : : tag::meshforce, std::vector< tk::real >,
357 : : tag::dvcfl, tk::real,
358 : : tag::vortmult, tk::real,
359 : : tag::maxit, std::size_t,
360 : : tag::tolerance, tk::real,
361 : : tag::dirichlet, std::vector< std::size_t >,
362 : : tag::symmetry, std::vector< std::size_t >,
363 : : tag::move, std::vector<
364 : : tk::TaggedTuple< brigand::list<
365 : : tag::sideset, std::vector< uint64_t >,
366 : : tag::fntype, tk::ctr::UserTableType,
367 : : tag::fn, std::vector< tk::real >
368 : : > >
369 : : >
370 : : > >,
371 : :
372 : : // p-refinement block
373 : : // ---------------------------------------------------------------------------
374 : : tag::pref, tk::TaggedTuple< brigand::list<
375 : : tag::pref, bool,
376 : : tag::indicator, PrefIndicatorType,
377 : : tag::ndofmax, std::size_t,
378 : : tag::tolref, tk::real
379 : : > >,
380 : :
381 : : // AMR block
382 : : // ---------------------------------------------------------------------------
383 : : tag::amr, tk::TaggedTuple< brigand::list<
384 : : tag::amr, bool,
385 : : tag::t0ref, bool,
386 : : tag::dtref, bool,
387 : : tag::dtref_uniform, bool,
388 : : tag::dtfreq, std::size_t,
389 : : tag::maxlevels, std::size_t,
390 : : tag::initial, std::vector< AMRInitialType >,
391 : : tag::edgelist, std::vector< std::size_t >,
392 : : tag::coords, tk::TaggedTuple< brigand::list<
393 : : tag::xminus, tk::real,
394 : : tag::xplus, tk::real,
395 : : tag::yminus, tk::real,
396 : : tag::yplus, tk::real,
397 : : tag::zminus, tk::real,
398 : : tag::zplus, tk::real
399 : : > >,
400 : : tag::error, AMRErrorType,
401 : : tag::refvar, std::vector< char >,
402 : : tag::tol_refine, tk::real,
403 : : tag::tol_derefine, tk::real
404 : : > >,
405 : :
406 : : // Output options
407 : : tag::field_output, fieldOutputList,
408 : : tag::diagnostics, diagnosticsList,
409 : : tag::history_output, historyOutputList
410 : : >;
411 : :
412 : : // Class storing the Config params
413 : : class InputDeck : public tk::TaggedTuple< ConfigMembers > {
414 : :
415 : : public:
416 : : //! Set of tags to ignore when printing this InputDeck
417 : : using ignore = CmdLine::ignore;
418 : :
419 : : //! \brief Constructor: set defaults
420 : : //! \param[in] cl Previously parsed and store command line
421 : : //! \details Anything not set here is initialized by the compiler using the
422 : : //! default constructor for the corresponding type.
423 : 1366 : explicit InputDeck( const CmdLine& cl = {} ) {
424 : : // Set previously parsed command line
425 [ + - ]: 1366 : get< tag::cmd >() = cl;
426 : : // Default time stepping params
427 : 1366 : get< tag::dt >() = 0.0;
428 : 1366 : get< tag::cfl >() = 0.0;
429 : : // Default AMR settings
430 : 1366 : auto rmax =
431 : : std::numeric_limits< tk::real >::max() / 100;
432 : 1366 : get< tag::amr, tag::coords, tag::xminus >() = rmax;
433 : 1366 : get< tag::amr, tag::coords, tag::xplus >() = -rmax;
434 : 1366 : get< tag::amr, tag::coords, tag::yminus >() = rmax;
435 : 1366 : get< tag::amr, tag::coords, tag::yplus >() = -rmax;
436 : 1366 : get< tag::amr, tag::coords, tag::zminus >() = rmax;
437 : 1366 : get< tag::amr, tag::coords, tag::zplus >() = -rmax;
438 : :
439 : : // -----------------------------------------------------------------------
440 : : /*
441 : : Keyword vector
442 : : The following code generates a vector of keywords, for the sole purpose
443 : : of documentation and user-help (accessible via the --helpctr and
444 : : --helpkw cmdline arguments. If entries for a keyword are not added to
445 : : this vector, help will not be output for it. The entries follow the
446 : : function signature of the tk::entry_t constructor (defined in
447 : : Base/Types.hpp).
448 : : */
449 : : // -----------------------------------------------------------------------
450 : 2732 : std::set< tk::entry_t > keywords;
451 : :
452 : : keywords.insert({"inciter",
453 : : "Start configuration block for inciter",
454 : : R"(This keyword is used to select inciter. Inciter, is a continuum-realm
455 : : shock hydrodynamics tool, solving a system of PDEs. The entire control
456 [ + - ][ + - ]: 1366 : file must be enclosed within the inciter block)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
457 : :
458 : : keywords.insert({"title", "Title", R"(The title may be specified in
459 [ + - ][ + - ]: 1366 : the input file. It is optional.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
460 : :
461 : : // -----------------------------------------------------------------------
462 : : // time stepping options
463 : : // -----------------------------------------------------------------------
464 : :
465 : : keywords.insert({"nstep", "Set number of time steps to take",
466 : : R"(This keyword is used to specify the number of time steps to take in a
467 : : simulation. The number of time steps are used in conjunction with the
468 : : maximmum time specified by keyword 'term': the simulation stops whichever
469 : : is reached first. Both 'nstep' and 'term' can be left unspecified, in
470 [ + - ][ + - ]: 1366 : which case their default values are used. See also 'term'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
471 : :
472 : : keywords.insert({"term", "Set maximum physical time to simulate",
473 : : R"(This keyword is used to specify the termination time in a simulation.
474 : : The termination time and number of time steps, specified by 'nstep', are
475 : : used in conjunction to determine when to stop a simulation: whichever is
476 : : reached first. Both 'nstep' and 'term' can be left unspecified, in which
477 [ + - ][ + - ]: 1366 : case their default values are used. See also 'nstep'.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
478 : :
479 : : keywords.insert({"t0", "Set starting non-dimensional time",
480 : : R"(This keyword is used to specify the starting time in a simulation.)",
481 [ + - ][ + - ]: 1366 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
482 : :
483 : : keywords.insert({"dt", "Select constant time step size",
484 : : R"(This keyword is used to specify the time step size that used as a
485 : : constant during simulation. Setting 'cfl' and 'dt' are mutually
486 [ + - ][ + - ]: 1366 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
487 : :
488 : : keywords.insert({"cfl",
489 : : "Set the Courant-Friedrichs-Lewy (CFL) coefficient",
490 : : R"(This keyword is used to specify the CFL coefficient for
491 : : variable-time-step-size simulations. Setting 'cfl' and 'dt' are mutually
492 [ + - ][ + - ]: 1366 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
493 : :
494 : : keywords.insert({"ttyi", "Set screen output interval",
495 : : R"(This keyword is used to specify the interval in time steps for screen
496 [ + - ][ + - ]: 1366 : output during a simulation.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
497 : :
498 : : keywords.insert({"imex_runge_kutta",
499 : : "Toggle use of IMplicit-EXplicit Runge-Kutta scheme",
500 : : R"(This keywords is used to turn IMEX integrator on/off for solid materials
501 : : in a multimat run. Plastic terms are integrated implicitly in time. This
502 : : flag will activate an Implicit-Explicit Runge-Kutta scheme to replace the
503 : : explicit one that is usually used. Scheme taken from Cavaglieri, D., &
504 : : Bewley, T. (2015). Low-storage implicit/explicit Runge–Kutta schemes for
505 : : the simulation of stiff high-dimensional ODE systems. Journal of
506 [ + - ][ + - ]: 1366 : Computational Physics, 286, 172-193.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
507 : :
508 : : keywords.insert({"imex_maxiter",
509 : : "Set maximum number of iterations for non-linear solver with IMEX-RK scheme",
510 : : R"(This keywords is used to specify the maximum number of iterations that
511 : : the non-linear solver uses to obtain the implicit unknowns within the
512 [ + - ][ + - ]: 1366 : Implicit-Explicit Runge-Kutta scheme.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
513 : :
514 : : keywords.insert({"imex_reltol",
515 : : "Set relative tolerance for non-linear solver with IMEX-RK scheme",
516 : : R"(This keywords is used to specify the relative tolerance that
517 : : the non-linear solver uses to obtain the implicit unknowns within the
518 [ + - ][ + - ]: 1366 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
519 : :
520 : : keywords.insert({"imex_abstol",
521 : : "Set absolute tolerance for non-linear solver with IMEX-RK scheme",
522 : : R"(This keywords is used to specify the absolute tolerance that
523 : : the non-linear solver uses to obtain the implicit unknowns within the
524 [ + - ][ + - ]: 1366 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
525 : :
526 : : // -----------------------------------------------------------------------
527 : : // steady-state solver options
528 : : // -----------------------------------------------------------------------
529 : :
530 : : keywords.insert({"steady_state", "March to steady state",
531 : : R"(This keyword is used indicate that local time stepping should be used
532 [ + - ][ + - ]: 1366 : to march towards a stationary solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
533 : :
534 : : keywords.insert({"residual",
535 : : "Set the convergence criterion for the residual to reach",
536 : : R"(This keyword is used to specify a convergence criterion for the local
537 : : time stepping marching to steady state, below which the simulation is
538 [ + - ][ + - ]: 1366 : considered converged.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
539 : :
540 : : keywords.insert({"rescomp",
541 : : "Equation system component index for convergence",
542 : : R"(This keyword is used to specify a single integer that is used to denote
543 : : the equation component index in the complete system of equations
544 : : configured, to use for the convergence criterion for local
545 [ + - ][ + - ]: 1366 : time stepping marching towards steady state.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
546 : :
547 : : // -----------------------------------------------------------------------
548 : : // mesh partitioning and reordering/sorting choices
549 : : // -----------------------------------------------------------------------
550 : :
551 : : keywords.insert({"partitioning",
552 : : "Select mesh partitioning algorithm",
553 : : R"(This keyword is used to select a mesh partitioning algorithm. See
554 : : Control/Options/PartitioningAlgorithm.hpp for valid options.)",
555 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
556 : :
557 : : keywords.insert({"rcb",
558 : : "Select recursive coordinate bisection mesh partitioner",
559 : : R"(This keyword is used to select the recursive coordinate bisection (RCB)
560 : : mesh partitioner. RCB is a geometry-based partitioner used to distribute
561 : : an input mesh among processing elements. See
562 [ + - ][ + - ]: 1366 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
563 : :
564 : : keywords.insert({"rib",
565 : : "Select recursive inertial bisection mesh partitioner",
566 : : R"(This keyword is used to select the recursive inertial bisection (RIB)
567 : : mesh partitioner. RIB is a geometry-based partitioner used to distribute
568 : : an input mesh among processing elements. See
569 [ + - ][ + - ]: 1366 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
570 : :
571 : : keywords.insert({"hsfc",
572 : : "Select Hilbert Space Filling Curve (HSFC) mesh partitioner",
573 : : R"(This keyword is used to select the Hilbert Space Filling Curve (HSFC)
574 : : mesh partitioner. HSFC is a geometry-based partitioner used to distribute
575 : : an input mesh among processing elements. See
576 [ + - ][ + - ]: 1366 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
577 : :
578 : : keywords.insert({"phg",
579 : : "Select parallel hypergraph mesh partitioner",
580 : : R"(This keyword is used to select the parallel hypergraph (PHG)
581 : : mesh partitioner. PHG is a graph-based partitioner used to distribute an
582 : : input mesh among processing elements. See
583 [ + - ][ + - ]: 1366 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
584 : :
585 : : keywords.insert({"mj",
586 : : "Select multi-jagged (MJ) mesh partitioner",
587 : : R"(This keyword is used to select the multi-jagged (MJ) mesh partitioner.
588 : : MJ is a geometry-based partitioner used to distribute an input mesh among
589 : : processing elements. See
590 [ + - ][ + - ]: 1366 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
591 : :
592 : : keywords.insert({"pelocal_reorder",
593 : : "PE-local reorder",
594 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
595 : : as "pelocal_reorder true" (or false) to do (or not do) a global
596 : : distributed mesh reordering across all PEs that yields an approximately
597 : : continuous mesh node ID order as mesh partitions are assigned to PEs after
598 [ + - ][ + - ]: 1366 : mesh partitioning. This reordering is optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
599 : :
600 : : keywords.insert({"operator_reorder",
601 : : "Operator-access reorder",
602 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
603 : : as "operator_reorder on" (or off) to do (or not do) a local mesh node
604 : : reordering based on the PDE operator access pattern. This reordering is
605 [ + - ][ + - ]: 1366 : optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
606 : :
607 : : // -----------------------------------------------------------------------
608 : : // discretization scheme choices
609 : : // -----------------------------------------------------------------------
610 : :
611 : : keywords.insert({"scheme", "Select discretization scheme",
612 : : R"(This keyword is used to select a spatial discretization scheme,
613 : : necessarily connected to the temporal discretization scheme. See
614 [ + - ][ + - ]: 1366 : Control/Inciter/Options/Scheme.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
615 : :
616 : : keywords.insert({"alecg",
617 : : "Select continuous Galerkin with ALE + Runge-Kutta",
618 : : R"(This keyword is used to select the continuous Galerkin finite element
619 : : scheme in the arbitrary Lagrangian-Eulerian (ALE) reference frame combined
620 : : with Runge-Kutta (RK) time stepping.
621 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
622 : :
623 : : keywords.insert({"oversetfe",
624 : : "Select continuous Galerkin finite element with overset meshes + "
625 : : "Runge-Kutta",
626 : : R"(This keyword is used to select the continuous Galerkin finite element
627 : : scheme with Runge-Kutta (RK) time stepping, combined with overset grids.
628 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
629 : :
630 : : keywords.insert({"dg",
631 : : "Select 1st-order discontinuous Galerkin discretization + Runge-Kutta",
632 : : R"(This keyword is used to select the first-order accurate discontinuous
633 : : Galerkin, DG(P0), spatial discretiztaion used in Inciter. As this is first
634 : : order accurate, it is intended for testing and debugging purposes only.
635 : : Selecting this spatial discretization also selects the Runge-Kutta scheme
636 : : for time discretization. See Control/Inciter/Options/Scheme.hpp for other
637 [ + - ][ + - ]: 1366 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
638 : :
639 : : keywords.insert({"p0p1",
640 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
641 : : R"(This keyword is used to select the second-order accurate finite volume,
642 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
643 : : least-squares procedure to reconstruct the second-order solution from the
644 : : first-order one. Selecting this spatial discretization also selects the
645 : : Runge-Kutta scheme for time discretization.
646 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
647 : :
648 : : keywords.insert({"dgp1",
649 : : "Select 2nd-order discontinuous Galerkin discretization + Runge-Kutta",
650 : : R"(This keyword is used to select the second-order accurate discontinuous
651 : : Galerkin, DG(P1), spatial discretiztaion used in Inciter. Selecting this
652 : : spatial discretization also selects the Runge-Kutta scheme for time
653 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
654 [ + - ][ + - ]: 1366 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
655 : :
656 : : keywords.insert({"dgp2",
657 : : "Select 3nd-order discontinuous Galerkin discretization + Runge-Kutta",
658 : : R"(This keyword is used to select the third-order accurate discontinuous
659 : : Galerkin, DG(P2), spatial discretiztaion used in Inciter. Selecting this
660 : : spatial discretization also selects the Runge-Kutta scheme for time
661 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
662 [ + - ][ + - ]: 1366 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
663 : :
664 : : keywords.insert({"pdg",
665 : : "Select p-adaptive discontinuous Galerkin discretization + Runge-Kutta",
666 : : R"(This keyword is used to select the polynomial adaptive discontinuous
667 : : Galerkin spatial discretizaion used in Inciter. Selecting this spatial
668 : : discretization also selects the Runge-Kutta scheme for time
669 : : discretization. See Control/Inciter/Options/Scheme.hpp for other valid
670 [ + - ][ + - ]: 1366 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
671 : :
672 : : keywords.insert({"fv",
673 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
674 : : R"(This keyword is used to select the second-order accurate finite volume,
675 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
676 : : least-squares procedure to reconstruct the second-order solution from the
677 : : first-order one. See Control/Inciter/Options/Scheme.hpp for other valid
678 [ + - ][ + - ]: 1366 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
679 : :
680 : : keywords.insert({"ndof", "Number of evolved solution DOFs",
681 [ + - ][ + - ]: 1366 : R"(The number of solution DOFs that are evolved.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
682 : :
683 : : keywords.insert({"rdof", "Total number of solution DOFs",
684 : : R"(The total number of solution DOFs, including the reconstructed and the
685 [ + - ][ + - ]: 1366 : evolved ones.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
686 : :
687 : : // -----------------------------------------------------------------------
688 : : // limiter options
689 : : // -----------------------------------------------------------------------
690 : :
691 : : keywords.insert({"limiter", "Select limiter function",
692 : : R"(This keyword is used to select a limiter function, used for
693 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
694 [ + - ][ + - ]: 1366 : Control/Inciter/Options/Limiter.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
695 : :
696 : : keywords.insert({"nolimiter", "No limiter used",
697 : : R"(This keyword is used for discontinuous Galerkin (DG) spatial
698 : : discretization without any limiter in inciter. See
699 [ + - ][ + - ]: 1366 : Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
700 : :
701 : : keywords.insert({"wenop1",
702 : : "Select the Weighted Essentially Non-Oscillatory (WENO) limiter for DGP1",
703 : : R"(This keyword is used to select the Weighted Essentially Non-Oscillatory
704 : : limiter used for discontinuous Galerkin (DG) P1 spatial discretization
705 : : used in inciter. See Control/Inciter/Options/Limiter.hpp for other valid
706 [ + - ][ + - ]: 1366 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
707 : :
708 : : keywords.insert({"cweight",
709 : : "Set value for central linear weight used by WENO, cweight",
710 : : R"(This keyword is used to set the central linear weight used for the
711 : : central stencil in the Weighted Essentially Non-Oscillatory (WENO) limiter
712 [ + - ][ + - ]: 1366 : for discontinuous Galerkin (DG) methods.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
713 : :
714 : : keywords.insert({"superbeep1",
715 : : "Select the Superbee limiter for DGP1",
716 : : R"(This keyword is used to select the Superbee limiter used for
717 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
718 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
719 : :
720 : : keywords.insert({"shock_detector_coeff",
721 : : "Configure the coefficient used in shock indicator",
722 : : R"(This keyword can be used to configure the coefficient used in the
723 [ + - ][ + - ]: 1366 : threshold calculation for the shock indicator.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
724 : :
725 : : keywords.insert({"vertexbasedp1",
726 : : "Select the vertex-based limiter for DGP1",
727 : : R"(This keyword is used to select the vertex-based limiter used for
728 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
729 : : Ref. Kuzmin, D. (2010). A vertex-based hierarchical slope limiter for
730 : : p-adaptive discontinuous Galerkin methods. Journal of computational and
731 : : applied mathematics, 233(12), 3077-3085.
732 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
733 : :
734 : : keywords.insert({"accuracy_test", "Toggle accuracy test setup",
735 : : R"(This keyword is used to specify if the current setup is for an
736 : : order-of-accuracy testing, used for discontinuous Galerkin (DG) spatial
737 : : discretization in inciter. This deactivates certain robustness corrections
738 : : which might impact order-of-accuracy. Only intended for simple test
739 [ + - ][ + - ]: 1366 : problems and not for real problems.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
740 : :
741 : : keywords.insert({"limsol_projection",
742 : : "Toggle limited solution projection",
743 : : R"(This keyword is used to specify limited solution projection.
744 : : This is used for discontinuous Galerkin (DG) spatial discretization in
745 : : inciter, for multi-material hydrodynamics. This uses a projection to
746 : : obtain bulk momentum and material energies from the limited primitive
747 : : quantities. This step is essential to obtain closure-law obeying limited
748 : : quantities. See Pandare et al. (2023). On the Design of Stable,
749 : : Consistent, and Conservative High-Order Methods for Multi-Material
750 [ + - ][ + - ]: 1366 : Hydrodynamics. J Comp Phys (490).)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
751 : :
752 : : // -----------------------------------------------------------------------
753 : : // flux options
754 : : // -----------------------------------------------------------------------
755 : :
756 : : keywords.insert({"flux", "Select flux function",
757 : : R"(This keyword is used to select a flux function, used for
758 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
759 [ + - ][ + - ]: 1366 : Control/Inciter/Options/Flux.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
760 : :
761 : : keywords.insert({"laxfriedrichs",
762 : : "Select Lax-Friedrichs flux function",
763 : : R"(This keyword is used to select the Lax-Friedrichs flux function used
764 : : for discontinuous Galerkin (DG) spatial discretization used in inciter.
765 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
766 : :
767 : : keywords.insert({"hllc",
768 : : "Select the Harten-Lax-van Leer-Contact (HLLC) flux function",
769 : : R"(This keyword is used to select the Harten-Lax-van Leer-Contact flux
770 : : function used for discontinuous Galerkin (DG) spatial discretization
771 : : used in inciter. See Control/Inciter/Options/Flux.hpp for other valid
772 [ + - ][ + - ]: 1366 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
773 : :
774 : : keywords.insert({"upwind", "Select the upwind flux function",
775 : : R"(This keyword is used to select the upwind flux
776 : : function used for discontinuous Galerkin (DG) spatial discretization
777 : : used in inciter. It is only usable for scalar transport.
778 [ + - ][ + - ]: 1366 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
779 : :
780 : : keywords.insert({"ausm",
781 : : "Select the Advection Upstream Splitting Method (AUSM) flux function",
782 : : R"(This keyword is used to select the AUSM flux
783 : : function used for discontinuous Galerkin (DG) spatial discretization
784 : : used in inciter. It is only set up for for multi-material hydro, and
785 [ + - ][ + - ]: 1366 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
786 : :
787 : : keywords.insert({"ldfss",
788 : : "Select the Low Diffusion Flux Splitting Scheme (LDFSS)",
789 : : R"(This keyword is used to select the LDFSS flux
790 : : function used for discontinuous Galerkin (DG) spatial discretization
791 : : used in inciter. It is only set up for for multi-material hydro, and
792 [ + - ][ + - ]: 1366 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
793 : :
794 : : keywords.insert({"lowspeed_kp",
795 : : "Select the low-speed coefficient K_p in the AUSM+up flux function",
796 : : R"(This keyword is used to select the low-speed coefficient K_p in the
797 : : AUSM+up flux function used for the DG or FV spatial discretization for
798 : : multi-material hydro, and not used for anything else. The default
799 : : value is 0, and recommended value for low speed flows (Mach < 0.1) is
800 [ + - ][ + - ]: 1366 : 1.)"});
[ + - ][ + - ]
[ + - ][ + - ]
801 : :
802 : : keywords.insert({"hll",
803 : : "Select the Harten-Lax-vanLeer (HLL) flux function",
804 : : R"(This keyword is used to select the HLL flux
805 : : function used for discontinuous Galerkin (DG) spatial discretization
806 : : used in inciter. It is only set up for for multi-material hydro, and
807 [ + - ][ + - ]: 1366 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
808 : :
809 : : // -----------------------------------------------------------------------
810 : : // PDE keywords
811 : : // -----------------------------------------------------------------------
812 : :
813 : : keywords.insert({"problem",
814 : : "Specify problem configuration for partial differential equation solver",
815 : : R"(This keyword is used to specify the problem configuration for the
816 [ + - ][ + - ]: 1366 : partial differential equation solver.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
817 : :
818 : : keywords.insert({"transport",
819 : : "Start configuration block for an transport equation",
820 : : R"(This keyword is used to introduce a transport block, used to
821 : : specify the configuration for a transport equation type.)",
822 [ + - ][ + - ]: 1366 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
823 : :
824 : : keywords.insert({"ncomp",
825 : : "Set number of scalar components for a system of transport equations",
826 : : R"(This keyword is used to specify the number of scalar
827 [ + - ][ + - ]: 1366 : components of transport (linear advection) equations.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
828 : :
829 : : keywords.insert({"compflow",
830 : : "Start configuration block for the compressible flow equations",
831 : : R"(This keyword is used to introduce the compflow block, used to
832 : : specify the configuration for a system of partial differential equations,
833 [ + - ][ + - ]: 1366 : governing single material compressible fluid flow.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
834 : :
835 : : keywords.insert({"multimat",
836 : : "Start configuration block for the compressible multi-material equations",
837 : : R"(This keyword is used to introduce the multimat block,
838 : : used to specify the configuration for a system of partial differential
839 : : equations, governing compressible multi-material hydrodynamics assuming
840 [ + - ][ + - ]: 1366 : velocity equilibrium (single velocity).)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
841 : :
842 : : keywords.insert({"multispecies",
843 : : "Start configuration block for the compressible multi-species equations",
844 : : R"(This keyword is used to introduce the multispecies block,
845 : : used to specify the configuration for a system of partial differential
846 : : equations, governing compressible multi-species fluid dynamics.)",
847 [ + - ][ + - ]: 1366 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
848 : :
849 : : keywords.insert({"nmat",
850 : : "Set number of materials for the multi-material system",
851 : : R"(This keyword is used to specify the number of materials for
852 [ + - ][ + - ]: 1366 : multi-material flow, see also the keyword 'multimat'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
853 : :
854 : : keywords.insert({"nspec",
855 : : "Set number of species for the multi-species system",
856 : : R"(This keyword is used to specify the number of species for
857 [ + - ][ + - ]: 1366 : multi-species flow, see also the keyword 'multispecies'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
858 : :
859 : : keywords.insert({"prelax",
860 : : "Toggle multi-material finite pressure relaxation",
861 : : R"(This keyword is used to turn finite pressure relaxation between
862 : : multiple materials on/off. It is used only for the multi-material solver,
863 [ + - ][ + - ]: 1366 : and has no effect when used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
864 : :
865 : : keywords.insert({"prelax_timescale",
866 : : "Time-scale for multi-material finite pressure relaxation",
867 : : R"(This keyword is used to specify the time-scale at which finite pressure
868 : : relaxation between multiple materials occurs. The default value of 0.25
869 : : corresponds to a relaxation time that is 4 times the time required for a
870 : : sound wave to pass through a computational element. It is used only for
871 [ + - ][ + - ]: 1366 : multimat, and has no effect for the other PDE types.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
872 : :
873 : : keywords.insert({"intsharp",
874 : : "Toggle multi-material interface sharpening",
875 : : R"(This keyword is used to turn interface sharpening on/off. It uses the
876 : : multi-material THINC interface reconstruction.
877 : : Ref. Pandare A. K., Waltz J., & Bakosi J. (2021) Multi-Material
878 : : Hydrodynamics with Algebraic Sharp Interface Capturing. Computers &
879 : : Fluids, doi: https://doi.org/10.1016/j.compfluid.2020.104804. It is used
880 : : for the multi-material and the transport solver, and has no effect when
881 [ + - ][ + - ]: 1366 : used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
882 : :
883 : : keywords.insert({"intsharp_param",
884 : : "Parameter for multi-material interface sharpening",
885 : : R"(This keyword is used to specify the parameter for the interface
886 : : sharpening. This parameter affects how many cells the material interfaces
887 : : span, after the use of sharpening. It is used for multimat and transport,
888 [ + - ][ + - ]: 1366 : and has no effect for the other PDE types.)", "real" });
[ + - ][ + - ]
[ + - ][ + - ]
889 : :
890 : : keywords.insert({"rho0constraint",
891 : : "Toggle the density constraint correction",
892 : : R"(This keyword is used to toggle the density constraint in solid
893 : : dynamics on/off. It is used only for the multi-material solver in the
894 [ + - ][ + - ]: 1366 : presence of solids. The default is 1 (on).)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
895 : :
896 : : keywords.insert({"dt_sos_massavg",
897 : : "Toggle method for calculating speed of sound used for time step in a cell",
898 : : R"(This keyword is used to specify the method to calculate the speed of
899 : : sound in a cell used for the time step. If set to 1, the speed of sound
900 : : will be calculated using the mass average, rather than the maximum value
901 : : across materials. It is used for multimat, and has no effect for the
902 [ + - ][ + - ]: 1366 : other PDE types.)", "uint 0/1" });
[ + - ][ + - ]
[ + - ][ + - ]
903 : :
904 : : // Dependent variable name
905 : : keywords.insert({"depvar",
906 : : "Select dependent variable name for PDE.",
907 [ + - ][ + - ]: 1366 : R"(Select dependent variable name for PDE.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
908 : :
909 : : // -----------------------------------------------------------------------
910 : : // physics choices
911 : : // -----------------------------------------------------------------------
912 : :
913 : : keywords.insert({"physics",
914 : : "Specify the physics configuration for a system of PDEs",
915 : : R"(This keyword is used to select the physics configuration for a
916 : : particular PDE system. Valid options depend on the system of PDEs in
917 [ + - ][ + - ]: 1366 : which the keyword is used.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
918 : :
919 : : keywords.insert({"advection",
920 : : "Specify the advection physics",
921 : : R"(This keyword is used to select the advection physics for the transport
922 [ + - ][ + - ]: 1366 : PDE system. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
923 : :
924 : : keywords.insert({"advdiff",
925 : : "Specify the advection + diffusion physics",
926 : : R"(This keyword is used to select the advection + diffusion physics
927 [ + - ][ + - ]: 1366 : for transport PDEs. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
928 : :
929 : : keywords.insert({"euler",
930 : : "Specify the Euler (inviscid) compressible flow physics",
931 : : R"(This keyword is used to select the Euler (inviscid) compressible
932 [ + - ][ + - ]: 1366 : flow physics configuration. Usable for 'compflow' and 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
933 : :
934 : : keywords.insert({"energy_pill",
935 : : "Specify the energy pill physics",
936 : : R"(This keyword is used to select an energy pill initialization as physics
937 : : configuration for multiple material compressible flow. Parameters for the
938 : : linearly traveling front are required to be specified when energy_pill is
939 : : selected. See 'linear' for more details. Currently setup only for
940 [ + - ][ + - ]: 1366 : 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
941 : :
942 : : // -----------------------------------------------------------------------
943 : : // material/eos object
944 : : // -----------------------------------------------------------------------
945 : :
946 : : keywords.insert({"material",
947 : : "Start configuration block for material (eos) properties",
948 : : R"(This keyword is used to introduce a material block, used to
949 [ + - ][ + - ]: 1366 : specify material properties.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
950 : :
951 : : keywords.insert({"species",
952 : : "Start configuration block for species (eos) properties",
953 : : R"(This keyword is used to introduce a species block, used to
954 : : specify species properties in the multi species solver.)",
955 [ + - ][ + - ]: 1366 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
956 : :
957 : : keywords.insert({"id", "ID",
958 : : R"(This keyword is used to specify an ID, a positive integer. Usage is
959 : : context specific, i.e. what block it is specified in. E.g. Inside the
960 : : material block, it is used to specify a block consisting of IDs of
961 [ + - ][ + - ]: 1366 : materials of that EOS type)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
962 : :
963 : : keywords.insert({"eos", "Select equation of state (type)",
964 : : R"(This keyword is used to select an equation of state for a material.)",
965 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
966 : :
967 : : keywords.insert({"gamma", "ratio of specific heats",
968 : : R"(This keyword is used to specify the material property, ratio of
969 [ + - ][ + - ]: 1366 : specific heats.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
970 : :
971 : : keywords.insert({"pstiff", "EoS stiffness parameter",
972 : : R"(This keyword is used to specify the material property, stiffness
973 [ + - ][ + - ]: 1366 : parameter in the stiffened gas equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
974 : :
975 : : keywords.insert({"w_gru", "Grueneisen coefficient",
976 : : R"(This keyword is used to specify the material property, Gruneisen
977 : : coefficient for the Jones-Wilkins-Lee equation of state.)",
978 [ + - ][ + - ]: 1366 : "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
979 : :
980 : : keywords.insert({"A_jwl", "JWL EoS A parameter",
981 : : R"(This keyword is used to specify the material property A (units: Pa)
982 [ + - ][ + - ]: 1366 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
983 : :
984 : : keywords.insert({"B_jwl", "JWL EoS B parameter",
985 : : R"(This keyword is used to specify the material property B (units: Pa)
986 [ + - ][ + - ]: 1366 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
987 : :
988 : : keywords.insert({"C_jwl", "JWL EoS C parameter",
989 : : R"(This keyword is used to specify the material property C (units: Pa)
990 [ + - ][ + - ]: 1366 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
991 : :
992 : : keywords.insert({"R1_jwl", "JWL EoS R1 parameter",
993 : : R"(This keyword is used to specify the material property R1 for the
994 [ + - ][ + - ]: 1366 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
995 : :
996 : : keywords.insert({"R2_jwl", "JWL EoS R2 parameter",
997 : : R"(This keyword is used to specify the material property R2 for the
998 [ + - ][ + - ]: 1366 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
999 : :
1000 : : keywords.insert({"rho0_jwl", "JWL EoS rho0 parameter",
1001 : : R"(This keyword is used to specify the material property rho0, which is
1002 : : the density of initial state (units: kg/m3) for the Jones-Wilkins-Lee
1003 [ + - ][ + - ]: 1366 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1004 : :
1005 : : keywords.insert({"de_jwl", "JWL EoS de parameter",
1006 : : R"(This keyword is used to specify the material property de, which is the
1007 : : heat of detonation for products; and for reactants, it is chosen such that
1008 : : the ambient internal energy (e0) is 0 (units: J/kg). Used for the
1009 [ + - ][ + - ]: 1366 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1010 : :
1011 : : keywords.insert({"rhor_jwl", "JWL EoS rhor parameter",
1012 : : R"(This keyword is used to specify the material property rhor, which is
1013 : : the density of reference state (units: kg/m3) for the Jones-Wilkins-Lee
1014 [ + - ][ + - ]: 1366 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1015 : :
1016 : : keywords.insert({"Tr_jwl", "JWL EoS Tr parameter",
1017 : : R"(This keyword is used to specify the material property Tr, which is the
1018 : : temperature of reference state (units: K) for the Jones-Wilkins-Lee
1019 [ + - ][ + - ]: 1366 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1020 : :
1021 : : keywords.insert({"Pr_jwl", "JWL EoS er parameter",
1022 : : R"(This keyword is used to specify the material property Pr, which is the
1023 : : pressure at the reference state (units: Pa) for the Jones-Wilkins-Lee
1024 : : equation of state. It is used to calculate the reference temperature for
1025 [ + - ][ + - ]: 1366 : the EoS.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1026 : :
1027 : : keywords.insert({"mu", "shear modulus/dynamic viscosity",
1028 : : R"(This keyword is used to specify the material property, shear modulus
1029 [ + - ][ + - ]: 1366 : for solids, or dynamic viscosity for fluids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1030 : :
1031 : : keywords.insert({"yield_stress", "Yield stress of solid material",
1032 : : R"(This keyword is used to specify the material property yield stress,
1033 : : which indicates the stress (units: Pa) after which the material begins
1034 [ + - ][ + - ]: 1366 : plastic flow.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1035 : :
1036 : : keywords.insert({"cv", "specific heat at constant volume",
1037 : : R"(This keyword is used to specify the material property, specific heat at
1038 [ + - ][ + - ]: 1366 : constant volume.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1039 : :
1040 : : keywords.insert({"k", "heat conductivity",
1041 : : R"(This keyword is used to specify the material property, heat
1042 [ + - ][ + - ]: 1366 : conductivity.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1043 : :
1044 : : keywords.insert({"cp_coeff", "specific heat coefficients for TPG",
1045 : : R"(This keyword is used to specify species' coefficients in the
1046 : : thermally perfect gas polynomial fit (per temperature range)
1047 : : for specific heat at constant volume. The outer vector is per
1048 : : species, the middle vector is per temperature range, and the
1049 : : inner vector contains 8 coefficients to describe the polynomial.)",
1050 [ + - ][ + - ]: 1366 : "vector of vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1051 : :
1052 : : keywords.insert({"t_range", "temperature range for TPG specific heat polynomials",
1053 : : R"(This keyword is used to specify the temperature range for each specific
1054 : : heat polynomial given in cp_coeff. The outer vector is per species,
1055 : : and the inner vector gives the temperature ranges. The inner vector must
1056 : : be sized 1 larger than the number of temperature ranges, as the ranges
1057 [ + - ][ + - ]: 1366 : are read as [T0, T1],[T1, T2],...)", "vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1058 : :
1059 : : keywords.insert({"dH_ref", "reference enthalpy for TPG specific heat polynomials",
1060 : : R"(This keyword is used to specify the reference enthalpy at 298.15 K so that
1061 : : the reference temperature in the enthalpy calculations is 0 K. This number
1062 : : is taken from the NASA Glenn 2002 report, and is the heat of formation
1063 [ + - ][ + - ]: 1366 : divided by the species molar mass.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1064 : :
1065 : : keywords.insert({"R", "Specific gas constant",
1066 : : R"(This keyword is used to specify the species property, specific gas
1067 [ + - ][ + - ]: 1366 : constant, in units J/kg.K.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1068 : :
1069 : : keywords.insert({"stiffenedgas",
1070 : : "Select the stiffened gas equation of state",
1071 [ + - ][ + - ]: 1366 : R"(This keyword is used to select the stiffened gas equation of state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1072 : :
1073 : : keywords.insert({"jwl", "Select the JWL equation of state",
1074 : : R"(This keyword is used to select the Jones, Wilkins, Lee equation of
1075 [ + - ][ + - ]: 1366 : state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1076 : :
1077 : : keywords.insert({"smallshearsolid",
1078 : : "Select the SMALLSHEARSOLID equation of state",
1079 : : R"(This keyword is used to select the small shear strain equation of state
1080 : : for solids. This EOS uses a small-shear approximation for the elastic
1081 : : contribution, and a stiffened gas EOS for the hydrodynamic contribution of
1082 : : the internal energy See Plohr, J. N., & Plohr, B. J. (2005). Linearized
1083 : : analysis of Richtmyer–Meshkov flow for elastic materials. Journal of Fluid
1084 [ + - ][ + - ]: 1366 : Mechanics, 537, 55-89 for further details.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1085 : :
1086 : : keywords.insert({"godunovromenski_aluminum",
1087 : : "Select the GODUNOVROMENSKIALUMINUM equation of state",
1088 : : R"(This keyword is used to select the Godunov-Romenski equation of
1089 : : state for solids and a hydro EoS for aluminum. These function were
1090 : : taken from Barton, Philip T. "An interface-capturing Godunov method
1091 : : for the simulation of compressible solid-fluid problems." Journal
1092 [ + - ][ + - ]: 1366 : of Computational Physics 390 (2019): 25-50.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1093 : :
1094 : : keywords.insert({"matidxmap",
1095 : : "AUTO-GENERATED Material index map for EOS",
1096 : : R"(The following AUTO-GENERATED data structure is used to index into the
1097 : : correct material vector entry. This is done using the following three maps:
1098 : : 1. eosidx: This vector provides the eos-index (value) in the
1099 : : vector<tag::material> for the given user-spec material id (index).
1100 : : 2. matidx: This vector provides the material-index (value) inside the
1101 : : vector<tag::material>[eosidx] block for the given user-specified
1102 : : material id (index).
1103 : : 3. solidx: This vector provides the solid-index (value) assigned to
1104 [ + - ][ + - ]: 1366 : the given user-specified material id (index). It is 0 for fluids.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1105 : :
1106 : : // -----------------------------------------------------------------------
1107 : : // output object
1108 : : // -----------------------------------------------------------------------
1109 : :
1110 : : keywords.insert({"field_output",
1111 : : "Start of field_output input block",
1112 : : R"(This keyword is used to start a block in the input file containing the
1113 [ + - ][ + - ]: 1366 : list and settings of requested field output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1114 : :
1115 : : keywords.insert({"interval",
1116 : : "Set interval (in units of iteration count)",
1117 : : R"(This keyword is used to specify an interval in units of iteration count
1118 : : (i.e., number of time steps). This must be used within a relevant
1119 [ + - ][ + - ]: 1366 : block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1120 : :
1121 : : keywords.insert({"time_interval",
1122 : : "Set interval (in units of physics time)",
1123 : : R"(This keyword is used to specify an interval in units of physics time.
1124 [ + - ][ + - ]: 1366 : This must be used within a relevant block.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1125 : :
1126 : : keywords.insert({"time_range",
1127 : : "Configure physics time range for output (in units of physics time)",
1128 : : R"(This keyword is used to configure field-, or history-output, specifying
1129 : : a start time, a stop time, and an output frequency in physics time units.
1130 : : Example: 'time_range = {0.2, 0.3, 0.001}', which specifies that from t=0.2 to
1131 : : t=0.3 output should happen at physics time units of dt=0.001. This must be
1132 [ + - ][ + - ]: 1366 : used within a relevant block.)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1133 : :
1134 : : keywords.insert({"refined", "Toggle refined field output on/off",
1135 : : R"(This keyword can be used to turn on/off refined field output, which
1136 : : refines the mesh and evaluates the solution on the refined mesh for saving
1137 [ + - ][ + - ]: 1366 : the solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1138 : :
1139 : : keywords.insert({"filetype", "Select output file type",
1140 : : R"(This keyword is used to specify the output file type of
1141 [ + - ][ + - ]: 1366 : mesh-based field output in a field_output block.)", "string" });
[ + - ][ + - ]
[ + - ][ + - ]
1142 : :
1143 : : keywords.insert({"elemvar",
1144 : : "Specify list of elem-centered variables for output",
1145 : : R"(This keyword is used to specify elem-centered variables for output to
1146 [ + - ][ + - ]: 1366 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1147 : :
1148 : : keywords.insert({"nodevar",
1149 : : "Specify list of node-centered variables for output",
1150 : : R"(This keyword is used to specify node-centered variables for output to
1151 [ + - ][ + - ]: 1366 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1152 : :
1153 : : keywords.insert({"sideset",
1154 : : "Specify list of side sets",
1155 : : R"(This keyword is used to specify side sets. Usage is context specific,
1156 : : i.e. depends on what block it is specified in. Eg. in the field_output
1157 : : block it specifies the sidesets on which field output is desired.)",
1158 [ + - ][ + - ]: 1366 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1159 : :
1160 : : keywords.insert({"diagnostics",
1161 : : "Specify the diagnostics block",
1162 : : R"(This keyword is used to introduce the dagnostics block, used to
1163 [ + - ][ + - ]: 1366 : configure diagnostics output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1164 : :
1165 : : keywords.insert({"interval",
1166 : : "Set interval (in units of iteration count)",
1167 : : R"(This keyword is used to specify an interval in units of iteration count
1168 : : (i.e., number of time steps). Usage is context specific, and this must
1169 [ + - ][ + - ]: 1366 : be used within a relevant block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1170 : :
1171 : : keywords.insert({"error", "Select an error type",
1172 : : R"(This keyword is used to select the error type. Used either in the
1173 : : diagnostics block to specify error norm, or in the AMR block to specify
1174 [ + - ][ + - ]: 1366 : the error for solution-adaptive mesh refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1175 : :
1176 : : keywords.insert({"format",
1177 : : "Specify the ASCII floating-point output format",
1178 : : R"(This keyword is used to select the
1179 : : floating-point output format for ASCII floating-point number output.
1180 : : Valid options are 'default', 'fixed', and 'scientific'. For more info on
1181 : : these various formats, see
1182 [ + - ][ + - ]: 1366 : http://en.cppreference.com/w/cpp/io/manip/fixed.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1183 : :
1184 : : keywords.insert({"precision",
1185 : : "Precision in digits for ASCII floating-point output",
1186 : : R"(This keyword is used to select
1187 : : the precision in digits for ASCII floating-point real number output.
1188 : : Example: "precision=10", which selects ten digits for floating-point
1189 : : output, e.g., 3.141592654. The number of digits must be larger than zero
1190 : : and lower than the maximum representable digits for the given
1191 : : floating-point type. For more info on setting the precision in C++, see
1192 : : http://en.cppreference.com/w/cpp/io/manip/setprecision, and
1193 [ + - ][ + - ]: 1366 : http://en.cppreference.com/w/cpp/types/numeric_limits/digits10)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1194 : :
1195 : : keywords.insert({"history_output",
1196 : : "Start of history_output input block",
1197 : : R"(This keyword is used to start a block in the input file containing the
1198 [ + - ][ + - ]: 1366 : descriptions and settings of requested history output.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1199 : :
1200 : : keywords.insert({"point",
1201 : : "Start configuration block for history point, or a single point in IC blocks",
1202 : : R"(This keyword is used to either introduce a vector block used to
1203 : : specify probes for history output, or in the IC/BC block to specify
1204 : : a single point. When used in history output, it takes sub-entries of
1205 : : 'id' and 'coord'. When used in IC/BC, directly takes three reals as
1206 [ + - ][ + - ]: 1366 : coordinates.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1207 : :
1208 : : keywords.insert({"coord", "Specify point coordinates",
1209 : : R"(This keyword is used to specify coordinates of the history-point.)",
1210 [ + - ][ + - ]: 1366 : "3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1211 : :
1212 : : keywords.insert({"exodusii", "Select ExodusII output",
1213 : : R"(This keyword is used to select the
1214 : : ExodusII output file type readable by, e.g., ParaView of either a requested
1215 : : probability density function (PDF) within a pdfs ... end block or for
1216 : : mesh-based field output in a field_output ... end block. Example:
1217 : : "filetype exodusii", which selects ExodusII file output. For more info on
1218 [ + - ][ + - ]: 1366 : ExodusII, see http://sourceforge.net/projects/exodusii.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1219 : :
1220 : : keywords.insert({"density", "Request/specify density",
1221 : : R"(This keyword is used to request/specify the density. Usage is
1222 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1223 : : field_output, requests density as an output quantity. Otherwise,
1224 [ + - ][ + - ]: 1366 : specifies density at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1225 : :
1226 : : keywords.insert({"x-momentum",
1227 : : "Request x-momentum",
1228 : : R"(This keyword is used to request the fluid x-momentum as an output
1229 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1230 : :
1231 : : keywords.insert({"y-momentum",
1232 : : "Request y-momentum",
1233 : : R"(This keyword is used to request the fluid y-momentum as an output
1234 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1235 : :
1236 : : keywords.insert({"z-momentum",
1237 : : "Request z-momentum",
1238 : : R"(This keyword is used to request the fluid z-momentum as an output
1239 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1240 : :
1241 : : keywords.insert({
1242 : : "specific_total_energy", "Request specific total energy",
1243 : : R"(This keyword is used to request the specific total energy as an output
1244 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1245 : :
1246 : : keywords.insert({
1247 : : "volumetric_total_energy", "Request total volumetric energy",
1248 : : R"(This keyword is used to request the volumetric total energy as an output
1249 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1250 : :
1251 : : keywords.insert({"x-velocity",
1252 : : "Request x-velocity",
1253 : : R"(This keyword is used to request the fluid x-velocity as an output
1254 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1255 : :
1256 : : keywords.insert({"y-velocity",
1257 : : "Request y-velocity",
1258 : : R"(This keyword is used to request the fluid y-velocity as an output
1259 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1260 : :
1261 : : keywords.insert({"z-velocity",
1262 : : "Request z-velocity",
1263 : : R"(This keyword is used to request the fluid z-velocity as an output
1264 [ + - ][ + - ]: 1366 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1265 : :
1266 : : keywords.insert({"pressure", "Request/specify pressure",
1267 : : R"(This keyword is used to request/specify the pressure. Usage is
1268 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1269 : : field_output, requests pressure as an output quantity. Otherwise,
1270 [ + - ][ + - ]: 1366 : specifies pressure at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1271 : :
1272 : : keywords.insert({"material_indicator",
1273 : : "Request material_indicator",
1274 : : R"(This keyword is used to request the material indicator function as an
1275 [ + - ][ + - ]: 1366 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1276 : :
1277 : : keywords.insert({"analytic",
1278 : : "Request analytic solution",
1279 : : R"(This keyword is used to request the analytic solution (if exist) as an
1280 [ + - ][ + - ]: 1366 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1281 : :
1282 : : keywords.insert({"l2", "Select the L2 norm",
1283 [ + - ][ + - ]: 1366 : R"(This keyword is used to enable computing the L2 norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1284 : :
1285 : : keywords.insert({"linf", "Select the L_{infinity} norm",
1286 [ + - ][ + - ]: 1366 : R"(This keyword is used to enable computing the L-infinity norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1287 : :
1288 : : keywords.insert({"default",
1289 : : "Select the default ASCII floating-point output",
1290 : : R"(This keyword is used to select the
1291 : : 'default' floating-point output format for ASCII floating-point real
1292 : : number output. For more info on these various formats, see
1293 [ + - ][ + - ]: 1366 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1294 : :
1295 : : keywords.insert({"fixed",
1296 : : "Select the fixed ASCII floating-point output",
1297 : : R"(This keyword is used to select the
1298 : : 'fixed' floating-point output format for ASCII floating-point real
1299 : : number output. For more info on these various formats, see
1300 [ + - ][ + - ]: 1366 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1301 : :
1302 : : keywords.insert({"scientific",
1303 : : "Select the scientific ASCII floating-point output",
1304 : : R"(This keyword is used to select the
1305 : : 'scientific' floating-point output format for ASCII floating-point real
1306 : : number output. For more info on these various formats, see
1307 [ + - ][ + - ]: 1366 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1308 : :
1309 : : // -----------------------------------------------------------------------
1310 : : // ALE options
1311 : : // -----------------------------------------------------------------------
1312 : :
1313 : : keywords.insert({"ale", "Start block configuring ALE",
1314 : : R"(This keyword is used to introduce the ale block, used to
1315 : : configure arbitrary Lagrangian-Eulerian (ALE) mesh movement.)",
1316 [ + - ][ + - ]: 1366 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1317 : :
1318 : : keywords.insert({"smoother", "Select mesh velocity smoother",
1319 : : R"(This keyword is used to select a mesh velocity smoother option, used
1320 : : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1321 [ + - ][ + - ]: 1366 : 'laplace', 'helmholtz', and 'none')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1322 : :
1323 : : keywords.insert({"mesh_velocity", "Select mesh velocity",
1324 : : R"(This keyword is used to select a mesh velocity option, used for
1325 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1326 [ + - ][ + - ]: 1366 : 'sine', 'fluid', and 'user_defined".)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1327 : :
1328 : : keywords.insert({"mesh_motion",
1329 : : "List of dimension indices that are allowed to move in ALE calculations",
1330 : : R"(This keyword is used to specify a list of integers (0, 1, or 2) whose
1331 : : coordinate directions corresponding to x, y, or z are allowed to move with
1332 : : the mesh velocity in ALE calculations. Useful for 1D/2D problems.)",
1333 [ + - ][ + - ]: 1366 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1334 : :
1335 : : keywords.insert({"meshforce", "Set ALE mesh force model parameter(s)",
1336 : : R"(This keyword is used to specify a vector of real numbers used to
1337 : : parameterize a mesh force model for ALE. The length of the vector must
1338 [ + - ][ + - ]: 1366 : exactly be 4.)", "vector of 4 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1339 : :
1340 : : keywords.insert({"dvcfl",
1341 : : "Set the volume-change Courant-Friedrichs-Lewy (CFL) coefficient",
1342 : : R"(This keyword is used to specify the volume-change (dV/dt) CFL coefficient
1343 : : for variable-time-step-size simulations due to volume change in time in
1344 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. Setting 'dvcfl' only has
1345 : : effect in ALE calculations and used together with 'cfl'. See also J. Waltz,
1346 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1347 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1348 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1349 [ + - ][ + - ]: 1366 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1350 : :
1351 : : keywords.insert({"vortmult",
1352 : : "Configure vorticity multiplier for ALE mesh velocity",
1353 : : R"(This keyword is used to configure the multiplier for the vorticity term
1354 : : in the mesh velocity smoother (mesh_velocity=fluid) or for the potential
1355 : : gradient for the Helmholtz mesh velocity (mesh_velocity=helmholtz) for ALE
1356 : : mesh motion. For 'fluid' this is coefficient c2 in Eq.(36) of Waltz,
1357 : : Morgan, Canfield, Charest, Risinger, Wohlbier, A three-dimensional finite
1358 : : element arbitrary Lagrangian–Eulerian method for shock hydrodynamics on
1359 : : unstructured grids, Computers & Fluids, 2014, and for 'helmholtz', this
1360 : : is coefficient a1 in Eq.(23) of Bakosi, Waltz, Morgan, Improved ALE mesh
1361 : : velocities for complex flows, International Journal for Numerical Methods
1362 [ + - ][ + - ]: 1366 : in Fluids, 2017. )", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1363 : :
1364 : : keywords.insert({"maxit",
1365 : : "Set the max number of iterations for the ALE mesh velocity linear solve",
1366 : : R"(This keyword is used to specify the maximum number of linear solver
1367 : : iterations taken to converge the mesh velocity linear solve in
1368 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1369 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1370 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1371 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1372 [ + - ][ + - ]: 1366 : 2014.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1373 : :
1374 : : keywords.insert({"tolerance",
1375 : : "Set the tolerance for the ALE mesh velocity linear solve",
1376 : : R"(This keyword is used to specify the tolerance to converge the mesh
1377 : : velocity linear solve for in
1378 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1379 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1380 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1381 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1382 [ + - ][ + - ]: 1366 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1383 : :
1384 : : keywords.insert({"move",
1385 : : "Start configuration block configuring surface movement in ALE",
1386 : : R"(This keyword is used to introduce a move block, used to
1387 [ + - ][ + - ]: 1366 : configure surface movement for ALE simulations.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1388 : :
1389 : : keywords.insert({"fntype",
1390 : : "Select how a user-defined function is interpreted",
1391 : : R"(This keyword is used to select how a user-defined function should be
1392 [ + - ][ + - ]: 1366 : interpreted.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1393 : :
1394 : : keywords.insert({"fn", "Specify a discrete user-defined function",
1395 : : R"(This keyword is used to specify a user-defined function block with
1396 : : discrete points, listed inside the fn block. Used in ale mesh motion and
1397 [ + - ][ + - ]: 1366 : time-dependent BC specification)", "reals" });
[ + - ][ + - ]
[ + - ][ + - ]
1398 : :
1399 : : keywords.insert({"laplace",
1400 : : "Select the Laplace mesh velocity smoother for ALE",
1401 : : R"(This keyword is used to select the 'Laplace' mesh velocity smoother
1402 [ + - ][ + - ]: 1366 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1403 : :
1404 : : keywords.insert({"helmholtz",
1405 : : "Select the Helmholtz velocity for ALE",
1406 : : R"(This keyword is used to select the a velocity, computed from the
1407 : : Helmholtz-decomposition as the mesh velocity for
1408 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. See J. Bakosi, J. Waltz,
1409 : : N. Morgan, Improved ALE mesh velocities for complex flows, Int. J. Numer.
1410 [ + - ][ + - ]: 1366 : Meth. Fl., 1-10, 2017, https://doi.org/10.1002/fld.4403.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1411 : :
1412 : : keywords.insert({"none", "Select none option",
1413 : : R"(This keyword is used to select the 'none' option from a list of
1414 [ + - ][ + - ]: 1366 : configuration options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1415 : :
1416 : : keywords.insert({"sine",
1417 : : "Prescribe sinusoidal mesh velocity for ALE",
1418 : : R"(This keyword is used to prescribe a sinusoidal mesh velocity
1419 [ + - ][ + - ]: 1366 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1420 : :
1421 : : keywords.insert({"fluid", "Select the fluid velocity for ALE",
1422 : : R"(This keyword is used to select the 'fluid' velocity as the mesh velocity
1423 [ + - ][ + - ]: 1366 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1424 : :
1425 : : // -----------------------------------------------------------------------
1426 : : // h/p adaptation objects
1427 : : // -----------------------------------------------------------------------
1428 : :
1429 : : keywords.insert({"amr",
1430 : : "Start configuration block configuring adaptive mesh refinement",
1431 : : R"(This keyword is used to introduce the amr block, used to
1432 [ + - ][ + - ]: 1366 : configure adaptive mesh refinement.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1433 : :
1434 : : keywords.insert({"t0ref", "Enable mesh refinement at t<0",
1435 : : R"(This keyword is used to enable initial mesh refinement, which can be
1436 : : configured to perform multiple levels of mesh refinement based on various
1437 [ + - ][ + - ]: 1366 : refinement criteria and configuration settings.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1438 : :
1439 : : keywords.insert({"dtref", "Enable mesh refinement at t>0",
1440 : : R"(This keyword is used to enable solution-adaptive mesh refinement during
1441 [ + - ][ + - ]: 1366 : time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1442 : :
1443 : : keywords.insert({"dtref_uniform",
1444 : : "Enable mesh refinement at t>0 but only perform uniform refinement",
1445 : : R"(This keyword is used to force uniform-only solution-adaptive mesh
1446 [ + - ][ + - ]: 1366 : refinement during time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1447 : :
1448 : : keywords.insert({"dtfreq",
1449 : : "Set mesh refinement frequency during time stepping",
1450 : : R"(This keyword is used to configure the frequency of mesh refinement
1451 [ + - ][ + - ]: 1366 : during time stepping.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1452 : :
1453 : : keywords.insert({"maxlevels",
1454 : : "Set maximum allowed mesh refinement levels",
1455 : : R"(This keyword is used to configure the maximum allowed mesh refinement
1456 [ + - ][ + - ]: 1366 : levels.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1457 : :
1458 : : keywords.insert({"initial",
1459 : : "Configure initial mesh refinement (before time stepping)",
1460 : : R"(This keyword is used to add to a list of initial mesh refinement types
1461 : : that happens before t = 0. Allowed options are 'uniform',
1462 : : 'uniform_derefine', 'initial_conditions', 'coords', 'edgelist')",
1463 [ + - ][ + - ]: 1366 : "vector of strings"});
[ + - ][ + - ]
[ + - ][ + - ]
1464 : :
1465 : : keywords.insert({"coords",
1466 : : "Configure initial refinement using coordinate planes",
1467 : : R"(This keyword can be used to configure entire volumes on a given side of
1468 : : a plane in 3D space. The keyword introduces an coords block within
1469 : : an amr block. All edges of the input mesh will be tagged for refinement
1470 : : whose end-points lie within the given ranges.
1471 : : Example: 'xminus 0.5' refines all edges whose end-point coordinates are
1472 : : less than 0.5. Multiple specifications are understood by combining with
1473 : : a logical AND. That is: 'xminus 0.5 yplus 0.3' refines all edges whose
1474 : : end-point x coordinates are less than 0.5 AND y coordinates are larger than
1475 [ + - ][ + - ]: 1366 : 0.3.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1476 : :
1477 : : keywords.insert({"xminus",
1478 : : "Configure initial refinement for coordinates lower than an x-normal plane",
1479 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1480 : : whose end-points are less than the x coordinate of a plane perpendicular
1481 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1482 : : within an amr-block with syntax 'xminus <real>'. All edges of the
1483 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1484 : : the real number given. Example: 'xminus 0.5' refines all edges whose end-point
1485 [ + - ][ + - ]: 1366 : x-coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1486 : :
1487 : : keywords.insert({"xplus",
1488 : : "Configure initial refinement for coordinates larger than an x-normal plane",
1489 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1490 : : whose end-points are larger than the x coordinate of a plane perpendicular
1491 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1492 : : within an amr-block with syntax 'xplus <real>'. All edges of the
1493 : : input mesh will be tagged for refinement whose end-points lie larger than
1494 : : (+) the real number given. Example: 'xplus 0.5' refines all edges whose
1495 [ + - ][ + - ]: 1366 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1496 : :
1497 : : keywords.insert({"yminus",
1498 : : "Configure initial refinement for coordinates lower than an y-normal plane",
1499 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1500 : : whose end-points are less than the y coordinate of a plane perpendicular
1501 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1502 : : within an amr-block with syntax 'yminus <real>'. All edges of the
1503 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1504 : : the real number given. Example: 'yminus 0.5' refines all edges whose end-point
1505 [ + - ][ + - ]: 1366 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1506 : :
1507 : : keywords.insert({"yplus",
1508 : : "Configure initial refinement for coordinates larger than an y-normal plane",
1509 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1510 : : whose end-points are larger than the y coordinate of a plane perpendicular
1511 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1512 : : within an amr-block with syntax 'yplus <real>'. All edges of the
1513 : : input mesh will be tagged for refinement whose end-points lie larger than
1514 : : (+) the real number given. Example: 'yplus 0.5' refines all edges whose
1515 [ + - ][ + - ]: 1366 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1516 : :
1517 : : keywords.insert({"zminus",
1518 : : "Configure initial refinement for coordinates lower than an z-normal plane",
1519 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1520 : : whose end-points are less than the z coordinate of a plane perpendicular
1521 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1522 : : within an amr-block with syntax 'zminus <real>'. All edges of the
1523 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1524 : : the real number given. Example: 'zminus 0.5' refines all edges whose end-point
1525 [ + - ][ + - ]: 1366 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1526 : :
1527 : : keywords.insert({"zplus",
1528 : : "Configure initial refinement for coordinates larger than an z-normal plane",
1529 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1530 : : whose end-points are larger than the z coordinate of a plane perpendicular
1531 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1532 : : within an amr-block with syntax 'zplus <real>'. All edges of the
1533 : : input mesh will be tagged for refinement whose end-points lie larger than
1534 : : (+) the real number given. Example: 'zplus 0.5' refines all edges whose
1535 [ + - ][ + - ]: 1366 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1536 : :
1537 : : keywords.insert({"edgelist",
1538 : : "Configure edge-node pairs for initial refinement",
1539 : : R"(This keyword can be used to configure a list of edges that are explicitly
1540 : : tagged for initial refinement during setup in inciter. The keyword
1541 : : introduces an edgelist block within an amr block and must
1542 : : contain a list of integer pairs, i.e., the number of ids must be even,
1543 : : denoting the end-points of the nodes (=edge) which should be tagged for
1544 [ + - ][ + - ]: 1366 : refinement.)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1545 : :
1546 : : keywords.insert({"error",
1547 : : "Configure the error type for solution-adaptive mesh refinement",
1548 : : R"(This keyword is used to select the algorithm used to estimate the error
1549 : : for solution-adaptive mesh refinement. Available options are 'jump' and
1550 [ + - ][ + - ]: 1366 : 'hessian')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1551 : :
1552 : : keywords.insert({"refvar",
1553 : : "Configure dependent variables used for adaptive mesh refinement",
1554 : : R"(This keyword is used to configured a list of dependent variables that
1555 : : trigger adaptive mesh refinement based on estimating their numerical error.
1556 : : These refinement variables are used for both initial (i.e., before time
1557 : : stepping) mesh refinement as well as during time stepping. Only previously
1558 : : (i.e., earlier in the input file) selected dependent variables can be
1559 : : configured as refinement variables. Dependent variables are required to be
1560 : : defined in all equation system configuration blocks, e.g., transport ...
1561 : : end, by using the 'depvar' keyword. Example: transport depvar c end amr
1562 : : refvar c end end. Selecting a particular scalar component in a system is
1563 : : done by appending the equation number to the refvar: Example: transport
1564 : : depvar q ncomp 3 end amr refvar q1 q2 end end, which configures two
1565 : : refinement variables: the first and third scalar component of the previously
1566 [ + - ][ + - ]: 1366 : configured transport equation system.)", "vector of char"});
[ + - ][ + - ]
[ + - ][ + - ]
1567 : :
1568 : : keywords.insert({"tol_refine", "Configure refine tolerance",
1569 : : R"(This keyword is used to set the tolerance used to tag an edge for
1570 [ + - ][ + - ]: 1366 : refinement if the relative error exceeds this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1571 : :
1572 : : keywords.insert({"tol_derefine",
1573 : : "Configure derefine tolerance",
1574 : : R"(This keyword is used to set the tolerance used to tag an edge for
1575 [ + - ][ + - ]: 1366 : derefinement if the relative error is below this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1576 : :
1577 : : keywords.insert({"uniform",
1578 : : "Select uniform initial mesh refinement",
1579 : : R"(This keyword is used to select uniform initial mesh refinement.)",
1580 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1581 : :
1582 : : keywords.insert({"uniform_derefine",
1583 : : "Select uniform initial mesh de-refinement",
1584 : : R"(This keyword is used to select uniform initial mesh de-refinement.)",
1585 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1586 : :
1587 : : keywords.insert({"initial_conditions",
1588 : : "Select initial-conditions-based initial mesh refinement",
1589 : : R"(This keyword is used to select initial-conditions-based initial mesh
1590 [ + - ][ + - ]: 1366 : refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1591 : :
1592 : : keywords.insert({"jump",
1593 : : "Error estimation based on the solution jump normalized by solution value",
1594 : : R"(This keyword is used to select the jump-based error indicator for
1595 : : solution-adaptive mesh refinement. The error is estimated by computing the
1596 : : magnitude of the jump in the solution value normalized by the solution
1597 [ + - ][ + - ]: 1366 : value.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1598 : :
1599 : : keywords.insert({"hessian",
1600 : : "Error estimation based on the Hessian normalized by solution value",
1601 : : R"(This keyword is used to select the Hessian-based error indicator for
1602 : : solution-adaptive mesh refinement. The error is estimated by computing the
1603 : : Hessian (2nd derivative matrix) of the solution normalized by sum of the
1604 [ + - ][ + - ]: 1366 : absolute values of the gradients at edges-end points.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1605 : :
1606 : : keywords.insert({"pref",
1607 : : "Start configuration block configuring p-adaptive refinement",
1608 : : R"(This keyword is used to introduce the pref block, to
1609 [ + - ][ + - ]: 1366 : configure p-adaptive refinement)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1610 : :
1611 : : keywords.insert({"indicator",
1612 : : "Configure the specific adaptive indicator for p-adaptive DG scheme",
1613 : : R"(This keyword can be used to configure a specific type of adaptive
1614 : : indicator for p-adaptive refinement of the DG scheme. The keyword must
1615 : : be used in a pref block. Available options are 'pref_spectral_decay' and
1616 [ + - ][ + - ]: 1366 : 'pref_non_conformity'.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1617 : :
1618 : : keywords.insert({"ndofmax",
1619 : : "Configure the maximum number of degree of freedom for p-adaptive DG",
1620 : : R"(This keyword can be used to configure a maximum number of degree of
1621 : : freedom for p-adaptive refinement of the DG scheme. The keyword must
1622 [ + - ][ + - ]: 1366 : be used in a pref block.)", "uint either 4 or 10"});
[ + - ][ + - ]
[ + - ][ + - ]
1623 : :
1624 : : keywords.insert({"tolref",
1625 : : "Configure the tolerance for p-refinement for p-adaptive DG",
1626 : : R"(This keyword can be used to configure a tolerance for p-adaptive
1627 : : refinement for the DG scheme. The keyword must be used in a pref
1628 : : block. All elements with a refinement indicator larger than this
1629 [ + - ][ + - ]: 1366 : tolerance will be p-refined.)", "real between 0 and 1"});
[ + - ][ + - ]
[ + - ][ + - ]
1630 : :
1631 : : keywords.insert({"spectral_decay",
1632 : : "Select the spectral-decay indicator for p-adaptive DG scheme",
1633 : : R"(This keyword is used to select the spectral-decay indicator used for
1634 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1635 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1636 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1637 : :
1638 : : keywords.insert({"non_conformity",
1639 : : "Select the non-conformity indicator for p-adaptive DG scheme",
1640 : : R"(This keyword is used to select the non-conformity indicator used for
1641 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1642 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1643 [ + - ][ + - ]: 1366 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1644 : :
1645 : : // -----------------------------------------------------------------------
1646 : : // boundary condition options
1647 : : // -----------------------------------------------------------------------
1648 : :
1649 : : keywords.insert({"bc",
1650 : : "Start configuration block for boundary conditions",
1651 : : R"(This keyword is used to introduce the bc block, used for
1652 : : boundary conditions. This is a vector block, where each vector entry
1653 [ + - ][ + - ]: 1366 : specifies BCs for a particular mesh)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1654 : :
1655 : : keywords.insert({"mesh",
1656 : : "List meshes on which the following BCs apply",
1657 : : R"(This keyword is used to list multiple meshes on which the boundary
1658 : : conditions listed in this particular bc-block apply.)",
1659 [ + - ][ + - ]: 1366 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1660 : :
1661 : : keywords.insert({"dirichlet",
1662 : : "List sidesets with Dirichlet boundary conditions",
1663 : : R"(This keyword is used to list Dirichlet sidesets.
1664 : : This keyword is used to list multiple sidesets on
1665 : : which a prescribed Dirichlet BC is then applied. Such prescribed BCs
1666 : : at each point in space and time are evaluated using a built-in function,
1667 [ + - ][ + - ]: 1366 : e.g., using the method of manufactured solutions.)", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1668 : :
1669 : : keywords.insert({"symmetry",
1670 : : "List sidesets with symmetry boundary conditions",
1671 : : R"(This keyword is used to list (multiple) symmetry BC sidesets.)",
1672 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1673 : :
1674 : : keywords.insert({"inlet",
1675 : : "List sidesets with inlet boundary conditions",
1676 : : R"(This keyword is used to list (multiple) inlet BC sidesets.)",
1677 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1678 : :
1679 : : keywords.insert({"outlet",
1680 : : "List sidesets with outlet boundary conditions",
1681 : : R"(This keyword is used to list (multiple) outlet BC sidesets.)",
1682 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1683 : :
1684 : : keywords.insert({"farfield",
1685 : : "List sidesets with farfield boundary conditions",
1686 : : R"(This keyword is used to list (multiple) farfield BC sidesets.
1687 : : Keywords allowed in a bc_farfield block are 'density', 'velocity',
1688 [ + - ][ + - ]: 1366 : 'pressure')", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1689 : :
1690 : : keywords.insert({"extrapolate",
1691 : : "List sidesets with Extrapolation boundary conditions",
1692 : : R"(This keyword is used to list (multiple) extrapolate BC sidesets.)",
1693 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1694 : :
1695 : : keywords.insert({"noslipwall",
1696 : : "List sidesets with no-slip wall boundary conditions",
1697 : : R"(This keyword is used to list (multiple) no-slip wall BC sidesets.)",
1698 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1699 : :
1700 : : keywords.insert({"stag",
1701 : : "List sidesets with stagnation boundary conditions",
1702 : : R"(This keyword is used to list (multiple) stagnation BC sidesets.)",
1703 [ + - ][ + - ]: 1366 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1704 : :
1705 : : keywords.insert({"timedep",
1706 : : "Start configuration block describing time dependent boundary conditions",
1707 : : R"(This keyword is used to introduce a bc_timedep block, used to
1708 : : specify the configuration of time dependent boundary conditions for a
1709 : : partial differential equation. A discrete function in time t in the form
1710 : : of a table with 6 columns (t, pressure(t), density(t), vx(t), vy(t), vz(t))
1711 : : is expected inside a fn ... end block, specified within the bc_timedep
1712 : : block. Multiple such bc_timedep blocks can be specified for different
1713 [ + - ][ + - ]: 1366 : time dependent BCs on different groups of side sets.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1714 : :
1715 : : keywords.insert({"radius", "Specify a radius",
1716 : : R"(This keyword is used to specify a radius, used, e.g., in specifying a
1717 : : point in 3D space for setting a stagnation (velocity vector = 0).)",
1718 [ + - ][ + - ]: 1366 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1719 : :
1720 : : keywords.insert({"velocity", "Specify velocity",
1721 : : R"(This keyword is used to configure a velocity vector used in a
1722 : : context-specific way, e.g., for boundary or initial conditions, or
1723 [ + - ][ + - ]: 1366 : specifying overset mesh velocity.)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1724 : :
1725 : : // -----------------------------------------------------------------------
1726 : : // IC object
1727 : : // -----------------------------------------------------------------------
1728 : :
1729 : : keywords.insert({"ic",
1730 : : "Introduce an ic block used to configure initial conditions",
1731 : : R"(This keyword is used to introduce an ic block used to set initial
1732 [ + - ][ + - ]: 1366 : conditions.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1733 : :
1734 : : keywords.insert({"materialid", "Specify material id",
1735 : : R"(This keyword is used to configure the material id within an IC box,
1736 : : IC mesh-block, farfield BC, or in the background as a part of the
1737 [ + - ][ + - ]: 1366 : initialization.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1738 : :
1739 : : keywords.insert({"temperature", "Specify temperature",
1740 : : R"(This keyword is used to configure temperature, used for, e.g.,
1741 [ + - ][ + - ]: 1366 : boundary or initial conditions.)" , "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1742 : :
1743 : : keywords.insert({"mass_fractions", "Specify species mass fractions",
1744 : : R"(This keyword is used to configure species mass fractions, used for,
1745 [ + - ][ + - ]: 1366 : e.g., boundary or initial conditions.)" , "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1746 : :
1747 : : keywords.insert({"box",
1748 : : "Introduce a box block used to assign initial conditions",
1749 : : R"(This keyword is used to introduce a IC box block used to assign
1750 : : initial conditions within a box given by spatial coordinates.)",
1751 [ + - ][ + - ]: 1366 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1752 : :
1753 : : keywords.insert({"meshblock",
1754 : : "Introduce a meshblock block used to assign initial conditions",
1755 : : R"(This keyword is used to introduce a IC meshblock block used to
1756 : : assign initial conditions within a mesh block specified in the mesh file.)",
1757 [ + - ][ + - ]: 1366 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1758 : :
1759 : : keywords.insert({"blockid", "Specify mesh block id",
1760 : : R"(This keyword is used to configure the mesh block id within the
1761 : : meshblock-block as a part of the initialization. It is strongly
1762 : : recommended to use contiguous block ids in mesh file starting from 1.)",
1763 [ + - ][ + - ]: 1366 : "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1764 : :
1765 : : keywords.insert({"volume", "Specify volume",
1766 : : R"(This keyword is used to configure the volume of a meshblock.)",
1767 [ + - ][ + - ]: 1366 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1768 : :
1769 : : keywords.insert({"mass", "Specify mass",
1770 : : R"(This keyword is used to configure the mass within a box/meshblock.)",
1771 [ + - ][ + - ]: 1366 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1772 : :
1773 : : keywords.insert({"energy", "Specify energy per unit mass",
1774 : : R"(This keyword is used to configure energy per unit mass, used for, e.g.,
1775 [ + - ][ + - ]: 1366 : boundary or initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1776 : :
1777 : : keywords.insert({"energy_content", "Specify energy per unit volume",
1778 : : R"(This keyword is used to configure energy per unit volume, used for
1779 [ + - ][ + - ]: 1366 : initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1780 : :
1781 : : keywords.insert({"xmin", "Minimum x coordinate",
1782 : : R"(This keyword used to configure a minimum x coordinate to specify
1783 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1784 : :
1785 : : keywords.insert({"xmax", "Maximum x coordinate",
1786 : : R"(This keyword used to configure a maximum x coordinate to specify
1787 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1788 : :
1789 : : keywords.insert({"ymin", "Minimum y coordinate",
1790 : : R"(This keyword used to configure a minimum y coordinate to specify
1791 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1792 : :
1793 : : keywords.insert({"ymax", "Maximum y coordinate",
1794 : : R"(This keyword used to configure a maximum y coordinate to specify
1795 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1796 : :
1797 : : keywords.insert({"zmin", "Minimum z coordinate",
1798 : : R"(This keyword used to configure a minimum z coordinate to specify
1799 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1800 : :
1801 : : keywords.insert({"zmax", "Maximum z coordinate",
1802 : : R"(This keyword used to configure a maximum z coordinate to specify
1803 [ + - ][ + - ]: 1366 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1804 : :
1805 : : keywords.insert({"orientation", "Configure orientation",
1806 : : R"(Configure orientation of an IC box for rotation about centroid of box.)",
1807 [ + - ][ + - ]: 1366 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1808 : :
1809 : : keywords.insert({"initiate", "Initiation type",
1810 : : R"(This keyword is used to select an initiation type to configure how
1811 : : values are assigned for a box/meshblock initialization. This can be used
1812 : : to specify, how the values are assigned to mesh nodes within a box. Uses:
1813 : : (1) impulse: assign the full values at t=0 for all points in a box,
1814 : : (2) linear: use a linear function in time and space, configured with an
1815 : : initiation point in space, a constant velocity of the growing spherical
1816 : : front in time (and space) linearly, and width of the front and assigns
1817 : : values to mesh points falling within the growing spherical shell inside
1818 [ + - ][ + - ]: 1366 : a configured box.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1819 : :
1820 : : keywords.insert({"init_time","Specify the initialization time",
1821 : : R"(This keyword is used to specify the time at which the propagating front
1822 : : is initialized for a mesh block or box IC, with 'initiate linear' type.
1823 : : Delays in initializing separate mesh blocks or boxes can be achieved using
1824 [ + - ][ + - ]: 1366 : different initialization times.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1825 : :
1826 : : keywords.insert({"front_width", "Specify a front width",
1827 : : R"(This keyword is used to specify the width of the propagating front for
1828 : : a mesh block or box IC, with 'initiate linear' type. The suggested value
1829 : : of the front width is about 4-5 times the mesh size inside the mesh block
1830 [ + - ][ + - ]: 1366 : or box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1831 : :
1832 : : keywords.insert({"front_speed", "Specify a front speed",
1833 : : R"(This keyword is used to specify the speed at which a front propagates
1834 [ + - ][ + - ]: 1366 : for a mesh block or box IC, with 'initiate linear' type.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1835 : :
1836 : : keywords.insert({"impulse",
1837 : : "Select the impulse initiation type, for a box/meshblock IC",
1838 : : R"(This keyword can be used to select the 'impulse' initiation/assignment
1839 : : type for box initial conditions. It simply assigns the prescribed values
1840 [ + - ][ + - ]: 1366 : to all mesh points within a configured box at t=0.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1841 : :
1842 : : keywords.insert({"linear",
1843 : : "Select the linear initiation type, for a box/meshblock IC",
1844 : : R"(This keyword is be used to specify the 'linear' initiation parameters
1845 : : for a particular box or meshblock, as a part of the 'energy_pill'
1846 : : initialization. Linear initiation uses a linear function in time and space,
1847 : : configured with an initiation point in space, a constant velocity of the
1848 : : growing spherical front in time (and space) linearly, and width of the front
1849 : : and assigns values to mesh points falling within the growing spherical shell
1850 : : inside a configured box or meshblock. The following keywords are required
1851 : : in the box/meshblock block if 'linear' is used: 'init_time',
1852 [ + - ][ + - ]: 1366 : 'front_width', 'front_speed')"});
[ + - ][ + - ]
[ + - ][ + - ]
1853 : :
1854 : : // -----------------------------------------------------------------------
1855 : : // Overset mesh object
1856 : : // -----------------------------------------------------------------------
1857 : :
1858 : : keywords.insert({"mesh",
1859 : : "Start configuration block assigning a mesh to a solver",
1860 : : R"(This keyword is used to introduce a mesh block, used to
1861 [ + - ][ + - ]: 1366 : assign and configure a mesh to a solver.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1862 : :
1863 : : keywords.insert({"filename", "Set filename",
1864 [ + - ][ + - ]: 1366 : R"(Set filename, e.g., mesh filename for solver coupling.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1865 : :
1866 : : keywords.insert({"location", "Configure location",
1867 : : R"(Configure location of a mesh relative to another.)",
1868 [ + - ][ + - ]: 1366 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1869 : :
1870 : : keywords.insert({"orientation", "Configure orientation",
1871 : : R"(Configure orientation of a mesh relative to another.)",
1872 [ + - ][ + - ]: 1366 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1873 : :
1874 : : // -----------------------------------------------------------------------
1875 : : // pre-configured problems
1876 : : // -----------------------------------------------------------------------
1877 : :
1878 : : keywords.insert({"user_defined",
1879 : : "Select user-defined specification for a problem",
1880 : : R"(This keyword is used to select the user-defined specification for an
1881 : : option. This could be a 'problem' to be solved by a partial differential
1882 : : equation, but can also be a 'user-defined' mesh velocity specification for
1883 [ + - ][ + - ]: 1366 : ALE mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1884 : :
1885 : : keywords.insert({"shear_diff",
1886 : : "Select the shear + diffusion test problem ",
1887 : : R"(This keyword is used to select the shear diffusion test problem. The
1888 : : initial and boundary conditions are specified to set up the test problem
1889 : : suitable to exercise and test the advection and diffusion terms of the
1890 [ + - ][ + - ]: 1366 : scalar transport equation.)" });
[ + - ][ + - ]
[ + - ][ + - ]
1891 : :
1892 : : keywords.insert({"slot_cyl",
1893 : : "Select Zalesak's slotted cylinder test problem",
1894 : : R"(This keyword is used to select Zalesak's slotted cylinder test
1895 : : problem. The initial and boundary conditions are specified to set up the
1896 : : test problem suitable to exercise and test the advection and diffusion
1897 [ + - ][ + - ]: 1366 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1898 : :
1899 : : keywords.insert({"gauss_hump",
1900 : : "Select advection of 2D Gaussian hump test problem",
1901 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
1902 : : problem. The initial and boundary conditions are specified to set up the
1903 : : test problem suitable to exercise and test the advection
1904 [ + - ][ + - ]: 1366 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1905 : :
1906 : : keywords.insert({"cyl_advect",
1907 : : "Select advection of cylinder test problem",
1908 : : R"(This keyword is used to select the advection of cylinder test
1909 : : problem. The initial and boundary conditions are specified to set up the
1910 : : test problem suitable to exercise and test the advection
1911 [ + - ][ + - ]: 1366 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1912 : :
1913 : : keywords.insert({"cyl_vortex",
1914 : : "Select deformation of cylinder in a vortex test problem",
1915 : : R"(This keyword is used to select the test problem which deforms a cylinder
1916 : : in a vortical velocity field. The initial and boundary conditions are
1917 : : specified to set up the test problem suitable to exercise and test the
1918 [ + - ][ + - ]: 1366 : advection terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1919 : :
1920 : : keywords.insert({"vortical_flow",
1921 : : "Select the vortical flow test problem ",
1922 : : R"(This keyword is used to select the vortical flow test problem. The
1923 : : purpose of this test problem is to test velocity errors generated by spatial
1924 : : operators in the presence of 3D vorticity and in particluar the
1925 : : superposition of planar and vortical flows, analogous to voritcity
1926 : : stretching. For more details, see Waltz,
1927 : : et. al, "Manufactured solutions for the three-dimensional Euler equations
1928 : : with relevance to Inertial Confinement Fusion", Journal of Computational
1929 [ + - ][ + - ]: 1366 : Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1930 : :
1931 : : keywords.insert({"nl_energy_growth",
1932 : : "Select the nonlinear energy growth test problem",
1933 : : R"(This keyword is used to select the nonlinear energy growth test problem.
1934 : : The purpose of this test problem is to test nonlinear, time dependent energy
1935 : : growth and the subsequent development of pressure gradients due to coupling
1936 : : between the internal energy and the equation of state. For more details,
1937 : : see Waltz, et. al, "Manufactured
1938 : : solutions for the three-dimensional Euler equations with relevance to
1939 : : Inertial Confinement Fusion", Journal of Computational Physics 267 (2014)
1940 [ + - ][ + - ]: 1366 : 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1941 : :
1942 : : keywords.insert({"rayleigh_taylor",
1943 : : "Select the Rayleigh-Taylor test problem ",
1944 : : R"(This keyword is used to select the Rayleigh-Taylor unstable configuration
1945 : : test problem. The purpose of this test problem is to assess time dependent
1946 : : fluid motion in the presence of Rayleigh-Taylor unstable conditions, i.e.
1947 : : opposing density and pressure gradients.
1948 : : For more details, see Waltz, et. al, "Manufactured solutions for the
1949 : : three-dimensional Euler equations with relevance to Inertial Confinement
1950 [ + - ][ + - ]: 1366 : Fusion", Journal of Computational Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1951 : :
1952 : : keywords.insert({"taylor_green",
1953 : : "Select the Taylor-Green test problem ",
1954 : : R"(This keyword is used to select the Taylor-Green vortex test problem. The
1955 : : purpose of this problem is to test time accuracy and the correctness of the
1956 : : discretization of the viscous term in the Navier-Stokes equation. For more
1957 : : details on the flow, see G.I. Taylor, A.E.
1958 : : Green, "Mechanism of the Production of Small Eddies from Large Ones", Proc.
1959 : : R. Soc. Lond. A 1937 158 499-521; DOI: 10.1098/rspa.1937.0036. Published 3
1960 [ + - ][ + - ]: 1366 : February 1937.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1961 : :
1962 : : keywords.insert({"sod_shocktube",
1963 : : "Select the Sod shock-tube test problem ",
1964 : : R"(This keyword is used to select the Sod shock-tube test problem. The
1965 : : purpose of this test problem is to test the correctness of the
1966 : : approximate Riemann solver and its shock and interface capturing
1967 : : capabilities. For more details, see
1968 : : G. A. Sod, "A Survey of Several Finite Difference Methods for Systems of
1969 : : Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27 (1978)
1970 [ + - ][ + - ]: 1366 : 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1971 : :
1972 : : keywords.insert({"rotated_sod_shocktube",
1973 : : "Select the rotated Sod shock-tube test problem ",
1974 : : R"(This keyword is used to select the rotated Sod shock-tube test problem.
1975 : : This the same as Sod shocktube but the geometry is rotated about X, Y, Z
1976 : : each by 45 degrees (in that order) so that none of the domain boundary align
1977 : : with any of the coordinate directions. The purpose of this test problem is
1978 : : to test the correctness of the approximate Riemann solver and its shock and
1979 : : interface capturing capabilities in an arbitrarily oriented geometry.
1980 : : For more details on the Sod
1981 : : problem, see G. A. Sod, "A Survey of Several Finite Difference Methods for
1982 : : Systems of Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27
1983 [ + - ][ + - ]: 1366 : (1978) 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1984 : :
1985 : : keywords.insert({"shedding_flow",
1986 : : "Select the Shedding flow test problem ",
1987 : : R"(This keyword is used to select the Shedding flow test problem. It
1988 : : describe a quasi-2D inviscid flow over a triangular wedge in tetrahedron
1989 : : grid. The purpose of this test problem is to test the capability of DG
1990 : : scheme for retaining the shape of vortices and also different error
1991 : : indicator behavior for this external flow problem when p-adaptive DG scheme
1992 [ + - ][ + - ]: 1366 : is applied.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1993 : :
1994 : : keywords.insert({"sedov_blastwave",
1995 : : "Select the Sedov blast-wave test problem ",
1996 : : R"(This keyword is used to select the Sedov blast-wave test problem. The
1997 : : purpose of this test problem is to test the correctness of the
1998 : : approximate Riemann solver and its strong shock and interface capturing
1999 [ + - ][ + - ]: 1366 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2000 : :
2001 : : keywords.insert({"interface_advection",
2002 : : "Select the interface advection test problem ",
2003 : : R"(This keyword is used to select the interface advection test problem.
2004 : : The purpose of this test problem is to test the well-balancedness of the
2005 : : multi-material discretization and its interface capturing
2006 [ + - ][ + - ]: 1366 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2007 : :
2008 : : keywords.insert({"gauss_hump_compflow",
2009 : : "Select advection of 2D Gaussian hump test problem",
2010 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
2011 : : problem. The initial and boundary conditions are specified to set up the
2012 : : test problem suitable to exercise and test the advection terms of the
2013 : : Euler equations. The baseline of the density distribution in this testcase
2014 : : is 1 instead of 0 in gauss_hump_transport which enables it to be the
2015 [ + - ][ + - ]: 1366 : regression testcase for p-adaptive DG scheme.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2016 : :
2017 : : keywords.insert({"waterair_shocktube",
2018 : : "Select the water-air shock-tube test problem ",
2019 : : R"(This keyword is used to select the Water-air shock-tube test problem.
2020 : : The purpose of this test problem is to test the correctness of the
2021 : : multi-material pressure relaxation procedure and its interface capturing
2022 : : capabilities. For more details, see
2023 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2024 : : interfaces with compressible fluids on unstructured meshes. Journal of
2025 [ + - ][ + - ]: 1366 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2026 : :
2027 : : keywords.insert({"shock_hebubble",
2028 : : "Select the shock He-bubble test problem ",
2029 : : R"(This keyword is used to select the shock He-bubble test problem. The
2030 : : purpose of this test problem is to test the correctness of the
2031 : : multi-material algorithm and its shock-interface interaction
2032 : : capabilities. For more details, see
2033 : : Quirk, J. J., & Karni, S. (1996). On the dynamics of a shock–bubble
2034 [ + - ][ + - ]: 1366 : interaction. Journal of Fluid Mechanics, 318, 129-163.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2035 : :
2036 : : keywords.insert({"underwater_ex",
2037 : : "Select the underwater explosion test problem ",
2038 : : R"(This keyword is used to select the underwater explosion test problem.
2039 : : The purpose of this test problem is to test the correctness of the
2040 : : multi-material algorithm and its interface capturing capabilities in the
2041 : : presence of strong shocks and large deformations.
2042 : : For more details, see
2043 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2044 : : interfaces with compressible fluids on unstructured meshes. Journal of
2045 [ + - ][ + - ]: 1366 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2046 : :
2047 : : keywords.insert({"shockdensity_wave",
2048 : : "Select the shock-density wave test problem ",
2049 : : R"(This keyword is used to select the shock-density wave test problem.
2050 : : THe purpose of this test problem is to assess the accuracy of high order
2051 : : method in predicting the interaction of a density wave with a shock front.
2052 : : For more details, see Yu, L., Matthias
2053 : : I. (2014). Discontinuous Galerkin method for multicomponent chemically
2054 : : reacting flows and combustion. Journal of Computational Physics, 270,
2055 [ + - ][ + - ]: 1366 : 105-137.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2056 : :
2057 : : keywords.insert({"equilinterface_advect",
2058 : : "Select the advection of equilibrium interface problem ",
2059 : : R"(This keyword is used to select the advection of equilibrium interface
2060 : : problem. This is a manufactured problem with source terms with nonlinear
2061 : : solutions near the material interface. Source terms are used to ensure
2062 [ + - ][ + - ]: 1366 : that the conservation laws are satisfied by the manufactured solution.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2063 : :
2064 : : keywords.insert({"sinewave_packet",
2065 : : "Select the advection of sinewave packet problem ",
2066 : : R"(This keyword is used to select the advection of sinewave packet
2067 [ + - ][ + - ]: 1366 : problem.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2068 : :
2069 : : keywords.insert({"richtmyer_meshkov",
2070 : : "Select the Richtmyer-Meshkov instability problem ",
2071 : : R"(This keyword is used to select the Richtmyer-Meshkov instability
2072 [ + - ][ + - ]: 1366 : problem. In this problem, a shock hits a perturbed material interface.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2073 : :
2074 : : // -----------------------------------------------------------------------
2075 : :
2076 : : // Initialize help: fill own keywords
2077 : 1366 : tk::ctr::Info ctrinfoFill(get< tag::cmd, tag::ctrinfo >());
2078 [ + + ]: 333304 : for (const auto& i : keywords) {
2079 [ + - ]: 331938 : ctrinfoFill.fill(i);
2080 : : }
2081 : 1366 : }
2082 : :
2083 : : //! Query scheme centering
2084 : : //! \return Scheme centering
2085 : 194 : tk::Centering centering() const
2086 [ + - ]: 194 : { return ctr::Scheme().centering( get< tag::scheme >() ); }
2087 : :
2088 : : /** @name Pack/Unpack: Serialize InputDeck object for Charm++ */
2089 : : ///@{
2090 : : //! \brief Pack/Unpack serialize member function
2091 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2092 : 1814 : void pup( PUP::er& p ) { tk::TaggedTuple< ConfigMembers >::pup(p); }
2093 : : //! \brief Pack/Unpack serialize operator|
2094 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2095 : : //! \param[in,out] c InputDeck object reference
2096 : 1814 : friend void operator|( PUP::er& p, InputDeck& c ) { c.pup(p); }
2097 : : //@}
2098 : :
2099 : : };
2100 : :
2101 : : } // ctr::
2102 : : } // inciter::
2103 : :
2104 : : #endif // InputDeck_h
|