Branch data Line data Source code
1 : : // *****************************************************************************
2 : : /*!
3 : : \file src/Control/Inciter/InputDeck/InputDeck.hpp
4 : : \copyright 2012-2015 J. Bakosi,
5 : : 2016-2018 Los Alamos National Security, LLC.,
6 : : 2019-2021 Triad National Security, LLC.
7 : : All rights reserved. See the LICENSE file for details.
8 : : \brief Inciter's new input deck definition
9 : : \details This file defines the heterogeneous struct that is used for storing
10 : : the data from user input during the control file parsing of the
11 : : computational shock hydrodynamics tool, Inciter.
12 : : */
13 : : // *****************************************************************************
14 : : #ifndef InputDeck_h
15 : : #define InputDeck_h
16 : :
17 : : #include <getopt.h>
18 : : #include "Types.hpp"
19 : : #include "TaggedTuple.hpp"
20 : : #include "Inciter/CmdLine/CmdLine.hpp"
21 : : #include "Transfer.hpp"
22 : : #include "Inciter/OutVar.hpp"
23 : : #include "Inciter/Options/PDE.hpp"
24 : : #include "Inciter/Options/Problem.hpp"
25 : : #include "Inciter/Options/Scheme.hpp"
26 : : #include "Inciter/Options/Limiter.hpp"
27 : : #include "Inciter/Options/Flux.hpp"
28 : : #include "Inciter/Options/Initiate.hpp"
29 : : #include "Inciter/Options/AMRInitial.hpp"
30 : : #include "Inciter/Options/AMRError.hpp"
31 : : #include "Inciter/Options/PrefIndicator.hpp"
32 : : #include "Inciter/Options/MeshVelocity.hpp"
33 : : #include "Inciter/Options/MeshVelocitySmoother.hpp"
34 : : #include "Inciter/Options/Material.hpp"
35 : : #include "Options/PartitioningAlgorithm.hpp"
36 : : #include "Options/TxtFloatFormat.hpp"
37 : : #include "Options/FieldFile.hpp"
38 : : #include "Options/Error.hpp"
39 : : #include "Options/UserTable.hpp"
40 : :
41 : : namespace inciter {
42 : :
43 : : namespace ctr {
44 : :
45 : : using ncomp_t = std::size_t;
46 : :
47 : : using bclist = tk::TaggedTuple< brigand::list<
48 : : tag::dirichlet, std::vector< std::size_t >,
49 : : tag::symmetry, std::vector< std::size_t >,
50 : : tag::outlet, std::vector< std::size_t >,
51 : : tag::farfield, std::vector< std::size_t >,
52 : : tag::extrapolate, std::vector< std::size_t >,
53 : : tag::noslipwall, std::vector< std::size_t >,
54 : : tag::slipwall, std::vector< std::size_t >
55 : : > >;
56 : :
57 : : // Transport
58 : : using transportList = tk::TaggedTuple< brigand::list<
59 : : tag::physics, PhysicsType,
60 : : tag::ncomp, std::size_t,
61 : : tag::intsharp, int,
62 : : tag::intsharp_param, tk::real,
63 : : tag::problem, ProblemType,
64 : : tag::diffusivity, std::vector< tk::real >,
65 : : tag::lambda, std::vector< tk::real >,
66 : : tag::u0, std::vector< tk::real >
67 : : > >;
68 : :
69 : : // CompFlow
70 : : using compflowList = tk::TaggedTuple< brigand::list<
71 : : tag::physics, PhysicsType,
72 : : tag::problem, ProblemType,
73 : : tag::alpha, tk::real,
74 : : tag::beta, tk::real,
75 : : tag::betax, tk::real,
76 : : tag::betay, tk::real,
77 : : tag::betaz, tk::real,
78 : : tag::r0, tk::real,
79 : : tag::p0, tk::real,
80 : : tag::ce, tk::real,
81 : : tag::kappa, tk::real
82 : : > >;
83 : :
84 : : // MultiMat
85 : : using multimatList = tk::TaggedTuple< brigand::list<
86 : : tag::physics, PhysicsType,
87 : : tag::nmat, std::size_t,
88 : : tag::min_volumefrac, tk::real,
89 : : tag::prelax, uint64_t,
90 : : tag::prelax_timescale, tk::real,
91 : : tag::intsharp, int,
92 : : tag::intsharp_param, tk::real,
93 : : tag::rho0constraint, uint64_t,
94 : : tag::dt_sos_massavg, int,
95 : : tag::problem, ProblemType,
96 : : tag::viscous, bool
97 : : > >;
98 : :
99 : : // MultiSpecies
100 : : using multispeciesList = tk::TaggedTuple< brigand::list<
101 : : tag::physics, PhysicsType,
102 : : tag::nspec, std::size_t,
103 : : tag::problem, ProblemType,
104 : : tag::viscous, bool
105 : : > >;
106 : :
107 : : // Material/EOS object
108 : : using materialList = tk::TaggedTuple< brigand::list<
109 : : tag::eos, MaterialType,
110 : : tag::id, std::vector< uint64_t >,
111 : : tag::gamma, std::vector< tk::real >,
112 : : tag::pstiff, std::vector< tk::real >,
113 : : tag::w_gru, std::vector< tk::real >,
114 : : tag::A_jwl, std::vector< tk::real >,
115 : : tag::B_jwl, std::vector< tk::real >,
116 : : tag::C_jwl, std::vector< tk::real >,
117 : : tag::R1_jwl, std::vector< tk::real >,
118 : : tag::R2_jwl, std::vector< tk::real >,
119 : : tag::rho0_jwl, std::vector< tk::real >,
120 : : tag::de_jwl, std::vector< tk::real >,
121 : : tag::rhor_jwl, std::vector< tk::real >,
122 : : tag::Tr_jwl, std::vector< tk::real >,
123 : : tag::Pr_jwl, std::vector< tk::real >,
124 : : tag::mu, std::vector< tk::real >,
125 : : tag::yield_stress, std::vector< tk::real >,
126 : : tag::alpha, std::vector< tk::real >,
127 : : tag::K0, std::vector< tk::real >,
128 : : tag::cv, std::vector< tk::real >,
129 : : tag::k, std::vector< tk::real >
130 : : > >;
131 : :
132 : : // Species/EOS object
133 : : using speciesList = tk::TaggedTuple< brigand::list<
134 : : tag::id, std::vector< uint64_t >,
135 : : tag::gamma, std::vector< tk::real >,
136 : : tag::R, std::vector< tk::real >,
137 : : tag::cp_coeff, std::vector< std::vector< std::vector< tk::real > > >,
138 : : tag::t_range, std::vector< std::vector< tk::real > >,
139 : : tag::dH_ref, std::vector< tk::real >
140 : : > >;
141 : :
142 : : // Boundary conditions block
143 : : using bcList = tk::TaggedTuple< brigand::list<
144 : : tag::mesh, std::vector< std::size_t >,
145 : : tag::dirichlet, std::vector< std::size_t >,
146 : : tag::symmetry, std::vector< std::size_t >,
147 : : tag::outlet, std::vector< std::size_t >,
148 : : tag::farfield, std::vector< std::size_t >,
149 : : tag::extrapolate, std::vector< std::size_t >,
150 : : tag::noslipwall, std::vector< std::size_t >,
151 : : tag::slipwall, std::vector< std::size_t >,
152 : : tag::velocity, std::vector< tk::real >,
153 : : tag::pressure, tk::real,
154 : : tag::density, tk::real,
155 : : tag::temperature, tk::real,
156 : : tag::mass_fractions, std::vector< tk::real >,
157 : : tag::materialid, std::size_t,
158 : : tag::inlet, std::vector<
159 : : tk::TaggedTuple< brigand::list<
160 : : tag::sideset, std::vector< uint64_t >,
161 : : tag::velocity, std::vector< tk::real >,
162 : : tag::pressure, tk::real,
163 : : tag::temperature, tk::real,
164 : : tag::materialid, std::size_t
165 : : > >
166 : : >,
167 : : tag::timedep, std::vector<
168 : : tk::TaggedTuple< brigand::list<
169 : : tag::sideset, std::vector< uint64_t >,
170 : : tag::fn, std::vector< tk::real >
171 : : > >
172 : : >,
173 : : tag::back_pressure, tk::TaggedTuple< brigand::list<
174 : : tag::sideset, std::vector< std::size_t >,
175 : : tag::pressure, tk::real
176 : : > >
177 : : > >;
178 : :
179 : : // IC box
180 : : using boxList = tk::TaggedTuple< brigand::list<
181 : : tag::materialid, std::size_t,
182 : : tag::volume, tk::real,
183 : : tag::mass, tk::real,
184 : : tag::density, tk::real,
185 : : tag::velocity, std::vector< tk::real >,
186 : : tag::pressure, tk::real,
187 : : tag::energy, tk::real,
188 : : tag::energy_content, tk::real,
189 : : tag::temperature, tk::real,
190 : : tag::mass_fractions, std::vector< tk::real >,
191 : : tag::xmin, tk::real,
192 : : tag::xmax, tk::real,
193 : : tag::ymin, tk::real,
194 : : tag::ymax, tk::real,
195 : : tag::zmin, tk::real,
196 : : tag::zmax, tk::real,
197 : : tag::orientation, std::vector< tk::real >,
198 : : tag::initiate, inciter::ctr::InitiateType,
199 : : tag::point, std::vector< tk::real >,
200 : : tag::init_time, tk::real,
201 : : tag::front_width, tk::real,
202 : : tag::front_speed, tk::real
203 : : > >;
204 : :
205 : : // IC meshblock
206 : : using meshblockList = tk::TaggedTuple< brigand::list<
207 : : tag::blockid, std::uint64_t,
208 : : tag::materialid, std::size_t,
209 : : tag::volume, tk::real,
210 : : tag::mass, tk::real,
211 : : tag::density, tk::real,
212 : : tag::velocity, std::vector< tk::real >,
213 : : tag::pressure, tk::real,
214 : : tag::energy, tk::real,
215 : : tag::energy_content, tk::real,
216 : : tag::temperature, tk::real,
217 : : tag::mass_fractions, std::vector< tk::real >,
218 : : tag::initiate, inciter::ctr::InitiateType,
219 : : tag::point, std::vector< tk::real >,
220 : : tag::init_time, tk::real,
221 : : tag::front_width, tk::real,
222 : : tag::front_speed, tk::real
223 : : > >;
224 : :
225 : : // Initial conditions (ic) block
226 : : using icList = tk::TaggedTuple< brigand::list<
227 : : tag::materialid, std::size_t,
228 : : tag::pressure, tk::real,
229 : : tag::temperature, tk::real,
230 : : tag::mass_fractions, std::vector< tk::real >,
231 : : tag::density, tk::real,
232 : : tag::energy, tk::real,
233 : : tag::velocity, std::vector< tk::real >,
234 : : tag::box, std::vector< boxList >,
235 : : tag::meshblock, std::vector< meshblockList >
236 : : > >;
237 : :
238 : : // Overset mesh block
239 : : using meshList = tk::TaggedTuple< brigand::list<
240 : : tag::filename, std::string,
241 : : tag::location, std::vector< tk::real >,
242 : : tag::orientation, std::vector< tk::real >,
243 : : tag::mass, tk::real,
244 : : tag::moment_of_inertia, tk::real,
245 : : tag::center_of_mass, std::vector< tk::real >
246 : : > >;
247 : :
248 : : // Field output block
249 : : using fieldOutputList = tk::TaggedTuple< brigand::list<
250 : : tag::interval, uint32_t,
251 : : tag::time_interval, tk::real,
252 : : tag::time_range, std::vector< tk::real >,
253 : : tag::refined, bool,
254 : : tag::filetype, tk::ctr::FieldFileType,
255 : : tag::sideset, std::vector< uint64_t >,
256 : : tag::outvar, std::vector< OutVar >,
257 : : tag::elemalias, std::vector< std::string >, // only for error checking
258 : : tag::elemvar, std::vector< std::string >, // only for error checking
259 : : tag::nodealias, std::vector< std::string >, // only for error checking
260 : : tag::nodevar, std::vector< std::string > // only for error checking
261 : : > >;
262 : :
263 : : // Diagnostics block
264 : : using diagnosticsList = tk::TaggedTuple< brigand::list<
265 : : tag::interval, uint32_t,
266 : : tag::error, tk::ctr::ErrorType,
267 : : tag::format, tk::ctr::TxtFloatFormatType,
268 : : tag::precision, std::streamsize
269 : : > >;
270 : :
271 : : // History output block
272 : : using historyOutputList = tk::TaggedTuple< brigand::list<
273 : : tag::interval, uint32_t,
274 : : tag::time_interval, tk::real,
275 : : tag::time_range, std::vector< tk::real >,
276 : : tag::format, tk::ctr::TxtFloatFormatType,
277 : : tag::precision, std::streamsize,
278 : : tag::point, std::vector<
279 : : tk::TaggedTuple< brigand::list<
280 : : tag::id, std::string,
281 : : tag::coord, std::vector< tk::real >
282 : : > >
283 : : >
284 : : > >;
285 : :
286 : : using ConfigMembers = brigand::list<
287 : :
288 : : tag::title, std::string,
289 : :
290 : : // Command line parameters
291 : : tag::cmd, CmdLine,
292 : :
293 : : // time stepping options
294 : : tag::nstep, uint64_t,
295 : : tag::term, tk::real,
296 : : tag::t0, tk::real,
297 : : tag::dt, tk::real,
298 : : tag::cfl, tk::real,
299 : : tag::ttyi, uint32_t,
300 : : tag::imex_runge_kutta, uint32_t,
301 : : tag::imex_maxiter, uint32_t,
302 : : tag::imex_reltol, tk::real,
303 : : tag::imex_abstol, tk::real,
304 : :
305 : : // steady-state solver options
306 : : tag::steady_state, bool,
307 : : tag::residual, tk::real,
308 : : tag::rescomp, uint32_t,
309 : :
310 : : // mesh partitioning and reordering/sorting choices
311 : : tag::partitioning, tk::ctr::PartitioningAlgorithmType,
312 : : tag::pelocal_reorder, bool,
313 : : tag::operator_reorder, bool,
314 : :
315 : : // discretization scheme choices
316 : : tag::scheme, SchemeType,
317 : : tag::ndof, std::size_t,
318 : : tag::rdof, std::size_t,
319 : : tag::flux, FluxType,
320 : : tag::lowspeed_kp, tk::real,
321 : : tag::lowspeed_ku, tk::real,
322 : :
323 : : // limiter options
324 : : tag::limiter, LimiterType,
325 : : tag::cweight, tk::real,
326 : : tag::shock_detector_coeff, tk::real,
327 : : tag::accuracy_test, bool,
328 : : tag::limsol_projection, bool,
329 : :
330 : : // PDE options
331 : : tag::ncomp, std::size_t,
332 : : tag::pde, PDEType,
333 : : tag::transport, transportList,
334 : : tag::compflow, compflowList,
335 : : tag::multimat, multimatList,
336 : : tag::multispecies, multispeciesList,
337 : :
338 : : // Dependent variable name
339 : : tag::depvar, std::vector< char >,
340 : :
341 : : tag::sys, std::map< std::size_t, std::size_t >,
342 : :
343 : : tag::material, std::vector< materialList >,
344 : :
345 : : tag::species, std::vector< speciesList >,
346 : :
347 : : tag::matidxmap, tk::TaggedTuple< brigand::list<
348 : : tag::eosidx, std::vector< std::size_t >,
349 : : tag::matidx, std::vector< std::size_t >,
350 : : tag::solidx, std::vector< std::size_t >
351 : : > >,
352 : :
353 : : // Conditions
354 : : tag::bc, std::vector< bcList >,
355 : : tag::ic, icList,
356 : : tag::mesh, std::vector< meshList >,
357 : : tag::transfer, std::vector< Transfer >,
358 : :
359 : : // Rigid-body motion solver
360 : : tag::rigid_body_motion, tk::TaggedTuple< brigand::list<
361 : : tag::rigid_body_movt, bool,
362 : : tag::rigid_body_dof, std::size_t,
363 : : tag::symmetry_plane, std::size_t
364 : : > >,
365 : :
366 : : // ALE block
367 : : // ---------------------------------------------------------------------------
368 : : tag::ale, tk::TaggedTuple< brigand::list<
369 : : tag::ale, bool,
370 : : tag::smoother, MeshVelocitySmootherType,
371 : : tag::mesh_velocity, MeshVelocityType,
372 : : tag::mesh_motion, std::vector< std::size_t >,
373 : : tag::meshforce, std::vector< tk::real >,
374 : : tag::dvcfl, tk::real,
375 : : tag::vortmult, tk::real,
376 : : tag::maxit, std::size_t,
377 : : tag::tolerance, tk::real,
378 : : tag::dirichlet, std::vector< std::size_t >,
379 : : tag::symmetry, std::vector< std::size_t >,
380 : : tag::move, std::vector<
381 : : tk::TaggedTuple< brigand::list<
382 : : tag::sideset, std::vector< uint64_t >,
383 : : tag::fntype, tk::ctr::UserTableType,
384 : : tag::fn, std::vector< tk::real >
385 : : > >
386 : : >
387 : : > >,
388 : :
389 : : // p-refinement block
390 : : // ---------------------------------------------------------------------------
391 : : tag::pref, tk::TaggedTuple< brigand::list<
392 : : tag::pref, bool,
393 : : tag::indicator, PrefIndicatorType,
394 : : tag::ndofmax, std::size_t,
395 : : tag::tolref, tk::real
396 : : > >,
397 : :
398 : : // AMR block
399 : : // ---------------------------------------------------------------------------
400 : : tag::amr, tk::TaggedTuple< brigand::list<
401 : : tag::amr, bool,
402 : : tag::t0ref, bool,
403 : : tag::dtref, bool,
404 : : tag::dtref_uniform, bool,
405 : : tag::dtfreq, std::size_t,
406 : : tag::maxlevels, std::size_t,
407 : : tag::initial, std::vector< AMRInitialType >,
408 : : tag::edgelist, std::vector< std::size_t >,
409 : : tag::coords, tk::TaggedTuple< brigand::list<
410 : : tag::xminus, tk::real,
411 : : tag::xplus, tk::real,
412 : : tag::yminus, tk::real,
413 : : tag::yplus, tk::real,
414 : : tag::zminus, tk::real,
415 : : tag::zplus, tk::real
416 : : > >,
417 : : tag::error, AMRErrorType,
418 : : tag::refvar, std::vector< char >,
419 : : tag::tol_refine, tk::real,
420 : : tag::tol_derefine, tk::real
421 : : > >,
422 : :
423 : : // Output options
424 : : tag::field_output, fieldOutputList,
425 : : tag::diagnostics, diagnosticsList,
426 : : tag::history_output, historyOutputList
427 : : >;
428 : :
429 : : // Class storing the Config params
430 : : class InputDeck : public tk::TaggedTuple< ConfigMembers > {
431 : :
432 : : public:
433 : : //! Set of tags to ignore when printing this InputDeck
434 : : using ignore = CmdLine::ignore;
435 : :
436 : : //! \brief Constructor: set defaults
437 : : //! \param[in] cl Previously parsed and store command line
438 : : //! \details Anything not set here is initialized by the compiler using the
439 : : //! default constructor for the corresponding type.
440 : 1234 : explicit InputDeck( const CmdLine& cl = {} ) {
441 : : // Set previously parsed command line
442 [ + - ]: 1234 : get< tag::cmd >() = cl;
443 : : // Default time stepping params
444 : 1234 : get< tag::dt >() = 0.0;
445 : 1234 : get< tag::cfl >() = 0.0;
446 : : // Default AMR settings
447 : 1234 : auto rmax =
448 : : std::numeric_limits< tk::real >::max() / 100;
449 : 1234 : get< tag::amr, tag::coords, tag::xminus >() = rmax;
450 : 1234 : get< tag::amr, tag::coords, tag::xplus >() = -rmax;
451 : 1234 : get< tag::amr, tag::coords, tag::yminus >() = rmax;
452 : 1234 : get< tag::amr, tag::coords, tag::yplus >() = -rmax;
453 : 1234 : get< tag::amr, tag::coords, tag::zminus >() = rmax;
454 : 1234 : get< tag::amr, tag::coords, tag::zplus >() = -rmax;
455 : :
456 : : // -----------------------------------------------------------------------
457 : : /*
458 : : Keyword vector
459 : : The following code generates a vector of keywords, for the sole purpose
460 : : of documentation and user-help (accessible via the --helpctr and
461 : : --helpkw cmdline arguments. If entries for a keyword are not added to
462 : : this vector, help will not be output for it. The entries follow the
463 : : function signature of the tk::entry_t constructor (defined in
464 : : Base/Types.hpp).
465 : : */
466 : : // -----------------------------------------------------------------------
467 : 2468 : std::set< tk::entry_t > keywords;
468 : :
469 : : keywords.insert({"inciter",
470 : : "Start configuration block for inciter",
471 : : R"(This keyword is used to select inciter. Inciter, is a continuum-realm
472 : : shock hydrodynamics tool, solving a system of PDEs. The entire control
473 [ + - ][ + - ]: 1234 : file must be enclosed within the inciter block)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
474 : :
475 : : keywords.insert({"title", "Title", R"(The title may be specified in
476 [ + - ][ + - ]: 1234 : the input file. It is optional.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
477 : :
478 : : // -----------------------------------------------------------------------
479 : : // time stepping options
480 : : // -----------------------------------------------------------------------
481 : :
482 : : keywords.insert({"nstep", "Set number of time steps to take",
483 : : R"(This keyword is used to specify the number of time steps to take in a
484 : : simulation. The number of time steps are used in conjunction with the
485 : : maximmum time specified by keyword 'term': the simulation stops whichever
486 : : is reached first. Both 'nstep' and 'term' can be left unspecified, in
487 [ + - ][ + - ]: 1234 : which case their default values are used. See also 'term'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
488 : :
489 : : keywords.insert({"term", "Set maximum physical time to simulate",
490 : : R"(This keyword is used to specify the termination time in a simulation.
491 : : The termination time and number of time steps, specified by 'nstep', are
492 : : used in conjunction to determine when to stop a simulation: whichever is
493 : : reached first. Both 'nstep' and 'term' can be left unspecified, in which
494 [ + - ][ + - ]: 1234 : case their default values are used. See also 'nstep'.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
495 : :
496 : : keywords.insert({"t0", "Set starting non-dimensional time",
497 : : R"(This keyword is used to specify the starting time in a simulation.)",
498 [ + - ][ + - ]: 1234 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
499 : :
500 : : keywords.insert({"dt", "Select constant time step size",
501 : : R"(This keyword is used to specify the time step size that used as a
502 : : constant during simulation. Setting 'cfl' and 'dt' are mutually
503 [ + - ][ + - ]: 1234 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
504 : :
505 : : keywords.insert({"cfl",
506 : : "Set the Courant-Friedrichs-Lewy (CFL) coefficient",
507 : : R"(This keyword is used to specify the CFL coefficient for
508 : : variable-time-step-size simulations. Setting 'cfl' and 'dt' are mutually
509 [ + - ][ + - ]: 1234 : exclusive. If both 'cfl' and 'dt' are set, 'dt' wins.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
510 : :
511 : : keywords.insert({"ttyi", "Set screen output interval",
512 : : R"(This keyword is used to specify the interval in time steps for screen
513 [ + - ][ + - ]: 1234 : output during a simulation.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
514 : :
515 : : keywords.insert({"imex_runge_kutta",
516 : : "Toggle use of IMplicit-EXplicit Runge-Kutta scheme",
517 : : R"(This keywords is used to turn IMEX integrator on/off for solid materials
518 : : in a multimat run. Plastic terms are integrated implicitly in time. This
519 : : flag will activate an Implicit-Explicit Runge-Kutta scheme to replace the
520 : : explicit one that is usually used. Scheme taken from Cavaglieri, D., &
521 : : Bewley, T. (2015). Low-storage implicit/explicit Runge–Kutta schemes for
522 : : the simulation of stiff high-dimensional ODE systems. Journal of
523 [ + - ][ + - ]: 1234 : Computational Physics, 286, 172-193.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
524 : :
525 : : keywords.insert({"imex_maxiter",
526 : : "Set maximum number of iterations for non-linear solver with IMEX-RK scheme",
527 : : R"(This keywords is used to specify the maximum number of iterations that
528 : : the non-linear solver uses to obtain the implicit unknowns within the
529 [ + - ][ + - ]: 1234 : Implicit-Explicit Runge-Kutta scheme.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
530 : :
531 : : keywords.insert({"imex_reltol",
532 : : "Set relative tolerance for non-linear solver with IMEX-RK scheme",
533 : : R"(This keywords is used to specify the relative tolerance that
534 : : the non-linear solver uses to obtain the implicit unknowns within the
535 [ + - ][ + - ]: 1234 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
536 : :
537 : : keywords.insert({"imex_abstol",
538 : : "Set absolute tolerance for non-linear solver with IMEX-RK scheme",
539 : : R"(This keywords is used to specify the absolute tolerance that
540 : : the non-linear solver uses to obtain the implicit unknowns within the
541 [ + - ][ + - ]: 1234 : Implicit-Explicit Runge-Kutta scheme.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
542 : :
543 : : // -----------------------------------------------------------------------
544 : : // steady-state solver options
545 : : // -----------------------------------------------------------------------
546 : :
547 : : keywords.insert({"steady_state", "March to steady state",
548 : : R"(This keyword is used indicate that local time stepping should be used
549 [ + - ][ + - ]: 1234 : to march towards a stationary solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
550 : :
551 : : keywords.insert({"residual",
552 : : "Set the convergence criterion for the residual to reach",
553 : : R"(This keyword is used to specify a convergence criterion for the local
554 : : time stepping marching to steady state, below which the simulation is
555 [ + - ][ + - ]: 1234 : considered converged.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
556 : :
557 : : keywords.insert({"rescomp",
558 : : "Equation system component index for convergence",
559 : : R"(This keyword is used to specify a single integer that is used to denote
560 : : the equation component index in the complete system of equations
561 : : configured, to use for the convergence criterion for local
562 [ + - ][ + - ]: 1234 : time stepping marching towards steady state.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
563 : :
564 : : // -----------------------------------------------------------------------
565 : : // mesh partitioning and reordering/sorting choices
566 : : // -----------------------------------------------------------------------
567 : :
568 : : keywords.insert({"partitioning",
569 : : "Select mesh partitioning algorithm",
570 : : R"(This keyword is used to select a mesh partitioning algorithm. See
571 : : Control/Options/PartitioningAlgorithm.hpp for valid options.)",
572 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
573 : :
574 : : keywords.insert({"rcb",
575 : : "Select recursive coordinate bisection mesh partitioner",
576 : : R"(This keyword is used to select the recursive coordinate bisection (RCB)
577 : : mesh partitioner. RCB is a geometry-based partitioner used to distribute
578 : : an input mesh among processing elements. See
579 [ + - ][ + - ]: 1234 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
580 : :
581 : : keywords.insert({"rib",
582 : : "Select recursive inertial bisection mesh partitioner",
583 : : R"(This keyword is used to select the recursive inertial bisection (RIB)
584 : : mesh partitioner. RIB is a geometry-based partitioner used to distribute
585 : : an input mesh among processing elements. See
586 [ + - ][ + - ]: 1234 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
587 : :
588 : : keywords.insert({"hsfc",
589 : : "Select Hilbert Space Filling Curve (HSFC) mesh partitioner",
590 : : R"(This keyword is used to select the Hilbert Space Filling Curve (HSFC)
591 : : mesh partitioner. HSFC is a geometry-based partitioner used to distribute
592 : : an input mesh among processing elements. See
593 [ + - ][ + - ]: 1234 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
594 : :
595 : : keywords.insert({"phg",
596 : : "Select parallel hypergraph mesh partitioner",
597 : : R"(This keyword is used to select the parallel hypergraph (PHG)
598 : : mesh partitioner. PHG is a graph-based partitioner used to distribute an
599 : : input mesh among processing elements. See
600 [ + - ][ + - ]: 1234 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
601 : :
602 : : keywords.insert({"mj",
603 : : "Select multi-jagged (MJ) mesh partitioner",
604 : : R"(This keyword is used to select the multi-jagged (MJ) mesh partitioner.
605 : : MJ is a geometry-based partitioner used to distribute an input mesh among
606 : : processing elements. See
607 [ + - ][ + - ]: 1234 : Control/Options/PartitioningAlgorithm.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
608 : :
609 : : keywords.insert({"pelocal_reorder",
610 : : "PE-local reorder",
611 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
612 : : as "pelocal_reorder true" (or false) to do (or not do) a global
613 : : distributed mesh reordering across all PEs that yields an approximately
614 : : continuous mesh node ID order as mesh partitions are assigned to PEs after
615 [ + - ][ + - ]: 1234 : mesh partitioning. This reordering is optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
616 : :
617 : : keywords.insert({"operator_reorder",
618 : : "Operator-access reorder",
619 : : R"(This keyword is used in inciter as a keyword in the inciter...end block
620 : : as "operator_reorder on" (or off) to do (or not do) a local mesh node
621 : : reordering based on the PDE operator access pattern. This reordering is
622 [ + - ][ + - ]: 1234 : optional.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
623 : :
624 : : // -----------------------------------------------------------------------
625 : : // discretization scheme choices
626 : : // -----------------------------------------------------------------------
627 : :
628 : : keywords.insert({"scheme", "Select discretization scheme",
629 : : R"(This keyword is used to select a spatial discretization scheme,
630 : : necessarily connected to the temporal discretization scheme. See
631 [ + - ][ + - ]: 1234 : Control/Inciter/Options/Scheme.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
632 : :
633 : : keywords.insert({"alecg",
634 : : "Select continuous Galerkin with ALE + Runge-Kutta",
635 : : R"(This keyword is used to select the continuous Galerkin finite element
636 : : scheme in the arbitrary Lagrangian-Eulerian (ALE) reference frame combined
637 : : with Runge-Kutta (RK) time stepping.
638 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
639 : :
640 : : keywords.insert({"oversetfe",
641 : : "Select continuous Galerkin finite element with overset meshes + "
642 : : "Runge-Kutta",
643 : : R"(This keyword is used to select the continuous Galerkin finite element
644 : : scheme with Runge-Kutta (RK) time stepping, combined with overset grids.
645 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
646 : :
647 : : keywords.insert({"dgp0",
648 : : "Select 1st-order discontinuous Galerkin discretization + Runge-Kutta",
649 : : R"(This keyword is used to select the first-order accurate discontinuous
650 : : Galerkin, DG(P0), spatial discretiztaion used in Inciter. As this is first
651 : : order accurate, it is intended for testing and debugging purposes only.
652 : : Selecting this spatial discretization also selects the Runge-Kutta scheme
653 : : for time discretization. See Control/Inciter/Options/Scheme.hpp for other
654 [ + - ][ + - ]: 1234 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
655 : :
656 : : keywords.insert({"p0p1",
657 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
658 : : R"(This keyword is used to select the second-order accurate finite volume,
659 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
660 : : least-squares procedure to reconstruct the second-order solution from the
661 : : first-order one. Selecting this spatial discretization also selects the
662 : : Runge-Kutta scheme for time discretization.
663 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Scheme.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
664 : :
665 : : keywords.insert({"dgp1",
666 : : "Select 2nd-order discontinuous Galerkin discretization + Runge-Kutta",
667 : : R"(This keyword is used to select the second-order accurate discontinuous
668 : : Galerkin, DG(P1), spatial discretiztaion used in Inciter. Selecting this
669 : : spatial discretization also selects the Runge-Kutta scheme for time
670 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
671 [ + - ][ + - ]: 1234 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
672 : :
673 : : keywords.insert({"dgp2",
674 : : "Select 3nd-order discontinuous Galerkin discretization + Runge-Kutta",
675 : : R"(This keyword is used to select the third-order accurate discontinuous
676 : : Galerkin, DG(P2), spatial discretiztaion used in Inciter. Selecting this
677 : : spatial discretization also selects the Runge-Kutta scheme for time
678 : : discretization. See Control/Inciter/Options/Scheme.hpp for other
679 [ + - ][ + - ]: 1234 : valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
680 : :
681 : : keywords.insert({"pdg",
682 : : "Select p-adaptive discontinuous Galerkin discretization + Runge-Kutta",
683 : : R"(This keyword is used to select the polynomial adaptive discontinuous
684 : : Galerkin spatial discretizaion used in Inciter. Selecting this spatial
685 : : discretization also selects the Runge-Kutta scheme for time
686 : : discretization. See Control/Inciter/Options/Scheme.hpp for other valid
687 [ + - ][ + - ]: 1234 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
688 : :
689 : : keywords.insert({"fv",
690 : : "Select 2nd-order finite volume discretization + Runge-Kutta",
691 : : R"(This keyword is used to select the second-order accurate finite volume,
692 : : P0P1, spatial discretiztaion used in Inciter. This method uses a
693 : : least-squares procedure to reconstruct the second-order solution from the
694 : : first-order one. See Control/Inciter/Options/Scheme.hpp for other valid
695 [ + - ][ + - ]: 1234 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
696 : :
697 : : keywords.insert({"ndof", "Number of evolved solution DOFs",
698 [ + - ][ + - ]: 1234 : R"(The number of solution DOFs that are evolved.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
699 : :
700 : : keywords.insert({"rdof", "Total number of solution DOFs",
701 : : R"(The total number of solution DOFs, including the reconstructed and the
702 [ + - ][ + - ]: 1234 : evolved ones.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
703 : :
704 : : // -----------------------------------------------------------------------
705 : : // limiter options
706 : : // -----------------------------------------------------------------------
707 : :
708 : : keywords.insert({"limiter", "Select limiter function",
709 : : R"(This keyword is used to select a limiter function, used for
710 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
711 [ + - ][ + - ]: 1234 : Control/Inciter/Options/Limiter.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
712 : :
713 : : keywords.insert({"nolimiter", "No limiter used",
714 : : R"(This keyword is used for discontinuous Galerkin (DG) spatial
715 : : discretization without any limiter in inciter. See
716 [ + - ][ + - ]: 1234 : Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
717 : :
718 : : keywords.insert({"wenop1",
719 : : "Select the Weighted Essentially Non-Oscillatory (WENO) limiter for DGP1",
720 : : R"(This keyword is used to select the Weighted Essentially Non-Oscillatory
721 : : limiter used for discontinuous Galerkin (DG) P1 spatial discretization
722 : : used in inciter. See Control/Inciter/Options/Limiter.hpp for other valid
723 [ + - ][ + - ]: 1234 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
724 : :
725 : : keywords.insert({"cweight",
726 : : "Set value for central linear weight used by WENO, cweight",
727 : : R"(This keyword is used to set the central linear weight used for the
728 : : central stencil in the Weighted Essentially Non-Oscillatory (WENO) limiter
729 [ + - ][ + - ]: 1234 : for discontinuous Galerkin (DG) methods.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
730 : :
731 : : keywords.insert({"superbeep1",
732 : : "Select the Superbee limiter for DGP1",
733 : : R"(This keyword is used to select the Superbee limiter used for
734 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
735 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
736 : :
737 : : keywords.insert({"shock_detector_coeff",
738 : : "Configure the coefficient used in shock indicator",
739 : : R"(This keyword can be used to configure the coefficient used in the
740 [ + - ][ + - ]: 1234 : threshold calculation for the shock indicator.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
741 : :
742 : : keywords.insert({"vertexbasedp1",
743 : : "Select the vertex-based limiter for DGP1",
744 : : R"(This keyword is used to select the vertex-based limiter used for
745 : : discontinuous Galerkin (DG) P1 spatial discretization used in inciter.
746 : : Ref. Kuzmin, D. (2010). A vertex-based hierarchical slope limiter for
747 : : p-adaptive discontinuous Galerkin methods. Journal of computational and
748 : : applied mathematics, 233(12), 3077-3085.
749 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Limiter.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
750 : :
751 : : keywords.insert({"accuracy_test", "Toggle accuracy test setup",
752 : : R"(This keyword is used to specify if the current setup is for an
753 : : order-of-accuracy testing, used for discontinuous Galerkin (DG) spatial
754 : : discretization in inciter. This deactivates certain robustness corrections
755 : : which might impact order-of-accuracy. Only intended for simple test
756 [ + - ][ + - ]: 1234 : problems and not for real problems.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
757 : :
758 : : keywords.insert({"limsol_projection",
759 : : "Toggle limited solution projection",
760 : : R"(This keyword is used to specify limited solution projection.
761 : : This is used for discontinuous Galerkin (DG) spatial discretization in
762 : : inciter, for multi-material hydrodynamics. This uses a projection to
763 : : obtain bulk momentum and material energies from the limited primitive
764 : : quantities. This step is essential to obtain closure-law obeying limited
765 : : quantities. See Pandare et al. (2023). On the Design of Stable,
766 : : Consistent, and Conservative High-Order Methods for Multi-Material
767 [ + - ][ + - ]: 1234 : Hydrodynamics. J Comp Phys (490).)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
768 : :
769 : : // -----------------------------------------------------------------------
770 : : // flux options
771 : : // -----------------------------------------------------------------------
772 : :
773 : : keywords.insert({"flux", "Select flux function",
774 : : R"(This keyword is used to select a flux function, used for
775 : : discontinuous Galerkin (DG) spatial discretization used in inciter. See
776 [ + - ][ + - ]: 1234 : Control/Inciter/Options/Flux.hpp for valid options.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
777 : :
778 : : keywords.insert({"laxfriedrichs",
779 : : "Select Lax-Friedrichs flux function",
780 : : R"(This keyword is used to select the Lax-Friedrichs flux function used
781 : : for discontinuous Galerkin (DG) spatial discretization used in inciter.
782 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
783 : :
784 : : keywords.insert({"hllc",
785 : : "Select the Harten-Lax-van Leer-Contact (HLLC) flux function",
786 : : R"(This keyword is used to select the Harten-Lax-van Leer-Contact flux
787 : : function used for discontinuous Galerkin (DG) spatial discretization
788 : : used in inciter. See Control/Inciter/Options/Flux.hpp for other valid
789 [ + - ][ + - ]: 1234 : options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
790 : :
791 : : keywords.insert({"upwind", "Select the upwind flux function",
792 : : R"(This keyword is used to select the upwind flux
793 : : function used for discontinuous Galerkin (DG) spatial discretization
794 : : used in inciter. It is only usable for scalar transport.
795 [ + - ][ + - ]: 1234 : See Control/Inciter/Options/Flux.hpp for other valid options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
796 : :
797 : : keywords.insert({"ausm",
798 : : "Select the Advection Upstream Splitting Method (AUSM) flux function",
799 : : R"(This keyword is used to select the AUSM flux
800 : : function used for discontinuous Galerkin (DG) spatial discretization
801 : : used in inciter. It is only set up for for multi-material hydro, and
802 [ + - ][ + - ]: 1234 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
803 : :
804 : : keywords.insert({"ldfss",
805 : : "Select the Low Diffusion Flux Splitting Scheme (LDFSS)",
806 : : R"(This keyword is used to select the LDFSS flux
807 : : function used for discontinuous Galerkin (DG) spatial discretization
808 : : used in inciter. It is only set up for for multi-material hydro, and
809 [ + - ][ + - ]: 1234 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
810 : :
811 : : keywords.insert({"lowspeed_kp",
812 : : "Select the low-speed coefficient K_p in the AUSM+up flux function",
813 : : R"(This keyword is used to select the low-speed coefficient K_p in the
814 : : AUSM+up flux function used for the DG or FV spatial discretization for
815 : : multi-material hydro, and not used for anything else. The default
816 : : value is 0, and recommended value for low speed flows (Mach < 0.1) is
817 [ + - ][ + - ]: 1234 : 1.)"});
[ + - ][ + - ]
[ + - ][ + - ]
818 : :
819 : : keywords.insert({"lowspeed_ku",
820 : : "Select the low-speed coefficient K_u in the AUSM+up flux function",
821 : : R"(This keyword is used to select the low-speed coefficient K_u in the
822 : : AUSM+up flux function used for the DG or FV spatial discretization for
823 : : multi-material hydro, and not used for anything else. The default
824 : : value is 1, and recommended value for low speed flows (Mach < 0.1) is
825 [ + - ][ + - ]: 1234 : 1.)"});
[ + - ][ + - ]
[ + - ][ + - ]
826 : :
827 : : keywords.insert({"hll",
828 : : "Select the Harten-Lax-vanLeer (HLL) flux function",
829 : : R"(This keyword is used to select the HLL flux
830 : : function used for discontinuous Galerkin (DG) spatial discretization
831 : : used in inciter. It is only set up for for multi-material hydro, and
832 [ + - ][ + - ]: 1234 : not selectable for anything else.)"});
[ + - ][ + - ]
[ + - ][ + - ]
833 : :
834 : : keywords.insert({"hlld",
835 : : "Select the Harten-Lax-vanLeer-Discontinuities (HLLD) flux function",
836 : : R"(This keyword is used to select the HLLD flux
837 : : function used for discontinuous Galerkin (DG) spatial discretization
838 : : used in inciter. It is only set up for for multi-material runs. This
839 : : flux is designed to handle normal and shear waves within solid
840 [ + - ][ + - ]: 1234 : materials)"});
[ + - ][ + - ]
[ + - ][ + - ]
841 : :
842 : : // -----------------------------------------------------------------------
843 : : // PDE keywords
844 : : // -----------------------------------------------------------------------
845 : :
846 : : keywords.insert({"problem",
847 : : "Specify problem configuration for partial differential equation solver",
848 : : R"(This keyword is used to specify the problem configuration for the
849 [ + - ][ + - ]: 1234 : partial differential equation solver.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
850 : :
851 : : keywords.insert({"transport",
852 : : "Start configuration block for an transport equation",
853 : : R"(This keyword is used to introduce a transport block, used to
854 : : specify the configuration for a transport equation type.)",
855 [ + - ][ + - ]: 1234 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
856 : :
857 : : keywords.insert({"ncomp",
858 : : "Set number of scalar components for a system of transport equations",
859 : : R"(This keyword is used to specify the number of scalar
860 [ + - ][ + - ]: 1234 : components of transport (linear advection) equations.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
861 : :
862 : : keywords.insert({"compflow",
863 : : "Start configuration block for the compressible flow equations",
864 : : R"(This keyword is used to introduce the compflow block, used to
865 : : specify the configuration for a system of partial differential equations,
866 [ + - ][ + - ]: 1234 : governing single material compressible fluid flow.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
867 : :
868 : : keywords.insert({"multimat",
869 : : "Start configuration block for the compressible multi-material equations",
870 : : R"(This keyword is used to introduce the multimat block,
871 : : used to specify the configuration for a system of partial differential
872 : : equations, governing compressible multi-material hydrodynamics assuming
873 [ + - ][ + - ]: 1234 : velocity equilibrium (single velocity).)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
874 : :
875 : : keywords.insert({"multispecies",
876 : : "Start configuration block for the compressible multi-species equations",
877 : : R"(This keyword is used to introduce the multispecies block,
878 : : used to specify the configuration for a system of partial differential
879 : : equations, governing compressible multi-species fluid dynamics.)",
880 [ + - ][ + - ]: 1234 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
881 : :
882 : : keywords.insert({"nmat",
883 : : "Set number of materials for the multi-material system",
884 : : R"(This keyword is used to specify the number of materials for
885 [ + - ][ + - ]: 1234 : multi-material flow, see also the keyword 'multimat'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
886 : :
887 : : keywords.insert({"min_volumefrac",
888 : : "Minimum volume fraction of a material in a cell",
889 : : R"(This keyword is used to specify the minimum volume fraction that a
890 : : material can occupy in a computational element. The default value is
891 : : 1.0e-12. It is used only for multimat, and has no effect for the other
892 [ + - ][ + - ]: 1234 : PDE types.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
893 : :
894 : : keywords.insert({"nspec",
895 : : "Set number of species for the multi-species system",
896 : : R"(This keyword is used to specify the number of species for
897 [ + - ][ + - ]: 1234 : multi-species flow, see also the keyword 'multispecies'.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
898 : :
899 : : keywords.insert({"prelax",
900 : : "Toggle multi-material finite pressure relaxation",
901 : : R"(This keyword is used to turn finite pressure relaxation between
902 : : multiple materials on/off. It is used only for the multi-material solver,
903 [ + - ][ + - ]: 1234 : and has no effect when used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
904 : :
905 : : keywords.insert({"prelax_timescale",
906 : : "Time-scale for multi-material finite pressure relaxation",
907 : : R"(This keyword is used to specify the time-scale at which finite pressure
908 : : relaxation between multiple materials occurs. The default value of 0.25
909 : : corresponds to a relaxation time that is 4 times the time required for a
910 : : sound wave to pass through a computational element. It is used only for
911 [ + - ][ + - ]: 1234 : multimat, and has no effect for the other PDE types.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
912 : :
913 : : keywords.insert({"intsharp",
914 : : "Toggle multi-material interface sharpening",
915 : : R"(This keyword is used to turn interface sharpening on/off. It uses the
916 : : multi-material THINC interface reconstruction.
917 : : Ref. Pandare A. K., Waltz J., & Bakosi J. (2021) Multi-Material
918 : : Hydrodynamics with Algebraic Sharp Interface Capturing. Computers &
919 : : Fluids, doi: https://doi.org/10.1016/j.compfluid.2020.104804. It is used
920 : : for the multi-material and the transport solver, and has no effect when
921 [ + - ][ + - ]: 1234 : used for the other PDE types.)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
922 : :
923 : : keywords.insert({"intsharp_param",
924 : : "Parameter for multi-material interface sharpening",
925 : : R"(This keyword is used to specify the parameter for the interface
926 : : sharpening. This parameter affects how many cells the material interfaces
927 : : span, after the use of sharpening. It is used for multimat and transport,
928 [ + - ][ + - ]: 1234 : and has no effect for the other PDE types.)", "real" });
[ + - ][ + - ]
[ + - ][ + - ]
929 : :
930 : : keywords.insert({"rho0constraint",
931 : : "Toggle the density constraint correction",
932 : : R"(This keyword is used to toggle the density constraint in solid
933 : : dynamics on/off. It is used only for the multi-material solver in the
934 [ + - ][ + - ]: 1234 : presence of solids. The default is 1 (on).)", "uint 0/1"});
[ + - ][ + - ]
[ + - ][ + - ]
935 : :
936 : : keywords.insert({"dt_sos_massavg",
937 : : "Toggle method for calculating speed of sound used for time step in a cell",
938 : : R"(This keyword is used to specify the method to calculate the speed of
939 : : sound in a cell used for the time step. If set to 1, the speed of sound
940 : : will be calculated using the mass average, rather than the maximum value
941 : : across materials. It is used for multimat, and has no effect for the
942 [ + - ][ + - ]: 1234 : other PDE types.)", "uint 0/1" });
[ + - ][ + - ]
[ + - ][ + - ]
943 : :
944 : : // Dependent variable name
945 : : keywords.insert({"depvar",
946 : : "Select dependent variable name for PDE.",
947 [ + - ][ + - ]: 1234 : R"(Select dependent variable name for PDE.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
948 : :
949 : : // -----------------------------------------------------------------------
950 : : // physics choices
951 : : // -----------------------------------------------------------------------
952 : :
953 : : keywords.insert({"physics",
954 : : "Specify the physics configuration for a system of PDEs",
955 : : R"(This keyword is used to select the physics configuration for a
956 : : particular PDE system. Valid options depend on the system of PDEs in
957 [ + - ][ + - ]: 1234 : which the keyword is used.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
958 : :
959 : : keywords.insert({"advection",
960 : : "Specify the advection physics",
961 : : R"(This keyword is used to select the advection physics for the transport
962 [ + - ][ + - ]: 1234 : PDE system. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
963 : :
964 : : keywords.insert({"advdiff",
965 : : "Specify the advection + diffusion physics",
966 : : R"(This keyword is used to select the advection + diffusion physics
967 [ + - ][ + - ]: 1234 : for transport PDEs. Only usable for 'transport'.)"});
[ + - ][ + - ]
[ + - ][ + - ]
968 : :
969 : : keywords.insert({"euler",
970 : : "Specify the Euler (inviscid) compressible flow physics",
971 : : R"(This keyword is used to select the Euler (inviscid) compressible
972 [ + - ][ + - ]: 1234 : flow physics configuration. Usable for 'compflow' and 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
973 : :
974 : : keywords.insert({"energy_pill",
975 : : "Specify the energy pill physics",
976 : : R"(This keyword is used to select an energy pill initialization as physics
977 : : configuration for multiple material compressible flow. Parameters for the
978 : : linearly traveling front are required to be specified when energy_pill is
979 : : selected. See 'linear' for more details. Currently setup only for
980 [ + - ][ + - ]: 1234 : 'multimat')"});
[ + - ][ + - ]
[ + - ][ + - ]
981 : :
982 : : // -----------------------------------------------------------------------
983 : : // material/eos object
984 : : // -----------------------------------------------------------------------
985 : :
986 : : keywords.insert({"material",
987 : : "Start configuration block for material (eos) properties",
988 : : R"(This keyword is used to introduce a material block, used to
989 [ + - ][ + - ]: 1234 : specify material properties.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
990 : :
991 : : keywords.insert({"species",
992 : : "Start configuration block for species (eos) properties",
993 : : R"(This keyword is used to introduce a species block, used to
994 : : specify species properties in the multi species solver.)",
995 [ + - ][ + - ]: 1234 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
996 : :
997 : : keywords.insert({"id", "ID",
998 : : R"(This keyword is used to specify an ID, a positive integer. Usage is
999 : : context specific, i.e. what block it is specified in. E.g. Inside the
1000 : : material block, it is used to specify a block consisting of IDs of
1001 [ + - ][ + - ]: 1234 : materials of that EOS type)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1002 : :
1003 : : keywords.insert({"eos", "Select equation of state (type)",
1004 : : R"(This keyword is used to select an equation of state for a material.)",
1005 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1006 : :
1007 : : keywords.insert({"gamma", "ratio of specific heats",
1008 : : R"(This keyword is used to specify the material property, ratio of
1009 [ + - ][ + - ]: 1234 : specific heats.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1010 : :
1011 : : keywords.insert({"pstiff", "EoS stiffness parameter",
1012 : : R"(This keyword is used to specify the material property, stiffness
1013 [ + - ][ + - ]: 1234 : parameter in the stiffened gas equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1014 : :
1015 : : keywords.insert({"w_gru", "Grueneisen coefficient",
1016 : : R"(This keyword is used to specify the material property, Gruneisen
1017 : : coefficient for the Jones-Wilkins-Lee equation of state.)",
1018 [ + - ][ + - ]: 1234 : "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1019 : :
1020 : : keywords.insert({"A_jwl", "JWL EoS A parameter",
1021 : : R"(This keyword is used to specify the material property A (units: Pa)
1022 [ + - ][ + - ]: 1234 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1023 : :
1024 : : keywords.insert({"B_jwl", "JWL EoS B parameter",
1025 : : R"(This keyword is used to specify the material property B (units: Pa)
1026 [ + - ][ + - ]: 1234 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1027 : :
1028 : : keywords.insert({"C_jwl", "JWL EoS C parameter",
1029 : : R"(This keyword is used to specify the material property C (units: Pa)
1030 [ + - ][ + - ]: 1234 : for the Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1031 : :
1032 : : keywords.insert({"R1_jwl", "JWL EoS R1 parameter",
1033 : : R"(This keyword is used to specify the material property R1 for the
1034 [ + - ][ + - ]: 1234 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1035 : :
1036 : : keywords.insert({"R2_jwl", "JWL EoS R2 parameter",
1037 : : R"(This keyword is used to specify the material property R2 for the
1038 [ + - ][ + - ]: 1234 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1039 : :
1040 : : keywords.insert({"rho0_jwl", "JWL EoS rho0 parameter",
1041 : : R"(This keyword is used to specify the material property rho0, which is
1042 : : the density of initial state (units: kg/m3) for the Jones-Wilkins-Lee
1043 [ + - ][ + - ]: 1234 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1044 : :
1045 : : keywords.insert({"de_jwl", "JWL EoS de parameter",
1046 : : R"(This keyword is used to specify the material property de, which is the
1047 : : heat of detonation for products; and for reactants, it is chosen such that
1048 : : the ambient internal energy (e0) is 0 (units: J/kg). Used for the
1049 [ + - ][ + - ]: 1234 : Jones-Wilkins-Lee equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1050 : :
1051 : : keywords.insert({"rhor_jwl", "JWL EoS rhor parameter",
1052 : : R"(This keyword is used to specify the material property rhor, which is
1053 : : the density of reference state (units: kg/m3) for the Jones-Wilkins-Lee
1054 [ + - ][ + - ]: 1234 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1055 : :
1056 : : keywords.insert({"Tr_jwl", "JWL EoS Tr parameter",
1057 : : R"(This keyword is used to specify the material property Tr, which is the
1058 : : temperature of reference state (units: K) for the Jones-Wilkins-Lee
1059 [ + - ][ + - ]: 1234 : equation of state.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1060 : :
1061 : : keywords.insert({"Pr_jwl", "JWL EoS er parameter",
1062 : : R"(This keyword is used to specify the material property Pr, which is the
1063 : : pressure at the reference state (units: Pa) for the Jones-Wilkins-Lee
1064 : : equation of state. It is used to calculate the reference temperature for
1065 [ + - ][ + - ]: 1234 : the EoS.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1066 : :
1067 : : keywords.insert({"mu", "shear modulus/dynamic viscosity",
1068 : : R"(This keyword is used to specify the material property, shear modulus
1069 [ + - ][ + - ]: 1234 : for solids, or dynamic viscosity for fluids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1070 : :
1071 : : keywords.insert({"yield_stress", "Yield stress of solid material",
1072 : : R"(This keyword is used to specify the material property yield stress,
1073 : : which indicates the stress (units: Pa) after which the material begins
1074 [ + - ][ + - ]: 1234 : plastic flow.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1075 : :
1076 : : keywords.insert({"alpha", "alpha parameter for Godunov-Romenski EOS",
1077 : : R"(This keyword is used to specify the alpha parameter for
1078 [ + - ][ + - ]: 1234 : Godunov-Romenski EOS for solids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1079 : :
1080 : : keywords.insert({"K0", "K0 parameter for Godunov-Romenski EOS",
1081 : : R"(This keyword is used to specify the K0 parameter for
1082 [ + - ][ + - ]: 1234 : Godunov-Romenski EOS for solids.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1083 : :
1084 : : keywords.insert({"cv", "specific heat at constant volume",
1085 : : R"(This keyword is used to specify the material property, specific heat at
1086 [ + - ][ + - ]: 1234 : constant volume.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1087 : :
1088 : : keywords.insert({"k", "heat conductivity",
1089 : : R"(This keyword is used to specify the material property, heat
1090 [ + - ][ + - ]: 1234 : conductivity.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1091 : :
1092 : : keywords.insert({"cp_coeff", "specific heat coefficients for TPG",
1093 : : R"(This keyword is used to specify species' coefficients in the
1094 : : thermally perfect gas polynomial fit (per temperature range)
1095 : : for specific heat at constant volume. The outer vector is per
1096 : : species, the middle vector is per temperature range, and the
1097 : : inner vector contains 8 coefficients to describe the polynomial.)",
1098 [ + - ][ + - ]: 1234 : "vector of vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1099 : :
1100 : : keywords.insert({"t_range", "temperature range for TPG specific heat polynomials",
1101 : : R"(This keyword is used to specify the temperature range for each specific
1102 : : heat polynomial given in cp_coeff. The outer vector is per species,
1103 : : and the inner vector gives the temperature ranges. The inner vector must
1104 : : be sized 1 larger than the number of temperature ranges, as the ranges
1105 [ + - ][ + - ]: 1234 : are read as [T0, T1],[T1, T2],...)", "vector of vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1106 : :
1107 : : keywords.insert({"dH_ref", "reference enthalpy for TPG specific heat polynomials",
1108 : : R"(This keyword is used to specify the reference enthalpy at 298.15 K so that
1109 : : the reference temperature in the enthalpy calculations is 0 K. This number
1110 : : is taken from the NASA Glenn 2002 report, and is the heat of formation
1111 [ + - ][ + - ]: 1234 : divided by the species molar mass.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1112 : :
1113 : : keywords.insert({"R", "Specific gas constant",
1114 : : R"(This keyword is used to specify the species property, specific gas
1115 [ + - ][ + - ]: 1234 : constant, in units J/kg.K.)", "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1116 : :
1117 : : keywords.insert({"stiffenedgas",
1118 : : "Select the stiffened gas equation of state",
1119 [ + - ][ + - ]: 1234 : R"(This keyword is used to select the stiffened gas equation of state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1120 : :
1121 : : keywords.insert({"jwl", "Select the JWL equation of state",
1122 : : R"(This keyword is used to select the Jones, Wilkins, Lee equation of
1123 [ + - ][ + - ]: 1234 : state.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1124 : :
1125 : : keywords.insert({"smallshearsolid",
1126 : : "Select the SMALLSHEARSOLID equation of state",
1127 : : R"(This keyword is used to select the small shear strain equation of state
1128 : : for solids. This EOS uses a small-shear approximation for the elastic
1129 : : contribution, and a stiffened gas EOS for the hydrodynamic contribution of
1130 : : the internal energy See Plohr, J. N., & Plohr, B. J. (2005). Linearized
1131 : : analysis of Richtmyer–Meshkov flow for elastic materials. Journal of Fluid
1132 [ + - ][ + - ]: 1234 : Mechanics, 537, 55-89 for further details.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1133 : :
1134 : : keywords.insert({"wilkins_aluminum",
1135 : : "Select Wilkins' equation of state for aluminum",
1136 : : R"(This keyword is used to select Wilkin's equation of state for solids
1137 : : and a hydro EoS for aluminum. These functions were taken from Example 4
1138 : : of Barton, Philip T. "An interface-capturing Godunov method
1139 : : for the simulation of compressible solid-fluid problems." Journal
1140 [ + - ][ + - ]: 1234 : of Computational Physics 390 (2019): 25-50.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1141 : :
1142 : : keywords.insert({"godunovromenski",
1143 : : "Select godunovromenski equation of state for solids",
1144 : : R"(This keyword is used to select Godunov-Romenski equation of state
1145 : : for solids. These functions were taken from Example 1
1146 : : of Barton, Philip T. "An interface-capturing Godunov method
1147 : : for the simulation of compressible solid-fluid problems." Journal
1148 [ + - ][ + - ]: 1234 : of Computational Physics 390 (2019): 25-50.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1149 : :
1150 : : keywords.insert({"matidxmap",
1151 : : "AUTO-GENERATED Material index map for EOS",
1152 : : R"(The following AUTO-GENERATED data structure is used to index into the
1153 : : correct material vector entry. This is done using the following three maps:
1154 : : 1. eosidx: This vector provides the eos-index (value) in the
1155 : : vector<tag::material> for the given user-spec material id (index).
1156 : : 2. matidx: This vector provides the material-index (value) inside the
1157 : : vector<tag::material>[eosidx] block for the given user-specified
1158 : : material id (index).
1159 : : 3. solidx: This vector provides the solid-index (value) assigned to
1160 [ + - ][ + - ]: 1234 : the given user-specified material id (index). It is 0 for fluids.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1161 : :
1162 : : // -----------------------------------------------------------------------
1163 : : // output object
1164 : : // -----------------------------------------------------------------------
1165 : :
1166 : : keywords.insert({"field_output",
1167 : : "Start of field_output input block",
1168 : : R"(This keyword is used to start a block in the input file containing the
1169 [ + - ][ + - ]: 1234 : list and settings of requested field output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1170 : :
1171 : : keywords.insert({"interval",
1172 : : "Set interval (in units of iteration count)",
1173 : : R"(This keyword is used to specify an interval in units of iteration count
1174 : : (i.e., number of time steps). This must be used within a relevant
1175 [ + - ][ + - ]: 1234 : block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1176 : :
1177 : : keywords.insert({"time_interval",
1178 : : "Set interval (in units of physics time)",
1179 : : R"(This keyword is used to specify an interval in units of physics time.
1180 [ + - ][ + - ]: 1234 : This must be used within a relevant block.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1181 : :
1182 : : keywords.insert({"time_range",
1183 : : "Configure physics time range for output (in units of physics time)",
1184 : : R"(This keyword is used to configure field-, or history-output, specifying
1185 : : a start time, a stop time, and an output frequency in physics time units.
1186 : : Example: 'time_range = {0.2, 0.3, 0.001}', which specifies that from t=0.2 to
1187 : : t=0.3 output should happen at physics time units of dt=0.001. This must be
1188 [ + - ][ + - ]: 1234 : used within a relevant block.)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1189 : :
1190 : : keywords.insert({"refined", "Toggle refined field output on/off",
1191 : : R"(This keyword can be used to turn on/off refined field output, which
1192 : : refines the mesh and evaluates the solution on the refined mesh for saving
1193 [ + - ][ + - ]: 1234 : the solution.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1194 : :
1195 : : keywords.insert({"filetype", "Select output file type",
1196 : : R"(This keyword is used to specify the output file type of
1197 [ + - ][ + - ]: 1234 : mesh-based field output in a field_output block.)", "string" });
[ + - ][ + - ]
[ + - ][ + - ]
1198 : :
1199 : : keywords.insert({"elemvar",
1200 : : "Specify list of elem-centered variables for output",
1201 : : R"(This keyword is used to specify elem-centered variables for output to
1202 [ + - ][ + - ]: 1234 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1203 : :
1204 : : keywords.insert({"nodevar",
1205 : : "Specify list of node-centered variables for output",
1206 : : R"(This keyword is used to specify node-centered variables for output to
1207 [ + - ][ + - ]: 1234 : file. It is used in field_output blocks.)", "vector of string"});
[ + - ][ + - ]
[ + - ][ + - ]
1208 : :
1209 : : keywords.insert({"sideset",
1210 : : "Specify list of side sets",
1211 : : R"(This keyword is used to specify side sets. Usage is context specific,
1212 : : i.e. depends on what block it is specified in. Eg. in the field_output
1213 : : block it specifies the sidesets on which field output is desired.)",
1214 [ + - ][ + - ]: 1234 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1215 : :
1216 : : keywords.insert({"diagnostics",
1217 : : "Specify the diagnostics block",
1218 : : R"(This keyword is used to introduce the dagnostics block, used to
1219 [ + - ][ + - ]: 1234 : configure diagnostics output.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1220 : :
1221 : : keywords.insert({"interval",
1222 : : "Set interval (in units of iteration count)",
1223 : : R"(This keyword is used to specify an interval in units of iteration count
1224 : : (i.e., number of time steps). Usage is context specific, and this must
1225 [ + - ][ + - ]: 1234 : be used within a relevant block.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1226 : :
1227 : : keywords.insert({"error", "Select an error type",
1228 : : R"(This keyword is used to select the error type. Used either in the
1229 : : diagnostics block to specify error norm, or in the AMR block to specify
1230 [ + - ][ + - ]: 1234 : the error for solution-adaptive mesh refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1231 : :
1232 : : keywords.insert({"format",
1233 : : "Specify the ASCII floating-point output format",
1234 : : R"(This keyword is used to select the
1235 : : floating-point output format for ASCII floating-point number output.
1236 : : Valid options are 'default', 'fixed', and 'scientific'. For more info on
1237 : : these various formats, see
1238 [ + - ][ + - ]: 1234 : http://en.cppreference.com/w/cpp/io/manip/fixed.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1239 : :
1240 : : keywords.insert({"precision",
1241 : : "Precision in digits for ASCII floating-point output",
1242 : : R"(This keyword is used to select
1243 : : the precision in digits for ASCII floating-point real number output.
1244 : : Example: "precision=10", which selects ten digits for floating-point
1245 : : output, e.g., 3.141592654. The number of digits must be larger than zero
1246 : : and lower than the maximum representable digits for the given
1247 : : floating-point type. For more info on setting the precision in C++, see
1248 : : http://en.cppreference.com/w/cpp/io/manip/setprecision, and
1249 [ + - ][ + - ]: 1234 : http://en.cppreference.com/w/cpp/types/numeric_limits/digits10)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1250 : :
1251 : : keywords.insert({"history_output",
1252 : : "Start of history_output input block",
1253 : : R"(This keyword is used to start a block in the input file containing the
1254 [ + - ][ + - ]: 1234 : descriptions and settings of requested history output.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1255 : :
1256 : : keywords.insert({"point",
1257 : : "Start configuration block for history point, or a single point in IC blocks",
1258 : : R"(This keyword is used to either introduce a vector block used to
1259 : : specify probes for history output, or in the IC/BC block to specify
1260 : : a single point. When used in history output, it takes sub-entries of
1261 : : 'id' and 'coord'. When used in IC/BC, directly takes three reals as
1262 [ + - ][ + - ]: 1234 : coordinates.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1263 : :
1264 : : keywords.insert({"coord", "Specify point coordinates",
1265 : : R"(This keyword is used to specify coordinates of the history-point.)",
1266 [ + - ][ + - ]: 1234 : "3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1267 : :
1268 : : keywords.insert({"exodusii", "Select ExodusII output",
1269 : : R"(This keyword is used to select the
1270 : : ExodusII output file type readable by, e.g., ParaView of either a requested
1271 : : probability density function (PDF) within a pdfs ... end block or for
1272 : : mesh-based field output in a field_output ... end block. Example:
1273 : : "filetype exodusii", which selects ExodusII file output. For more info on
1274 [ + - ][ + - ]: 1234 : ExodusII, see http://sourceforge.net/projects/exodusii.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1275 : :
1276 : : keywords.insert({"density", "Request/specify density",
1277 : : R"(This keyword is used to request/specify the density. Usage is
1278 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1279 : : field_output, requests density as an output quantity. Otherwise,
1280 [ + - ][ + - ]: 1234 : specifies density at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1281 : :
1282 : : keywords.insert({"x-momentum",
1283 : : "Request x-momentum",
1284 : : R"(This keyword is used to request the fluid x-momentum as an output
1285 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1286 : :
1287 : : keywords.insert({"y-momentum",
1288 : : "Request y-momentum",
1289 : : R"(This keyword is used to request the fluid y-momentum as an output
1290 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1291 : :
1292 : : keywords.insert({"z-momentum",
1293 : : "Request z-momentum",
1294 : : R"(This keyword is used to request the fluid z-momentum as an output
1295 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1296 : :
1297 : : keywords.insert({
1298 : : "specific_total_energy", "Request specific total energy",
1299 : : R"(This keyword is used to request the specific total energy as an output
1300 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1301 : :
1302 : : keywords.insert({
1303 : : "volumetric_total_energy", "Request total volumetric energy",
1304 : : R"(This keyword is used to request the volumetric total energy as an output
1305 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1306 : :
1307 : : keywords.insert({"x-velocity",
1308 : : "Request x-velocity",
1309 : : R"(This keyword is used to request the fluid x-velocity as an output
1310 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1311 : :
1312 : : keywords.insert({"y-velocity",
1313 : : "Request y-velocity",
1314 : : R"(This keyword is used to request the fluid y-velocity as an output
1315 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1316 : :
1317 : : keywords.insert({"z-velocity",
1318 : : "Request z-velocity",
1319 : : R"(This keyword is used to request the fluid z-velocity as an output
1320 [ + - ][ + - ]: 1234 : variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1321 : :
1322 : : keywords.insert({"pressure", "Request/specify pressure",
1323 : : R"(This keyword is used to request/specify the pressure. Usage is
1324 : : context specific. When specifed as 'elemvar' or 'nodevar' inside
1325 : : field_output, requests pressure as an output quantity. Otherwise,
1326 [ + - ][ + - ]: 1234 : specifies pressure at IC/BC.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1327 : :
1328 : : keywords.insert({"material_indicator",
1329 : : "Request material_indicator",
1330 : : R"(This keyword is used to request the material indicator function as an
1331 [ + - ][ + - ]: 1234 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1332 : :
1333 : : keywords.insert({"analytic",
1334 : : "Request analytic solution",
1335 : : R"(This keyword is used to request the analytic solution (if exist) as an
1336 [ + - ][ + - ]: 1234 : output variable.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1337 : :
1338 : : keywords.insert({"l2", "Select the L2 norm",
1339 [ + - ][ + - ]: 1234 : R"(This keyword is used to enable computing the L2 norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1340 : :
1341 : : keywords.insert({"linf", "Select the L_{infinity} norm",
1342 [ + - ][ + - ]: 1234 : R"(This keyword is used to enable computing the L-infinity norm.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1343 : :
1344 : : keywords.insert({"default",
1345 : : "Select the default ASCII floating-point output",
1346 : : R"(This keyword is used to select the
1347 : : 'default' floating-point output format for ASCII floating-point real
1348 : : number output. For more info on these various formats, see
1349 [ + - ][ + - ]: 1234 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1350 : :
1351 : : keywords.insert({"fixed",
1352 : : "Select the fixed ASCII floating-point output",
1353 : : R"(This keyword is used to select the
1354 : : 'fixed' floating-point output format for ASCII floating-point real
1355 : : number output. For more info on these various formats, see
1356 [ + - ][ + - ]: 1234 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1357 : :
1358 : : keywords.insert({"scientific",
1359 : : "Select the scientific ASCII floating-point output",
1360 : : R"(This keyword is used to select the
1361 : : 'scientific' floating-point output format for ASCII floating-point real
1362 : : number output. For more info on these various formats, see
1363 [ + - ][ + - ]: 1234 : http://en.cppreference.com/w/cpp/io/manip/fixed.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1364 : :
1365 : : // -----------------------------------------------------------------------
1366 : : // ALE options
1367 : : // -----------------------------------------------------------------------
1368 : :
1369 : : keywords.insert({"ale", "Start block configuring ALE",
1370 : : R"(This keyword is used to introduce the ale block, used to
1371 : : configure arbitrary Lagrangian-Eulerian (ALE) mesh movement.)",
1372 [ + - ][ + - ]: 1234 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1373 : :
1374 : : keywords.insert({"smoother", "Select mesh velocity smoother",
1375 : : R"(This keyword is used to select a mesh velocity smoother option, used
1376 : : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1377 [ + - ][ + - ]: 1234 : 'laplace', 'helmholtz', and 'none')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1378 : :
1379 : : keywords.insert({"mesh_velocity", "Select mesh velocity",
1380 : : R"(This keyword is used to select a mesh velocity option, used for
1381 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. Valid options are
1382 [ + - ][ + - ]: 1234 : 'sine', 'fluid', and 'user_defined".)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1383 : :
1384 : : keywords.insert({"mesh_motion",
1385 : : "List of dimension indices that are allowed to move in ALE calculations",
1386 : : R"(This keyword is used to specify a list of integers (0, 1, or 2) whose
1387 : : coordinate directions corresponding to x, y, or z are allowed to move with
1388 : : the mesh velocity in ALE calculations. Useful for 1D/2D problems.)",
1389 [ + - ][ + - ]: 1234 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1390 : :
1391 : : keywords.insert({"meshforce", "Set ALE mesh force model parameter(s)",
1392 : : R"(This keyword is used to specify a vector of real numbers used to
1393 : : parameterize a mesh force model for ALE. The length of the vector must
1394 [ + - ][ + - ]: 1234 : exactly be 4.)", "vector of 4 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1395 : :
1396 : : keywords.insert({"dvcfl",
1397 : : "Set the volume-change Courant-Friedrichs-Lewy (CFL) coefficient",
1398 : : R"(This keyword is used to specify the volume-change (dV/dt) CFL coefficient
1399 : : for variable-time-step-size simulations due to volume change in time in
1400 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. Setting 'dvcfl' only has
1401 : : effect in ALE calculations and used together with 'cfl'. See also J. Waltz,
1402 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1403 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1404 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1405 [ + - ][ + - ]: 1234 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1406 : :
1407 : : keywords.insert({"vortmult",
1408 : : "Configure vorticity multiplier for ALE mesh velocity",
1409 : : R"(This keyword is used to configure the multiplier for the vorticity term
1410 : : in the mesh velocity smoother (mesh_velocity=fluid) or for the potential
1411 : : gradient for the Helmholtz mesh velocity (mesh_velocity=helmholtz) for ALE
1412 : : mesh motion. For 'fluid' this is coefficient c2 in Eq.(36) of Waltz,
1413 : : Morgan, Canfield, Charest, Risinger, Wohlbier, A three-dimensional finite
1414 : : element arbitrary Lagrangian–Eulerian method for shock hydrodynamics on
1415 : : unstructured grids, Computers & Fluids, 2014, and for 'helmholtz', this
1416 : : is coefficient a1 in Eq.(23) of Bakosi, Waltz, Morgan, Improved ALE mesh
1417 : : velocities for complex flows, International Journal for Numerical Methods
1418 [ + - ][ + - ]: 1234 : in Fluids, 2017. )", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1419 : :
1420 : : keywords.insert({"maxit",
1421 : : "Set the max number of iterations for the ALE mesh velocity linear solve",
1422 : : R"(This keyword is used to specify the maximum number of linear solver
1423 : : iterations taken to converge the mesh velocity linear solve in
1424 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1425 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1426 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1427 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1428 [ + - ][ + - ]: 1234 : 2014.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1429 : :
1430 : : keywords.insert({"tolerance",
1431 : : "Set the tolerance for the ALE mesh velocity linear solve",
1432 : : R"(This keyword is used to specify the tolerance to converge the mesh
1433 : : velocity linear solve for in
1434 : : arbitrary-Lagrangian-Eulerian (ALE) calculations. See also J. Waltz,
1435 : : N.R. Morgan, T.R. Canfield, M.R.J. Charest, L.D. Risinger, J.G. Wohlbier, A
1436 : : three-dimensional finite element arbitrary Lagrangian–Eulerian method for
1437 : : shock hydrodynamics on unstructured grids, Computers & Fluids, 92: 172-187,
1438 [ + - ][ + - ]: 1234 : 2014.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1439 : :
1440 : : keywords.insert({"move",
1441 : : "Start configuration block configuring surface movement in ALE",
1442 : : R"(This keyword is used to introduce a move block, used to
1443 [ + - ][ + - ]: 1234 : configure surface movement for ALE simulations.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1444 : :
1445 : : keywords.insert({"fntype",
1446 : : "Select how a user-defined function is interpreted",
1447 : : R"(This keyword is used to select how a user-defined function should be
1448 [ + - ][ + - ]: 1234 : interpreted.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1449 : :
1450 : : keywords.insert({"fn", "Specify a discrete user-defined function",
1451 : : R"(This keyword is used to specify a user-defined function block with
1452 : : discrete points, listed inside the fn block. Used in ale mesh motion and
1453 [ + - ][ + - ]: 1234 : time-dependent BC specification)", "reals" });
[ + - ][ + - ]
[ + - ][ + - ]
1454 : :
1455 : : keywords.insert({"laplace",
1456 : : "Select the Laplace mesh velocity smoother for ALE",
1457 : : R"(This keyword is used to select the 'Laplace' mesh velocity smoother
1458 [ + - ][ + - ]: 1234 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1459 : :
1460 : : keywords.insert({"helmholtz",
1461 : : "Select the Helmholtz velocity for ALE",
1462 : : R"(This keyword is used to select the a velocity, computed from the
1463 : : Helmholtz-decomposition as the mesh velocity for
1464 : : Arbitrary-Lagrangian-Eulerian (ALE) mesh motion. See J. Bakosi, J. Waltz,
1465 : : N. Morgan, Improved ALE mesh velocities for complex flows, Int. J. Numer.
1466 [ + - ][ + - ]: 1234 : Meth. Fl., 1-10, 2017, https://doi.org/10.1002/fld.4403.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1467 : :
1468 : : keywords.insert({"none", "Select none option",
1469 : : R"(This keyword is used to select the 'none' option from a list of
1470 [ + - ][ + - ]: 1234 : configuration options.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1471 : :
1472 : : keywords.insert({"sine",
1473 : : "Prescribe sinusoidal mesh velocity for ALE",
1474 : : R"(This keyword is used to prescribe a sinusoidal mesh velocity
1475 [ + - ][ + - ]: 1234 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1476 : :
1477 : : keywords.insert({"fluid", "Select the fluid velocity for ALE",
1478 : : R"(This keyword is used to select the 'fluid' velocity as the mesh velocity
1479 [ + - ][ + - ]: 1234 : for Arbitrary-Lagrangian-Eulerian (ALE) mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1480 : :
1481 : : // -----------------------------------------------------------------------
1482 : : // h/p adaptation objects
1483 : : // -----------------------------------------------------------------------
1484 : :
1485 : : keywords.insert({"amr",
1486 : : "Start configuration block configuring adaptive mesh refinement",
1487 : : R"(This keyword is used to introduce the amr block, used to
1488 [ + - ][ + - ]: 1234 : configure adaptive mesh refinement.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1489 : :
1490 : : keywords.insert({"t0ref", "Enable mesh refinement at t<0",
1491 : : R"(This keyword is used to enable initial mesh refinement, which can be
1492 : : configured to perform multiple levels of mesh refinement based on various
1493 [ + - ][ + - ]: 1234 : refinement criteria and configuration settings.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1494 : :
1495 : : keywords.insert({"dtref", "Enable mesh refinement at t>0",
1496 : : R"(This keyword is used to enable solution-adaptive mesh refinement during
1497 [ + - ][ + - ]: 1234 : time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1498 : :
1499 : : keywords.insert({"dtref_uniform",
1500 : : "Enable mesh refinement at t>0 but only perform uniform refinement",
1501 : : R"(This keyword is used to force uniform-only solution-adaptive mesh
1502 [ + - ][ + - ]: 1234 : refinement during time stepping.)", "bool"});
[ + - ][ + - ]
[ + - ][ + - ]
1503 : :
1504 : : keywords.insert({"dtfreq",
1505 : : "Set mesh refinement frequency during time stepping",
1506 : : R"(This keyword is used to configure the frequency of mesh refinement
1507 [ + - ][ + - ]: 1234 : during time stepping.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1508 : :
1509 : : keywords.insert({"maxlevels",
1510 : : "Set maximum allowed mesh refinement levels",
1511 : : R"(This keyword is used to configure the maximum allowed mesh refinement
1512 [ + - ][ + - ]: 1234 : levels.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1513 : :
1514 : : keywords.insert({"initial",
1515 : : "Configure initial mesh refinement (before time stepping)",
1516 : : R"(This keyword is used to add to a list of initial mesh refinement types
1517 : : that happens before t = 0. Allowed options are 'uniform',
1518 : : 'uniform_derefine', 'initial_conditions', 'coords', 'edgelist')",
1519 [ + - ][ + - ]: 1234 : "vector of strings"});
[ + - ][ + - ]
[ + - ][ + - ]
1520 : :
1521 : : keywords.insert({"coords",
1522 : : "Configure initial refinement using coordinate planes",
1523 : : R"(This keyword can be used to configure entire volumes on a given side of
1524 : : a plane in 3D space. The keyword introduces an coords block within
1525 : : an amr block. All edges of the input mesh will be tagged for refinement
1526 : : whose end-points lie within the given ranges.
1527 : : Example: 'xminus 0.5' refines all edges whose end-point coordinates are
1528 : : less than 0.5. Multiple specifications are understood by combining with
1529 : : a logical AND. That is: 'xminus 0.5 yplus 0.3' refines all edges whose
1530 : : end-point x coordinates are less than 0.5 AND y coordinates are larger than
1531 [ + - ][ + - ]: 1234 : 0.3.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1532 : :
1533 : : keywords.insert({"xminus",
1534 : : "Configure initial refinement for coordinates lower than an x-normal plane",
1535 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1536 : : whose end-points are less than the x coordinate of a plane perpendicular
1537 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1538 : : within an amr-block with syntax 'xminus <real>'. All edges of the
1539 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1540 : : the real number given. Example: 'xminus 0.5' refines all edges whose end-point
1541 [ + - ][ + - ]: 1234 : x-coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1542 : :
1543 : : keywords.insert({"xplus",
1544 : : "Configure initial refinement for coordinates larger than an x-normal plane",
1545 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1546 : : whose end-points are larger than the x coordinate of a plane perpendicular
1547 : : to coordinate x in 3D space. The keyword must be used in a coords-block
1548 : : within an amr-block with syntax 'xplus <real>'. All edges of the
1549 : : input mesh will be tagged for refinement whose end-points lie larger than
1550 : : (+) the real number given. Example: 'xplus 0.5' refines all edges whose
1551 [ + - ][ + - ]: 1234 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1552 : :
1553 : : keywords.insert({"yminus",
1554 : : "Configure initial refinement for coordinates lower than an y-normal plane",
1555 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1556 : : whose end-points are less than the y coordinate of a plane perpendicular
1557 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1558 : : within an amr-block with syntax 'yminus <real>'. All edges of the
1559 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1560 : : the real number given. Example: 'yminus 0.5' refines all edges whose end-point
1561 [ + - ][ + - ]: 1234 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1562 : :
1563 : : keywords.insert({"yplus",
1564 : : "Configure initial refinement for coordinates larger than an y-normal plane",
1565 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1566 : : whose end-points are larger than the y coordinate of a plane perpendicular
1567 : : to coordinate y in 3D space. The keyword must be used in a coords-block
1568 : : within an amr-block with syntax 'yplus <real>'. All edges of the
1569 : : input mesh will be tagged for refinement whose end-points lie larger than
1570 : : (+) the real number given. Example: 'yplus 0.5' refines all edges whose
1571 [ + - ][ + - ]: 1234 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1572 : :
1573 : : keywords.insert({"zminus",
1574 : : "Configure initial refinement for coordinates lower than an z-normal plane",
1575 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1576 : : whose end-points are less than the z coordinate of a plane perpendicular
1577 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1578 : : within an amr-block with syntax 'zminus <real>'. All edges of the
1579 : : input mesh will be tagged for refinement whose end-points lie less than (-)
1580 : : the real number given. Example: 'zminus 0.5' refines all edges whose end-point
1581 [ + - ][ + - ]: 1234 : coordinates are less than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1582 : :
1583 : : keywords.insert({"zplus",
1584 : : "Configure initial refinement for coordinates larger than an z-normal plane",
1585 : : R"(This keyword can be used to configure a mesh refinement volume for edges
1586 : : whose end-points are larger than the z coordinate of a plane perpendicular
1587 : : to coordinate z in 3D space. The keyword must be used in a coords-block
1588 : : within an amr-block with syntax 'zplus <real>'. All edges of the
1589 : : input mesh will be tagged for refinement whose end-points lie larger than
1590 : : (+) the real number given. Example: 'zplus 0.5' refines all edges whose
1591 [ + - ][ + - ]: 1234 : end-point coordinates are larger than 0.5.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1592 : :
1593 : : keywords.insert({"edgelist",
1594 : : "Configure edge-node pairs for initial refinement",
1595 : : R"(This keyword can be used to configure a list of edges that are explicitly
1596 : : tagged for initial refinement during setup in inciter. The keyword
1597 : : introduces an edgelist block within an amr block and must
1598 : : contain a list of integer pairs, i.e., the number of ids must be even,
1599 : : denoting the end-points of the nodes (=edge) which should be tagged for
1600 [ + - ][ + - ]: 1234 : refinement.)", "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1601 : :
1602 : : keywords.insert({"error",
1603 : : "Configure the error type for solution-adaptive mesh refinement",
1604 : : R"(This keyword is used to select the algorithm used to estimate the error
1605 : : for solution-adaptive mesh refinement. Available options are 'jump' and
1606 [ + - ][ + - ]: 1234 : 'hessian')", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1607 : :
1608 : : keywords.insert({"refvar",
1609 : : "Configure dependent variables used for adaptive mesh refinement",
1610 : : R"(This keyword is used to configured a list of dependent variables that
1611 : : trigger adaptive mesh refinement based on estimating their numerical error.
1612 : : These refinement variables are used for both initial (i.e., before time
1613 : : stepping) mesh refinement as well as during time stepping. Only previously
1614 : : (i.e., earlier in the input file) selected dependent variables can be
1615 : : configured as refinement variables. Dependent variables are required to be
1616 : : defined in all equation system configuration blocks, e.g., transport ...
1617 : : end, by using the 'depvar' keyword. Example: transport depvar c end amr
1618 : : refvar c end end. Selecting a particular scalar component in a system is
1619 : : done by appending the equation number to the refvar: Example: transport
1620 : : depvar q ncomp 3 end amr refvar q1 q2 end end, which configures two
1621 : : refinement variables: the first and third scalar component of the previously
1622 [ + - ][ + - ]: 1234 : configured transport equation system.)", "vector of char"});
[ + - ][ + - ]
[ + - ][ + - ]
1623 : :
1624 : : keywords.insert({"tol_refine", "Configure refine tolerance",
1625 : : R"(This keyword is used to set the tolerance used to tag an edge for
1626 [ + - ][ + - ]: 1234 : refinement if the relative error exceeds this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1627 : :
1628 : : keywords.insert({"tol_derefine",
1629 : : "Configure derefine tolerance",
1630 : : R"(This keyword is used to set the tolerance used to tag an edge for
1631 [ + - ][ + - ]: 1234 : derefinement if the relative error is below this value.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1632 : :
1633 : : keywords.insert({"uniform",
1634 : : "Select uniform initial mesh refinement",
1635 : : R"(This keyword is used to select uniform initial mesh refinement.)",
1636 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1637 : :
1638 : : keywords.insert({"uniform_derefine",
1639 : : "Select uniform initial mesh de-refinement",
1640 : : R"(This keyword is used to select uniform initial mesh de-refinement.)",
1641 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1642 : :
1643 : : keywords.insert({"initial_conditions",
1644 : : "Select initial-conditions-based initial mesh refinement",
1645 : : R"(This keyword is used to select initial-conditions-based initial mesh
1646 [ + - ][ + - ]: 1234 : refinement.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1647 : :
1648 : : keywords.insert({"jump",
1649 : : "Error estimation based on the solution jump normalized by solution value",
1650 : : R"(This keyword is used to select the jump-based error indicator for
1651 : : solution-adaptive mesh refinement. The error is estimated by computing the
1652 : : magnitude of the jump in the solution value normalized by the solution
1653 [ + - ][ + - ]: 1234 : value.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1654 : :
1655 : : keywords.insert({"hessian",
1656 : : "Error estimation based on the Hessian normalized by solution value",
1657 : : R"(This keyword is used to select the Hessian-based error indicator for
1658 : : solution-adaptive mesh refinement. The error is estimated by computing the
1659 : : Hessian (2nd derivative matrix) of the solution normalized by sum of the
1660 [ + - ][ + - ]: 1234 : absolute values of the gradients at edges-end points.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1661 : :
1662 : : keywords.insert({"pref",
1663 : : "Start configuration block configuring p-adaptive refinement",
1664 : : R"(This keyword is used to introduce the pref block, to
1665 [ + - ][ + - ]: 1234 : configure p-adaptive refinement)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1666 : :
1667 : : keywords.insert({"indicator",
1668 : : "Configure the specific adaptive indicator for p-adaptive DG scheme",
1669 : : R"(This keyword can be used to configure a specific type of adaptive
1670 : : indicator for p-adaptive refinement of the DG scheme. The keyword must
1671 : : be used in a pref block. Available options are 'pref_spectral_decay' and
1672 [ + - ][ + - ]: 1234 : 'pref_non_conformity'.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1673 : :
1674 : : keywords.insert({"ndofmax",
1675 : : "Configure the maximum number of degree of freedom for p-adaptive DG",
1676 : : R"(This keyword can be used to configure a maximum number of degree of
1677 : : freedom for p-adaptive refinement of the DG scheme. The keyword must
1678 [ + - ][ + - ]: 1234 : be used in a pref block.)", "uint either 4 or 10"});
[ + - ][ + - ]
[ + - ][ + - ]
1679 : :
1680 : : keywords.insert({"tolref",
1681 : : "Configure the tolerance for p-refinement for p-adaptive DG",
1682 : : R"(This keyword can be used to configure a tolerance for p-adaptive
1683 : : refinement for the DG scheme. The keyword must be used in a pref
1684 : : block. All elements with a refinement indicator larger than this
1685 [ + - ][ + - ]: 1234 : tolerance will be p-refined.)", "real between 0 and 1"});
[ + - ][ + - ]
[ + - ][ + - ]
1686 : :
1687 : : keywords.insert({"spectral_decay",
1688 : : "Select the spectral-decay indicator for p-adaptive DG scheme",
1689 : : R"(This keyword is used to select the spectral-decay indicator used for
1690 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1691 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1692 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1693 : :
1694 : : keywords.insert({"non_conformity",
1695 : : "Select the non-conformity indicator for p-adaptive DG scheme",
1696 : : R"(This keyword is used to select the non-conformity indicator used for
1697 : : p-adaptive discontinuous Galerkin (DG) discretization used in inciter.
1698 : : See Control/Inciter/Options/PrefIndicator.hpp for other valid options.)",
1699 [ + - ][ + - ]: 1234 : "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1700 : :
1701 : : // -----------------------------------------------------------------------
1702 : : // boundary condition options
1703 : : // -----------------------------------------------------------------------
1704 : :
1705 : : keywords.insert({"bc",
1706 : : "Start configuration block for boundary conditions",
1707 : : R"(This keyword is used to introduce the bc block, used for
1708 : : boundary conditions. This is a vector block, where each vector entry
1709 [ + - ][ + - ]: 1234 : specifies BCs for a particular mesh)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1710 : :
1711 : : keywords.insert({"mesh",
1712 : : "List meshes on which the following BCs apply",
1713 : : R"(This keyword is used to list multiple meshes on which the boundary
1714 : : conditions listed in this particular bc-block apply.)",
1715 [ + - ][ + - ]: 1234 : "vector of uints"});
[ + - ][ + - ]
[ + - ][ + - ]
1716 : :
1717 : : keywords.insert({"dirichlet",
1718 : : "List sidesets with Dirichlet boundary conditions",
1719 : : R"(This keyword is used to list Dirichlet sidesets.
1720 : : This keyword is used to list multiple sidesets on
1721 : : which a prescribed Dirichlet BC is then applied. Such prescribed BCs
1722 : : at each point in space and time are evaluated using a built-in function,
1723 [ + - ][ + - ]: 1234 : e.g., using the method of manufactured solutions.)", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1724 : :
1725 : : keywords.insert({"symmetry",
1726 : : "List sidesets with symmetry boundary conditions",
1727 : : R"(This keyword is used to list (multiple) symmetry BC sidesets.)",
1728 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1729 : :
1730 : : keywords.insert({"inlet",
1731 : : "List sidesets with inlet boundary conditions",
1732 : : R"(This keyword is used to list (multiple) inlet BC sidesets.)",
1733 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1734 : :
1735 : : keywords.insert({"outlet",
1736 : : "List sidesets with outlet boundary conditions",
1737 : : R"(This keyword is used to list (multiple) outlet BC sidesets.)",
1738 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1739 : :
1740 : : keywords.insert({"farfield",
1741 : : "List sidesets with farfield boundary conditions",
1742 : : R"(This keyword is used to list (multiple) farfield BC sidesets.
1743 : : Keywords allowed in a bc_farfield block are 'density', 'velocity',
1744 [ + - ][ + - ]: 1234 : 'pressure')", "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1745 : :
1746 : : keywords.insert({"extrapolate",
1747 : : "List sidesets with Extrapolation boundary conditions",
1748 : : R"(This keyword is used to list (multiple) extrapolate BC sidesets.)",
1749 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1750 : :
1751 : : keywords.insert({"noslipwall",
1752 : : "List sidesets with no-slip wall boundary conditions",
1753 : : R"(This keyword is used to list (multiple) no-slip wall BC sidesets.)",
1754 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1755 : :
1756 : : keywords.insert({"slipwall",
1757 : : "List sidesets with slip wall boundary conditions",
1758 : : R"(This keyword is used to list (multiple) slip wall BC sidesets.)",
1759 [ + - ][ + - ]: 1234 : "vector of uint(s)"});
[ + - ][ + - ]
[ + - ][ + - ]
1760 : :
1761 : : keywords.insert({"timedep",
1762 : : "Start configuration block describing time dependent boundary conditions",
1763 : : R"(This keyword is used to introduce a bc_timedep block, used to
1764 : : specify the configuration of time dependent boundary conditions for a
1765 : : partial differential equation. A discrete function in time t in the form
1766 : : of a table with 6 columns (t, pressure(t), density(t), vx(t), vy(t), vz(t))
1767 : : is expected inside a fn ... end block, specified within the bc_timedep
1768 : : block. Multiple such bc_timedep blocks can be specified for different
1769 [ + - ][ + - ]: 1234 : time dependent BCs on different groups of side sets.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1770 : :
1771 : : keywords.insert({"back_pressure",
1772 : : "Start configuration block describing back pressure boundary conditions",
1773 : : R"(This keyword is used to introduce a back pressure BC block. This
1774 : : block requires a 'sideset' vector and 'pressure' to be specified within
1775 [ + - ][ + - ]: 1234 : it.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1776 : :
1777 : : keywords.insert({"velocity", "Specify velocity",
1778 : : R"(This keyword is used to configure a velocity vector used in a
1779 : : context-specific way, e.g., for boundary or initial conditions.)",
1780 [ + - ][ + - ]: 1234 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1781 : :
1782 : : // -----------------------------------------------------------------------
1783 : : // Rigid-body motion solver
1784 : : // -----------------------------------------------------------------------
1785 : :
1786 : : keywords.insert({"rigid_body_motion", "Specify a rigid body motion block",
1787 : : R"(This keyword is used to specify a rigid body motion block, to move an
1788 : : overset mesh as a rigid body. Number of degrees of freedom and the
1789 : : symmetry plane (if any) are specified within this block.)",
1790 [ + - ][ + - ]: 1234 : "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1791 : :
1792 : : keywords.insert({"rigid_body_dof",
1793 : : "Number of rigid body degrees of freedom", R"(This keyword is used to
1794 : : specify the number of degrees of freedom the rigid body has. Valid
1795 : : options are 3 and 6. 3 DOFs indicate translation in two dimensions and
1796 : : rotation about symmetry plane axis; 6 DOFs indication translation in
1797 : : three dimensions and rotation about three axes. If 3 DOFs is specified,
1798 : : symmetry plane is required; if 6 DOFs is specified symmetry plane is not
1799 [ + - ][ + - ]: 1234 : used.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1800 : :
1801 : : keywords.insert({"symmetry_plane", "Symmetry plane for rigid body motion",
1802 : : R"(This keyword is used to specify the symmetry plane for a 3 DOF rigid
1803 [ + - ][ + - ]: 1234 : body motion solver. 1: x-plane, 2: y-plane, 3: z-plane.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1804 : :
1805 : : // -----------------------------------------------------------------------
1806 : : // IC object
1807 : : // -----------------------------------------------------------------------
1808 : :
1809 : : keywords.insert({"ic",
1810 : : "Introduce an ic block used to configure initial conditions",
1811 : : R"(This keyword is used to introduce an ic block used to set initial
1812 [ + - ][ + - ]: 1234 : conditions.)", "block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1813 : :
1814 : : keywords.insert({"materialid", "Specify material id",
1815 : : R"(This keyword is used to configure the material id within an IC box,
1816 : : IC mesh-block, farfield BC, or in the background as a part of the
1817 [ + - ][ + - ]: 1234 : initialization.)", "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1818 : :
1819 : : keywords.insert({"temperature", "Specify temperature",
1820 : : R"(This keyword is used to configure temperature, used for, e.g.,
1821 [ + - ][ + - ]: 1234 : boundary or initial conditions.)" , "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1822 : :
1823 : : keywords.insert({"mass_fractions", "Specify species mass fractions",
1824 : : R"(This keyword is used to configure species mass fractions, used for,
1825 [ + - ][ + - ]: 1234 : e.g., boundary or initial conditions.)" , "vector of reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1826 : :
1827 : : keywords.insert({"box",
1828 : : "Introduce a box block used to assign initial conditions",
1829 : : R"(This keyword is used to introduce a IC box block used to assign
1830 : : initial conditions within a box given by spatial coordinates.)",
1831 [ + - ][ + - ]: 1234 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1832 : :
1833 : : keywords.insert({"meshblock",
1834 : : "Introduce a meshblock block used to assign initial conditions",
1835 : : R"(This keyword is used to introduce a IC meshblock block used to
1836 : : assign initial conditions within a mesh block specified in the mesh file.)",
1837 [ + - ][ + - ]: 1234 : "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1838 : :
1839 : : keywords.insert({"blockid", "Specify mesh block id",
1840 : : R"(This keyword is used to configure the mesh block id within the
1841 : : meshblock-block as a part of the initialization. It is strongly
1842 : : recommended to use contiguous block ids in mesh file starting from 1.)",
1843 [ + - ][ + - ]: 1234 : "uint"});
[ + - ][ + - ]
[ + - ][ + - ]
1844 : :
1845 : : keywords.insert({"volume", "Specify volume",
1846 : : R"(This keyword is used to configure the volume of a meshblock.)",
1847 [ + - ][ + - ]: 1234 : "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1848 : :
1849 : : keywords.insert({"mass", "Specify mass",
1850 : : R"(This keyword is used to configure the mass within a box/meshblock,
1851 : : or mass of the rigid body which is conformally meshed using the overset
1852 [ + - ][ + - ]: 1234 : mesh.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1853 : :
1854 : : keywords.insert({"energy", "Specify energy per unit mass",
1855 : : R"(This keyword is used to configure energy per unit mass, used for, e.g.,
1856 [ + - ][ + - ]: 1234 : boundary or initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1857 : :
1858 : : keywords.insert({"energy_content", "Specify energy per unit volume",
1859 : : R"(This keyword is used to configure energy per unit volume, used for
1860 [ + - ][ + - ]: 1234 : initial conditions.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1861 : :
1862 : : keywords.insert({"xmin", "Minimum x coordinate",
1863 : : R"(This keyword used to configure a minimum x coordinate to specify
1864 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1865 : :
1866 : : keywords.insert({"xmax", "Maximum x coordinate",
1867 : : R"(This keyword used to configure a maximum x coordinate to specify
1868 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1869 : :
1870 : : keywords.insert({"ymin", "Minimum y coordinate",
1871 : : R"(This keyword used to configure a minimum y coordinate to specify
1872 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1873 : :
1874 : : keywords.insert({"ymax", "Maximum y coordinate",
1875 : : R"(This keyword used to configure a maximum y coordinate to specify
1876 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1877 : :
1878 : : keywords.insert({"zmin", "Minimum z coordinate",
1879 : : R"(This keyword used to configure a minimum z coordinate to specify
1880 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1881 : :
1882 : : keywords.insert({"zmax", "Maximum z coordinate",
1883 : : R"(This keyword used to configure a maximum z coordinate to specify
1884 [ + - ][ + - ]: 1234 : a box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1885 : :
1886 : : keywords.insert({"orientation", "Configure orientation",
1887 : : R"(Configure orientation of an IC box for rotation about centroid of
1888 : : box; or configure orientation of a mesh relative to another.)",
1889 [ + - ][ + - ]: 1234 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1890 : :
1891 : : keywords.insert({"initiate", "Initiation type",
1892 : : R"(This keyword is used to select an initiation type to configure how
1893 : : values are assigned for a box/meshblock initialization. This can be used
1894 : : to specify, how the values are assigned to mesh nodes within a box. Uses:
1895 : : (1) impulse: assign the full values at t=0 for all points in a box,
1896 : : (2) linear: use a linear function in time and space, configured with an
1897 : : initiation point in space, a constant velocity of the growing spherical
1898 : : front in time (and space) linearly, and width of the front and assigns
1899 : : values to mesh points falling within the growing spherical shell inside
1900 [ + - ][ + - ]: 1234 : a configured box.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1901 : :
1902 : : keywords.insert({"init_time","Specify the initialization time",
1903 : : R"(This keyword is used to specify the time at which the propagating front
1904 : : is initialized for a mesh block or box IC, with 'initiate linear' type.
1905 : : Delays in initializing separate mesh blocks or boxes can be achieved using
1906 [ + - ][ + - ]: 1234 : different initialization times.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1907 : :
1908 : : keywords.insert({"front_width", "Specify a front width",
1909 : : R"(This keyword is used to specify the width of the propagating front for
1910 : : a mesh block or box IC, with 'initiate linear' type. The suggested value
1911 : : of the front width is about 4-5 times the mesh size inside the mesh block
1912 [ + - ][ + - ]: 1234 : or box.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1913 : :
1914 : : keywords.insert({"front_speed", "Specify a front speed",
1915 : : R"(This keyword is used to specify the speed at which a front propagates
1916 [ + - ][ + - ]: 1234 : for a mesh block or box IC, with 'initiate linear' type.)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1917 : :
1918 : : keywords.insert({"impulse",
1919 : : "Select the impulse initiation type, for a box/meshblock IC",
1920 : : R"(This keyword can be used to select the 'impulse' initiation/assignment
1921 : : type for box initial conditions. It simply assigns the prescribed values
1922 [ + - ][ + - ]: 1234 : to all mesh points within a configured box at t=0.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1923 : :
1924 : : keywords.insert({"linear",
1925 : : "Select the linear initiation type, for a box/meshblock IC",
1926 : : R"(This keyword is be used to specify the 'linear' initiation parameters
1927 : : for a particular box or meshblock, as a part of the 'energy_pill'
1928 : : initialization. Linear initiation uses a linear function in time and space,
1929 : : configured with an initiation point in space, a constant velocity of the
1930 : : growing spherical front in time (and space) linearly, and width of the front
1931 : : and assigns values to mesh points falling within the growing spherical shell
1932 : : inside a configured box or meshblock. The following keywords are required
1933 : : in the box/meshblock block if 'linear' is used: 'init_time',
1934 [ + - ][ + - ]: 1234 : 'front_width', 'front_speed')"});
[ + - ][ + - ]
[ + - ][ + - ]
1935 : :
1936 : : // -----------------------------------------------------------------------
1937 : : // Overset mesh object
1938 : : // -----------------------------------------------------------------------
1939 : :
1940 : : keywords.insert({"mesh",
1941 : : "Start configuration block assigning a mesh to a solver",
1942 : : R"(This keyword is used to introduce a mesh block, used to
1943 [ + - ][ + - ]: 1234 : assign and configure a mesh to a solver.)", "vector block-title"});
[ + - ][ + - ]
[ + - ][ + - ]
1944 : :
1945 : : keywords.insert({"filename", "Set filename",
1946 [ + - ][ + - ]: 1234 : R"(Set filename, e.g., mesh filename for solver coupling.)", "string"});
[ + - ][ + - ]
[ + - ][ + - ]
1947 : :
1948 : : keywords.insert({"location", "Configure location",
1949 : : R"(Configure location of a mesh relative to another.)",
1950 [ + - ][ + - ]: 1234 : "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1951 : :
1952 : : keywords.insert({"moment_of_inertia", "Moment of inertia of rigid body",
1953 [ + - ][ + - ]: 1234 : R"(Moment of inertia of rigid body for rotational motion)", "real"});
[ + - ][ + - ]
[ + - ][ + - ]
1954 : :
1955 : : keywords.insert({"center_of_mass", "Center of mass of rigid body",
1956 : : R"(Center of mass of rigid body used to compute torque for rotational
1957 [ + - ][ + - ]: 1234 : motion)", "vector of 3 reals"});
[ + - ][ + - ]
[ + - ][ + - ]
1958 : :
1959 : : // -----------------------------------------------------------------------
1960 : : // pre-configured problems
1961 : : // -----------------------------------------------------------------------
1962 : :
1963 : : keywords.insert({"user_defined",
1964 : : "Select user-defined specification for a problem",
1965 : : R"(This keyword is used to select the user-defined specification for an
1966 : : option. This could be a 'problem' to be solved by a partial differential
1967 : : equation, but can also be a 'user-defined' mesh velocity specification for
1968 [ + - ][ + - ]: 1234 : ALE mesh motion.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1969 : :
1970 : : keywords.insert({"shear_diff",
1971 : : "Select the shear + diffusion test problem ",
1972 : : R"(This keyword is used to select the shear diffusion test problem. The
1973 : : initial and boundary conditions are specified to set up the test problem
1974 : : suitable to exercise and test the advection and diffusion terms of the
1975 [ + - ][ + - ]: 1234 : scalar transport equation.)" });
[ + - ][ + - ]
[ + - ][ + - ]
1976 : :
1977 : : keywords.insert({"slot_cyl",
1978 : : "Select Zalesak's slotted cylinder test problem",
1979 : : R"(This keyword is used to select Zalesak's slotted cylinder test
1980 : : problem. The initial and boundary conditions are specified to set up the
1981 : : test problem suitable to exercise and test the advection and diffusion
1982 [ + - ][ + - ]: 1234 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1983 : :
1984 : : keywords.insert({"gauss_hump",
1985 : : "Select advection of 2D Gaussian hump test problem",
1986 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
1987 : : problem. The initial and boundary conditions are specified to set up the
1988 : : test problem suitable to exercise and test the advection
1989 [ + - ][ + - ]: 1234 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1990 : :
1991 : : keywords.insert({"cyl_advect",
1992 : : "Select advection of cylinder test problem",
1993 : : R"(This keyword is used to select the advection of cylinder test
1994 : : problem. The initial and boundary conditions are specified to set up the
1995 : : test problem suitable to exercise and test the advection
1996 [ + - ][ + - ]: 1234 : terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
1997 : :
1998 : : keywords.insert({"cyl_vortex",
1999 : : "Select deformation of cylinder in a vortex test problem",
2000 : : R"(This keyword is used to select the test problem which deforms a cylinder
2001 : : in a vortical velocity field. The initial and boundary conditions are
2002 : : specified to set up the test problem suitable to exercise and test the
2003 [ + - ][ + - ]: 1234 : advection terms of the scalar transport equation.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2004 : :
2005 : : keywords.insert({"vortical_flow",
2006 : : "Select the vortical flow test problem ",
2007 : : R"(This keyword is used to select the vortical flow test problem. The
2008 : : purpose of this test problem is to test velocity errors generated by spatial
2009 : : operators in the presence of 3D vorticity and in particluar the
2010 : : superposition of planar and vortical flows, analogous to voritcity
2011 : : stretching. For more details, see Waltz,
2012 : : et. al, "Manufactured solutions for the three-dimensional Euler equations
2013 : : with relevance to Inertial Confinement Fusion", Journal of Computational
2014 [ + - ][ + - ]: 1234 : Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2015 : :
2016 : : keywords.insert({"nl_energy_growth",
2017 : : "Select the nonlinear energy growth test problem",
2018 : : R"(This keyword is used to select the nonlinear energy growth test problem.
2019 : : The purpose of this test problem is to test nonlinear, time dependent energy
2020 : : growth and the subsequent development of pressure gradients due to coupling
2021 : : between the internal energy and the equation of state. For more details,
2022 : : see Waltz, et. al, "Manufactured
2023 : : solutions for the three-dimensional Euler equations with relevance to
2024 : : Inertial Confinement Fusion", Journal of Computational Physics 267 (2014)
2025 [ + - ][ + - ]: 1234 : 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2026 : :
2027 : : keywords.insert({"rayleigh_taylor",
2028 : : "Select the Rayleigh-Taylor test problem ",
2029 : : R"(This keyword is used to select the Rayleigh-Taylor unstable configuration
2030 : : test problem. The purpose of this test problem is to assess time dependent
2031 : : fluid motion in the presence of Rayleigh-Taylor unstable conditions, i.e.
2032 : : opposing density and pressure gradients.
2033 : : For more details, see Waltz, et. al, "Manufactured solutions for the
2034 : : three-dimensional Euler equations with relevance to Inertial Confinement
2035 [ + - ][ + - ]: 1234 : Fusion", Journal of Computational Physics 267 (2014) 196-209.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2036 : :
2037 : : keywords.insert({"taylor_green",
2038 : : "Select the Taylor-Green test problem ",
2039 : : R"(This keyword is used to select the Taylor-Green vortex test problem. The
2040 : : purpose of this problem is to test time accuracy and the correctness of the
2041 : : discretization of the viscous term in the Navier-Stokes equation. For more
2042 : : details on the flow, see G.I. Taylor, A.E.
2043 : : Green, "Mechanism of the Production of Small Eddies from Large Ones", Proc.
2044 : : R. Soc. Lond. A 1937 158 499-521; DOI: 10.1098/rspa.1937.0036. Published 3
2045 [ + - ][ + - ]: 1234 : February 1937.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2046 : :
2047 : : keywords.insert({"sod_shocktube",
2048 : : "Select the Sod shock-tube test problem ",
2049 : : R"(This keyword is used to select the Sod shock-tube test problem. The
2050 : : purpose of this test problem is to test the correctness of the
2051 : : approximate Riemann solver and its shock and interface capturing
2052 : : capabilities. For more details, see
2053 : : G. A. Sod, "A Survey of Several Finite Difference Methods for Systems of
2054 : : Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27 (1978)
2055 [ + - ][ + - ]: 1234 : 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2056 : :
2057 : : keywords.insert({"rotated_sod_shocktube",
2058 : : "Select the rotated Sod shock-tube test problem ",
2059 : : R"(This keyword is used to select the rotated Sod shock-tube test problem.
2060 : : This the same as Sod shocktube but the geometry is rotated about X, Y, Z
2061 : : each by 45 degrees (in that order) so that none of the domain boundary align
2062 : : with any of the coordinate directions. The purpose of this test problem is
2063 : : to test the correctness of the approximate Riemann solver and its shock and
2064 : : interface capturing capabilities in an arbitrarily oriented geometry.
2065 : : For more details on the Sod
2066 : : problem, see G. A. Sod, "A Survey of Several Finite Difference Methods for
2067 : : Systems of Nonlinear Hyperbolic Conservation Laws", J. Comput. Phys., 27
2068 [ + - ][ + - ]: 1234 : (1978) 1–31.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2069 : :
2070 : : keywords.insert({"shedding_flow",
2071 : : "Select the Shedding flow test problem ",
2072 : : R"(This keyword is used to select the Shedding flow test problem. It
2073 : : describe a quasi-2D inviscid flow over a triangular wedge in tetrahedron
2074 : : grid. The purpose of this test problem is to test the capability of DG
2075 : : scheme for retaining the shape of vortices and also different error
2076 : : indicator behavior for this external flow problem when p-adaptive DG scheme
2077 [ + - ][ + - ]: 1234 : is applied.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2078 : :
2079 : : keywords.insert({"sedov_blastwave",
2080 : : "Select the Sedov blast-wave test problem ",
2081 : : R"(This keyword is used to select the Sedov blast-wave test problem. The
2082 : : purpose of this test problem is to test the correctness of the
2083 : : approximate Riemann solver and its strong shock and interface capturing
2084 [ + - ][ + - ]: 1234 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2085 : :
2086 : : keywords.insert({"interface_advection",
2087 : : "Select the interface advection test problem ",
2088 : : R"(This keyword is used to select the interface advection test problem.
2089 : : The purpose of this test problem is to test the well-balancedness of the
2090 : : multi-material discretization and its interface capturing
2091 [ + - ][ + - ]: 1234 : capabilities.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2092 : :
2093 : : keywords.insert({"gauss_hump_compflow",
2094 : : "Select advection of 2D Gaussian hump test problem",
2095 : : R"(This keyword is used to select the advection of 2D Gaussian hump test
2096 : : problem. The initial and boundary conditions are specified to set up the
2097 : : test problem suitable to exercise and test the advection terms of the
2098 : : Euler equations. The baseline of the density distribution in this testcase
2099 : : is 1 instead of 0 in gauss_hump_transport which enables it to be the
2100 [ + - ][ + - ]: 1234 : regression testcase for p-adaptive DG scheme.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2101 : :
2102 : : keywords.insert({"waterair_shocktube",
2103 : : "Select the water-air shock-tube test problem ",
2104 : : R"(This keyword is used to select the Water-air shock-tube test problem.
2105 : : The purpose of this test problem is to test the correctness of the
2106 : : multi-material pressure relaxation procedure and its interface capturing
2107 : : capabilities. For more details, see
2108 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2109 : : interfaces with compressible fluids on unstructured meshes. Journal of
2110 [ + - ][ + - ]: 1234 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2111 : :
2112 : : keywords.insert({"shock_hebubble",
2113 : : "Select the shock He-bubble test problem ",
2114 : : R"(This keyword is used to select the shock He-bubble test problem. The
2115 : : purpose of this test problem is to test the correctness of the
2116 : : multi-material algorithm and its shock-interface interaction
2117 : : capabilities. For more details, see
2118 : : Quirk, J. J., & Karni, S. (1996). On the dynamics of a shock–bubble
2119 [ + - ][ + - ]: 1234 : interaction. Journal of Fluid Mechanics, 318, 129-163.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2120 : :
2121 : : keywords.insert({"underwater_ex",
2122 : : "Select the underwater explosion test problem ",
2123 : : R"(This keyword is used to select the underwater explosion test problem.
2124 : : The purpose of this test problem is to test the correctness of the
2125 : : multi-material algorithm and its interface capturing capabilities in the
2126 : : presence of strong shocks and large deformations.
2127 : : For more details, see
2128 : : Chiapolino, A., Saurel, R., & Nkonga, B. (2017). Sharpening diffuse
2129 : : interfaces with compressible fluids on unstructured meshes. Journal of
2130 [ + - ][ + - ]: 1234 : Computational Physics, 340, 389-417.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2131 : :
2132 : : keywords.insert({"shockdensity_wave",
2133 : : "Select the shock-density wave test problem ",
2134 : : R"(This keyword is used to select the shock-density wave test problem.
2135 : : THe purpose of this test problem is to assess the accuracy of high order
2136 : : method in predicting the interaction of a density wave with a shock front.
2137 : : For more details, see Yu, L., Matthias
2138 : : I. (2014). Discontinuous Galerkin method for multicomponent chemically
2139 : : reacting flows and combustion. Journal of Computational Physics, 270,
2140 [ + - ][ + - ]: 1234 : 105-137.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2141 : :
2142 : : keywords.insert({"equilinterface_advect",
2143 : : "Select the advection of equilibrium interface problem ",
2144 : : R"(This keyword is used to select the advection of equilibrium interface
2145 : : problem. This is a manufactured problem with source terms with nonlinear
2146 : : solutions near the material interface. Source terms are used to ensure
2147 [ + - ][ + - ]: 1234 : that the conservation laws are satisfied by the manufactured solution.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2148 : :
2149 : : keywords.insert({"sinewave_packet",
2150 : : "Select the advection of sinewave packet problem ",
2151 : : R"(This keyword is used to select the advection of sinewave packet
2152 [ + - ][ + - ]: 1234 : problem.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2153 : :
2154 : : keywords.insert({"richtmyer_meshkov",
2155 : : "Select the Richtmyer-Meshkov instability problem ",
2156 : : R"(This keyword is used to select the Richtmyer-Meshkov instability
2157 [ + - ][ + - ]: 1234 : problem. In this problem, a shock hits a perturbed material interface.)"});
[ + - ][ + - ]
[ + - ][ + - ]
2158 : :
2159 : : // -----------------------------------------------------------------------
2160 : :
2161 : : // Initialize help: fill own keywords
2162 : 1234 : tk::ctr::Info ctrinfoFill(get< tag::cmd, tag::ctrinfo >());
2163 [ + + ]: 314670 : for (const auto& i : keywords) {
2164 [ + - ]: 313436 : ctrinfoFill.fill(i);
2165 : : }
2166 : 1234 : }
2167 : :
2168 : : //! Query scheme centering
2169 : : //! \return Scheme centering
2170 : 176 : tk::Centering centering() const
2171 [ + - ]: 176 : { return ctr::Scheme().centering( get< tag::scheme >() ); }
2172 : :
2173 : : /** @name Pack/Unpack: Serialize InputDeck object for Charm++ */
2174 : : ///@{
2175 : : //! \brief Pack/Unpack serialize member function
2176 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2177 : 1628 : void pup( PUP::er& p ) { tk::TaggedTuple< ConfigMembers >::pup(p); }
2178 : : //! \brief Pack/Unpack serialize operator|
2179 : : //! \param[in,out] p Charm++'s PUP::er serializer object reference
2180 : : //! \param[in,out] c InputDeck object reference
2181 : 1628 : friend void operator|( PUP::er& p, InputDeck& c ) { c.pup(p); }
2182 : : //@}
2183 : :
2184 : : };
2185 : :
2186 : : } // ctr::
2187 : : } // inciter::
2188 : :
2189 : : #endif // InputDeck_h
|